アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

カテゴリー圧痕|硬度・弾性率

 

バネ定数のナノメカニクス的特性評価

機械的なエネルギーを蓄えることができるバネの歴史は古く、狩猟のための弓からドアの鍵まで、バネの技術は何世紀にもわたって使われてきた。狩猟のための弓からドアの鍵まで、バネの技術は何世紀にもわたって存在してきました。現在では、マットレスやペン、自動車のサスペンションなど、私たちの生活に欠かせない存在として、バネに依存しています。このように用途や設計が多岐に渡るため、その機械的特性を定量的に把握する能力が必要とされます。

続きを読む

メカニカルブロードビュー地図選択ツール

時は金なり」という言葉を聞いたことがあると思います。多くの企業が、さまざまなプロセスを迅速化し、改善する方法を常に求めているのは、そのためです。ナノベアメカニカルテスターを使用すれば、圧痕試験に関して、スピード、効率、精度を品質管理または研究開発プロセスに組み込むことができます。このアプリケーションノートでは、ナノベアメカニカルテスターとブロードビューマップおよび選択ツールソフトウェアの機能を用いて、時間を節約する簡単な方法を紹介します。

クリックすると、アプリケーションノートの全文をご覧いただけます。

ナノインデンテーションDMAによるローカルスポットガラス転移測定

ナノインデンテーションDMAによるローカルスポットガラス転移測定

詳細はこちら
 
バルク材が一定の速度で均一に加熱されるシナリオを想像してください。バルク材が加熱され、融点に近づくにつれて、その剛性は失われ始めます。同じ力で定期的に圧痕(硬さ試験)を行うと、試料が柔らかくなっているため、圧痕の深さは常に増しているはずです(図1参照)。これは、試料が溶け始めるまで続く。このとき、圧痕の深さが大きく増加することが確認される。このように、一定の振幅の力で振動させ、その変位を測定することにより、材料の相変化を観察することができる。   ガラス転移の精密な局所化について読む!

ナノインデンテーションによる応力緩和測定

詳細はこちら

さて、次はアプリケーションについてです。

ソフトで柔軟な素材への圧縮

柔らかい素材、柔軟な素材のテストの重要性

非常に柔らかく柔軟性のあるサンプルの例として、マイクロエレクトロメカニカルシステムがある。MEMSは、プリンター、携帯電話、自動車など、日常的に使用される製品に使用されている[1]。また、バイオセンサ[2]やエネルギーハーベスティング[3]などの特殊な機能にも利用されている。MEMSの応用には、元の形状と圧縮された形状の間を可逆的に繰り返し移行できることが必要である[4]。機械的な力に対して構造体がどのように反応するかを理解するために、圧縮試験を実施することができます。圧縮試験は、さまざまなMEMS構成の試験と調整、およびこれらのサンプルの力の上限と下限の試験に利用することができます。

 ナノベア メカニカルテスター ナノ 非常に低い負荷でデータを正確に収集し、1 mm の距離を移動できるモジュールの機能は、柔らかく柔軟なサンプルのテストに最適です。独立した荷重センサーと深さセンサーを備えているため、大きな圧子の変位が荷重センサーによる読み取り値に影響を与えることはありません。圧子の移動範囲が 1 mm を超える範囲で低負荷試験を実行できるため、当社のシステムは他のナノインデンテーション システムと比べてユニークです。比較すると、ナノスケールの押し込みシステムの適切な移動距離は、通常 250μm 未満です。
 

測定目的

このケーススタディでは、ナノベアがユニークな2つの柔軟なバネのようなサンプルに対して圧縮試験を実施しました。非常に低い荷重で圧縮を行い、大きな変位を記録しながら、低荷重で正確にデータを取得する当社の能力と、これがMEMS産業にどのように応用できるかを紹介します。プライバシーポリシーにより、サンプルとその由来は明らかにしていません。

測定パラメータ

注)負荷速度1V/minは、圧子が空中にある場合、約100μmの変位に比例します。

結果および考察

機械的な力に対するサンプルの応答は、荷重対深さの曲線で見ることができます。サンプルAは、上記の試験パラメータで線形弾性変形のみを示します。図2は、75μNでの荷重-深度曲線で達成できる安定性の好例です。荷重センサと深度センサが安定しているため、試料から有意な機械的応答を容易に感知することができます。

深さ750μmを過ぎたあたりから、グラフに破断のような挙動が見られるようになりました。これは深さ850μmと975μmで荷重が急激に減少していることからわかります。8mNの範囲で1mm以上の高荷重で移動しているにもかかわらず、当社の高感度荷重センサーと深度センサーにより、以下のようななめらかな荷重-深度曲線が得られています。

剛性は,荷重-深さ曲線の無負荷部分から算出した。剛性は、試料を変形させるために必要な力の大きさを反映しています。この剛性計算では、材料の実際の比率が分からないため、擬似的なポアソン比である0.3を使用しました。この場合、試料Bは試料Aよりも硬いことがわかりました。

 

結論

Nanovea Mechanical TesterのNano Moduleを使用して、2種類の柔軟なサンプルの圧縮試験を実施しました。試験は非常に低い荷重(1mm)で実施されました。Nanoモジュールを用いたナノスケールの圧縮試験により、非常に柔らかく柔軟なサンプルを試験するモジュールの能力が示されました。この研究の追加試験として、Nanovea Mechanical Testerのマルチローディングオプションにより、繰り返されるサイクル荷重がバネのようなサンプルの弾性回復にどのような影響を与えるかについて取り上げることができます。

このテスト方法の詳細については、[email protected] までお気軽にお問い合わせください。また、その他のアプリケーションノートについては、当社の広範なアプリケーションノートデジタルライブラリを参照してください。

参考文献

[1] "MEMSの紹介と応用分野".EEHerald, 1 Mar. 2017, www.eeherald.com/section/design-guide/mems_application_introduction.html.

