USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Catégorie : Indentation | Dureté et élasticité

 

Caractérisation nano-mécanique des constantes de ressort

La capacité d'un ressort à stocker de l'énergie mécanique a une longue histoire d'utilisation. Des arcs pour la chasse aux serrures pour les portes, la technologie des ressorts existe depuis de nombreux siècles. De nos jours, nous dépendons des ressorts, qu'il s'agisse de matelas, de stylos ou de suspensions automobiles, car ils jouent un rôle essentiel dans notre vie quotidienne. Avec une telle variété d'utilisation et de conception, il est nécessaire de pouvoir quantifier leurs propriétés mécaniques.

Lire la suite

Outil de sélection des cartes mécaniques Broadview

Nous avons tous entendu l'expression "le temps, c'est de l'argent". C'est pourquoi de nombreuses entreprises recherchent constamment des méthodes pour accélérer et améliorer divers processus, cela permet de gagner du temps. Lorsqu'il s'agit de tests d'indentation, la vitesse, l'efficacité et la précision peuvent être intégrées dans un processus de contrôle de la qualité ou de R&D en utilisant l'un de nos testeurs mécaniques Nanovea. Dans cette note d'application, nous allons présenter un moyen facile de gagner du temps grâce aux fonctionnalités de notre testeur mécanique Nanovea et de notre logiciel Broad View Map and Selection Tool.

Cliquez pour lire la note d'application complète !

Transition vitreuse localisée avec précision grâce à la nanoindentation DMA

Transition vitreuse localisée avec précision grâce à la nanoindentation DMA

En savoir plus
 
Imaginez un scénario dans lequel un échantillon en vrac est chauffé uniformément à une vitesse constante. Lorsqu'un matériau en vrac se réchauffe et approche de son point de fusion, il commence à perdre sa rigidité. Si des indentations périodiques (tests de dureté) sont réalisées avec la même force cible, la profondeur de chaque indentation devrait augmenter constamment puisque l'échantillon devient plus mou (voir figure 1). Ce phénomène se poursuit jusqu'à ce que l'échantillon commence à fondre. À ce stade, une forte augmentation de la profondeur par empreinte sera observée. En utilisant ce concept, le changement de phase dans un matériau peut être observé en utilisant des oscillations dynamiques avec une amplitude de force fixe et en mesurant son déplacement, c'est-à-dire l'analyse mécanique dynamique (DMA).   Découvrez la transition vitreuse localisée et précise !

Mesure de la relaxation des contraintes par nanoindentation

En savoir plus

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Compression sur des matériaux souples et flexibles

Importance de tester les matériaux souples et flexibles

Un système microélectromécanique est un exemple d'échantillon très souple et flexible. Les MEMS sont utilisés dans des produits commerciaux courants tels que les imprimantes, les téléphones portables et les voitures [1]. Ils sont également utilisés pour des fonctions spéciales, comme les biocapteurs [2] et la collecte d'énergie [3]. Pour leurs applications, les MEMS doivent être capables de passer de manière réversible de leur configuration d'origine à une configuration comprimée de manière répétée [4]. Pour comprendre comment les structures vont réagir aux forces mécaniques, des tests de compression peuvent être effectués. Les essais de compression peuvent être utilisés pour tester et régler diverses configurations de MEMS ainsi que pour tester les limites supérieures et inférieures de la force pour ces échantillons.

 La Nanovéa Testeur Méchanique Nano La capacité du module à collecter des données avec précision à des charges très faibles et à parcourir une distance de 1 mm le rend idéal pour tester les échantillons mous et flexibles. Grâce aux capteurs de charge et de profondeur indépendants, le déplacement important du pénétrateur n'affecte pas les lectures du capteur de charge. La capacité d'effectuer des tests à faible charge sur une plage de plus de 1 mm de course du pénétrateur rend notre système unique par rapport aux autres systèmes de nanoindentation. En comparaison, une distance de déplacement raisonnable pour un système d’indentation à l’échelle nanométrique est généralement inférieure à 250 μm.
 