[2] Louizos, Louizos-Alexandros; Athanasopoulos, Panagiotis G.; Varty, Kevin (2012).「Microelectromechanical Systems and Nanotechnology.次のステント技術時代のためのプラットフォーム".Vasc Endovascular Surg.46 (8):605–609. doi:10.1177/1538574412462637.PMID 23047818.

[3] Hajati, Arman; Sang-Gook Kim (2011).「超広帯域圧電エネルギーハーベスティング".AppliedPhysics Letters.99 (8):083105. doi:10.1063/1.3629551.

[4] Fu, Haoran, et al. "Morphable 3D mesostructures and microelectronic devices by multistable bucklingmechanics.".ネイチャー・マテリアル 17.3 (2018): 268.

さて、次はアプリケーションについてです。

炭化ケイ素ウェハーコーティングの機械的特性

炭化ケイ素ウェハーコーティングの機械的特性を理解することは、非常に重要です。マイクロエレクトロニクスデバイスの製造工程は、300 以上の異なる処理工程があり、6 週間から 8 週間かかることもあります。この工程では、どの工程で失敗しても時間と費用の損失につながるため、ウェハー基板は製造の極限状態に耐えられる必要があります。のテストは 硬度また、ウェーハの接着性、耐スクラッチ性、COF/磨耗率は、製造工程や塗布工程で課せられる条件に耐え、故障が発生しないように一定の条件を満たす必要があります。

炭化ケイ素ウェハーコーティングの機械的特性

高分子フィルムの制御された湿度ナノインデンテーション

ポリマーの機械的特性は、環境湿度の上昇に伴って変化します。過渡的水分効果、別名メカノソープティブ効果は、ポリマーが高水分を吸収し、クリープ挙動が加速されることによって生じます。高いクリープコンプライアンスは、分子運動性の増大、収着による物理的老化、収着による応力勾配などの複雑な複合効果の結果である。

そのため、高分子材料の機械的挙動に吸着が及ぼす影響について、異なる水分レベルでの信頼性の高い定量的な試験(湿度ナノインデンテーション)が必要とされています。ナノベアメカニカルテスターのナノモジュールは、高精度ピエゾで荷重をかけ、力と変位の変化を直接測定します。圧子先端と試料表面は、隔離筐体により均一な湿度が保たれており、測定精度を確保するとともに、湿度勾配によるドリフトの影響を最小限に抑えています。

高分子フィルムの制御された湿度ナノインデンテーション

炭素繊維の機械的性質とトライボロジー特性

による摩耗試験と組み合わせる。 トライボメータ と光学式3次元プロフィロメータによる表面解析の結果、以下のことがわかりました。
複合材料の検査におけるナノベアーの汎用性と精度を紹介します。
方向性のある機械的特性を持つ

炭素繊維の機械的性質とトライボロジー特性

組織のバイオメカニクス的硬度評価

生命科学の分野で機械的特性を正確に測定する能力は、最近の多くの研究において重要な側面となっています。場合によっては、柔らかい生体表面の機械的特性を理解することで、病気の機械的影響を明らかにすることができます。機械的特性を理解すると、特定の変化に関連する局所的な機械的動作を特定するためのコンテキストが得られます。人工生体材料の開発にも重要です。このアプリケーションでは、Nanovea メカニカルテスター、 で ナノインデンテーション モードを使用して、プロシュートの3つの部位(脂肪、淡肉、濃肉)のバイオメカニクス的硬度と弾性率を研究しています。

組織のバイオメカニクス的硬度評価

ナノインデンテーションを用いた歯の硬さ評価

このアプリケーションでは、ナノベア メカニカルテスター、 で ナノインデンテーション モードは、歯の象牙質、虫歯、歯髄の硬度や弾性率を調べるために使用されます。ナノアイデンテイションで最も重要なことは、サンプルの固定です。ここでは、スライスした歯をエポキシ樹脂でマウントし、3つの関心領域すべてをテストのために露出させています。

ナノインデンテーションを用いた歯の硬さ評価

マイクロインデンテーションを用いた3点曲げ試験

このアプリケーションでは、ナノベア メカニカルテスター、 で マイクロインデンテーション モードを使用して、さまざまなサイズのロッドサンプル(パスタ)の曲げ強さ(3点曲げを使用)を測定し、さまざまなデータを示しています。弾性と脆性の両方の特性を示すために、2種類の直径が選ばれています。先端が平らな圧子を使って点荷重を加え、剛性(ヤング率)を測定し、試料が破壊する臨界荷重を特定します。

マイクロインデンテーションを用いた3点曲げ試験