Objectif de la mesure

Dans cette étude de cas, Nanovea a effectué des tests de compression sur deux échantillons flexibles et semblables à des ressorts, d'une différence unique. Nous présentons notre capacité à effectuer des compressions à des charges très faibles et à enregistrer des déplacements importants tout en obtenant des données précises à des charges faibles et comment cela peut être appliqué à l'industrie des MEMS. En raison des politiques de confidentialité, les échantillons et leur origine ne seront pas révélés dans cette étude.

Paramètres de mesure

Remarque : le taux de chargement de 1 V/min est proportionnel à environ 100μm de déplacement lorsque le pénétrateur est dans l'air.

Résultats et discussion

La réponse de l'échantillon aux forces mécaniques est visible dans les courbes de charge en fonction de la profondeur. L'échantillon A ne présente qu'une déformation élastique linéaire avec les paramètres d'essai énumérés ci-dessus. La figure 2 est un excellent exemple de la stabilité qui peut être obtenue pour une courbe charge vs profondeur à 75μN. En raison de la stabilité des capteurs de charge et de profondeur, il serait facile de percevoir toute réponse mécanique signicative de l'échantillon.

L'échantillon B affiche une réponse mécanique différente de celle de l'échantillon A. Passé 750μm de profondeur, un comportement de type fracture dans le graphique commence à apparaître. Cela est visible avec les chutes brutales de charge à 850 et 975μm de profondeur. Malgré un déplacement à un taux de charge élevé pendant plus de 1mm sur une plage de 8mN, nos capteurs de charge et de profondeur hautement sensibles permettent à l'utilisateur d'obtenir les courbes lisses de charge en fonction de la profondeur ci-dessous.

La rigidité a été calculée à partir de la partie de déchargement des courbes de charge par rapport à la profondeur. La rigidité reflète la quantité de force nécessaire pour déformer l'échantillon. Pour ce calcul de la rigidité, un pseudo-rapport de Poisson de 0,3 a été utilisé puisque le rapport réel du matériau n'est pas connu. Dans ce cas, l'échantillon B s'est avéré plus rigide que l'échantillon A.

 

Conclusion

Deux échantillons flexibles différents ont été testés en compression à l'aide du module Nano du testeur mécanique Nanovea. Les tests ont été réalisés à des charges très faibles (1mm). Les tests de compression à l'échelle nanométrique avec le Nano Module ont montré la capacité du module à tester des échantillons très mous et flexibles. Des tests supplémentaires pour cette étude pourraient aborder la façon dont la charge cyclique répétée affecte l'aspect de récupération élastique des échantillons à ressort via l'option de chargement multiple du testeur mécanique Nanovea.

Pour plus d'informations sur cette méthode d'essai, n'hésitez pas à nous contacter à l'adresse [email protected]. Pour d'autres notes d'application, veuillez consulter notre vaste bibliothèque numérique de notes d'application.

Références

[1] " Introduction et domaines d'application des MEMS ". EEHerald, 1er mars 2017, www.eeherald.com/section/design-guide/mems_application_introduction.html.

[2] Louizos, Louizos-Alexandros ; Athanasopoulos, Panagiotis G. ; Varty, Kevin (2012). " Systèmes microélectromécaniques et nanotechnologies. A Platform for the Next Stent Technological Era". Vasc Endovascular Surg.46 (8) : 605–609. doi:10.1177/1538574412462637. PMID 23047818.

[3] Hajati, Arman ; Sang-Gook Kim (2011). "Récolte d'énergie piézoélectrique à bande passante ultra-large". AppliedPhysics Letters. 99 (8) : 083105. doi:10.1063/1.3629551.

[4] Fu, Haoran, et al. "Morphable 3D mesostructures and microelectronic devices by multistable bucklingmechanics". Nature materials 17.3 (2018) : 268.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Propriétés mécaniques des revêtements de plaquettes en carbure de silicium

Il est essentiel de comprendre les propriétés mécaniques des revêtements des plaquettes en carbure de silicium. Le processus de fabrication des dispositifs microélectroniques peut comporter plus de 300 étapes de traitement différentes et peut prendre de six à huit semaines. Au cours de ce processus, le substrat de la tranche doit être capable de résister aux conditions extrêmes de la fabrication, car un échec à n'importe quelle étape entraînerait une perte de temps et d'argent. Les tests de duretéL'adhérence, la résistance aux rayures et le taux d'usure de la plaquette doivent répondre à certaines exigences afin de survivre aux conditions imposées pendant le processus de fabrication et d'application et de garantir qu'une défaillance ne se produira pas.

Propriétés mécaniques des revêtements de plaquettes en carbure de silicium

Nanoindentation de films polymères à humidité contrôlée

Les propriétés mécaniques des polymères sont modifiées lorsque l'humidité ambiante augmente. Les effets transitoires de l'humidité, aussi appelés effets mécanosorptifs, se produisent lorsque le polymère absorbe une forte teneur en humidité et connaît un comportement de fluage accéléré. La conformité accrue au fluage est le résultat d'effets combinés complexes tels que la mobilité moléculaire accrue, le vieillissement physique induit par la sorption et les gradients de contrainte induits par la sorption.

Par conséquent, un test fiable et quantitatif (nanoindentation à l'humidité) de l'influence induite par la sorption sur le comportement mécanique des matériaux polymères à différents niveaux d'humidité est nécessaire. Le module Nano du testeur mécanique Nanovea applique la charge par un piezo de haute précision et mesure directement l'évolution de la force et du déplacement. Une humidité uniforme est créée autour de la pointe de l'indentation et de la surface de l'échantillon par une enceinte d'isolation, ce qui garantit la précision des mesures et minimise l'influence de la dérive causée par le gradient d'humidité.

Nanoindentation de films polymères à humidité contrôlée

Propriétés mécaniques et tribologiques de la fibre de carbone

Combiné avec l'essai d'usure par Tribomètre et l'analyse de la surface par profilomètre optique 3D, nous
présenter la polyvalence et la précision des instruments Nanovea pour tester les matériaux composites.
avec des propriétés mécaniques directionnelles.

Propriétés mécaniques et tribologiques de la fibre de carbone

Évaluation de la dureté biomécanique des tissus

La capacité de mesurer avec précision les propriétés mécaniques dans les domaines des sciences de la vie est récemment devenue un aspect important de nombreuses études actuelles. Dans certains cas, la compréhension des propriétés mécaniques des surfaces biologiques molles a permis de découvrir les effets mécaniques des maladies. Comprendre les propriétés mécaniques fournit un contexte pour identifier le comportement mécanique local lié à des changements spécifiques. C’est également essentiel dans le développement de biomatériaux artificiels. Dans cette application, le Nanovea Testeur Méchanique, dans Nanoindentation est utilisé pour étudier la dureté biomécanique et le module d'élasticité de 3 zones distinctes du prosciutto (gras, viande claire et viande brune).

Évaluation de la dureté biomécanique des tissus

Évaluation de la dureté des dents à l'aide de la nanoindentation

Dans cette application, le système Nanovea Testeur Méchanique, dans Nanoindentation est utilisé pour étudier la dureté et le module d'élasticité de la dentine, de la carie et de la pulpe d'une dent. L'aspect le plus critique des tests de nano-identification est la fixation de l'échantillon. Ici, nous avons pris une dent tranchée et montée à l'époxy en laissant les trois zones d'intérêt exposées pour les tests.

Évaluation de la dureté des dents à l'aide de la nanoindentation

Essai de flexion à 3 points par microindentation

Dans cette application, le système Nanovea Testeur Méchanique, dans Microindentation est utilisé pour mesurer la résistance à la flexion (à l'aide du pliage en 3 points) d'échantillons de tiges de différentes tailles (pâtes) afin de présenter une gamme de données. Deux diamètres différents ont été choisis pour démontrer les caractéristiques élastiques et fragiles. En utilisant un pénétrateur à pointe plate pour appliquer une charge ponctuelle, nous déterminons la rigidité (module de Young) et identifions les charges critiques auxquelles l'échantillon se fracture.

Essai de flexion à 3 points par microindentation