미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

카테고리: 압흔 | 경도 및 탄성

 

스프링 상수의 나노 기계적 특성 분석

기계 에너지를 저장하는 스프링의 기능은 오랜 역사를 가지고 있습니다. 사냥용 활부터 문 자물쇠에 이르기까지 스프링 기술은 수세기 동안 사용되어 왔습니다. 오늘날 우리는 매트리스, 펜, 자동차 서스펜션 등 일상 생활에서 중요한 역할을 하는 스프링에 의존하고 있습니다. 용도와 디자인이 매우 다양하기 때문에 스프링의 기계적 특성을 정량화할 수 있는 능력이 필요합니다.

자세히 보기

기계식 브로드뷰 맵 선택 도구

시간이 곧 돈이라는 말은 누구나 들어보셨을 겁니다. 그렇기 때문에 많은 기업들이 시간을 절약하기 위해 다양한 공정을 신속히 처리하고 개선하는 방법을 끊임없이 모색합니다. 압입 테스트의 경우 나노비아 기계식 테스터를 사용하면 속도, 효율성 및 정밀도를 품질 관리 또는 R&D 프로세스에 통합할 수 있습니다. 이 애플리케이션 노트에서는 나노베아 메카니컬 테스터와 브로드뷰 맵 및 선택 도구 소프트웨어 기능으로 시간을 절약할 수 있는 쉬운 방법을 소개합니다.

전체 애플리케이션 노트를 읽으려면 클릭하세요!

나노 인덴테이션 DMA를 통한 정밀한 국소 유리 전이

나노 인덴테이션 DMA를 통한 정밀한 국소 유리 전이

자세히 알아보기
 
벌크 시료가 일정한 속도로 균일하게 가열되는 시나리오를 상상해 보십시오. 벌크 재료가 가열되어 녹는점에 가까워지면 강성이 떨어지기 시작합니다. 동일한 목표 힘으로 주기적으로 압입(경도 테스트)을 수행하면 시료가 부드러워지기 때문에 각 압입의 깊이가 지속적으로 증가해야 합니다(그림 1 참조). 이 과정은 시료가 녹기 시작할 때까지 계속됩니다. 이 시점에서 압흔당 깊이가 크게 증가하는 것을 관찰할 수 있습니다. 이 개념을 사용하여 고정된 힘 진폭의 동적 진동을 사용하고 변위를 측정하여 재료의 상 변화를 관찰할 수 있습니다(동적 기계 분석(DMA)).   정밀한 로컬라이즈드 유리 전환에 대해 읽어보세요!

나노 인덴테이션을 이용한 스트레스 이완 측정

자세히 알아보기

이제 애플리케이션에 대해 이야기해 보겠습니다.

부드럽고 유연한 소재에 대한 압축

부드럽고 유연한 소재 테스트의 중요성

매우 부드럽고 유연한 샘플의 예로 마이크로전자기계 시스템을 들 수 있습니다. MEMS는 프린터, 휴대폰, 자동차 등 일상적인 상업용 제품에 사용됩니다[1]. 또한 바이오센서[2] 및 에너지 하베스팅[3]과 같은 특수 기능에도 사용됩니다. 이러한 애플리케이션을 위해 MEMS는 원래 구성에서 압축된 구성으로 반복적으로 가역적으로 전환할 수 있어야 합니다[4]. 구조가 기계적 힘에 어떻게 반응하는지 이해하기 위해 압축 테스트를 수행할 수 있습니다. 압축 테스트는 다양한 MEMS 구성을 테스트하고 조정하는 데 활용될 수 있을 뿐만 아니라 이러한 샘플의 상한 및 하한 힘 한계를 테스트하는 데에도 활용될 수 있습니다.

 나노베아 기계 테스터 나노 매우 낮은 하중에서 데이터를 정확하게 수집하고 1mm 이상의 거리를 이동할 수 있는 모듈의 기능은 부드럽고 유연한 샘플을 테스트하는 데 이상적입니다. 독립적인 하중 및 깊이 센서를 보유함으로써 큰 압자 변위는 하중 센서의 판독값에 영향을 미치지 않습니다. 1mm 이상의 압자 이동 범위에서 저부하 테스트를 수행할 수 있는 능력은 당사 시스템을 다른 나노인덴테이션 시스템과 비교할 때 독특하게 만듭니다. 이에 비해 나노크기 압입 시스템의 합리적인 이동 거리는 일반적으로 250μm 미만입니다.
 

측정 목표

이 사례 연구에서 나노브아는 스프링처럼 유연한 두 가지 샘플에 대해 압축 테스트를 수행했습니다. 매우 낮은 부하에서 압축을 수행하고 큰 변위를 기록하는 동시에 낮은 부하에서 데이터를 정확하게 얻을 수 있는 능력과 이를 MEMS 산업에 적용할 수 있는 방법을 보여줍니다. 개인정보 보호정책에 따라 이 연구에서는 샘플과 샘플의 출처는 공개되지 않습니다.

측정 매개변수

참고: 1V/min의 로딩 속도는 압자가 공중에 있을 때 약 100μm의 변위에 비례합니다.

결과 및 토론

기계적 힘에 대한 샘플의 반응은 하중 대 깊이 곡선에서 확인할 수 있습니다. 샘플 A는 위에 나열된 테스트 파라미터로 선형 탄성 변형만 표시합니다. 그림 2는 75μN에서 하중 대 깊이 곡선에 대해 얻을 수 있는 안정성을 보여주는 좋은 예입니다. 하중 및 깊이 센서의 안정성으로 인해 샘플에서 중요한 기계적 반응을 쉽게 감지할 수 있습니다.

샘플 B는 샘플 A와 다른 기계적 응답을 표시합니다. 깊이 750μm를 지나면 그래프에서 파단과 같은 동작이 나타나기 시작합니다. 이는 깊이 850 및 975μm에서 하중이 급격히 감소하는 것을 볼 수 있습니다. 8mN의 범위에서 1mm 이상의 높은 하중 속도로 이동하더라도 고감도 하중 및 깊이 센서를 통해 사용자는 아래의 매끄러운 하중 대 깊이 곡선을 얻을 수 있습니다.

강성은 하중 대 깊이 곡선의 언로드 부분으로부터 계산되었습니다. 강성은 샘플을 변형시키는 데 필요한 힘의 양을 반영합니다. 이 강성 계산에는 재료의 실제 비율을 알 수 없으므로 의사 푸아송 비율 0.3이 사용되었습니다. 이 경우 샘플 B가 샘플 A보다 강성이 더 높은 것으로 나타났습니다.

 

결론

나노베아 기계식 테스터의 나노 모듈을 사용하여 두 가지 다른 연성 샘플을 압축 상태에서 테스트했습니다. 테스트는 매우 낮은 하중(1mm)에서 수행되었습니다. 나노 모듈을 사용한 나노 스케일 압축 테스트는 매우 부드럽고 유연한 샘플을 테스트할 수 있는 모듈의 능력을 보여주었습니다. 이 연구를 위한 추가 테스트에서는 나노베아 기계 시험기의 다중 하중 옵션을 통해 반복적인 주기적 하중이 스프링과 같은 시료의 탄성 회복 측면에 어떤 영향을 미치는지 다룰 수 있습니다.

이 테스트 방법에 대한 자세한 내용은 [email protected] 으로 문의해 주시고, 추가 애플리케이션 노트는 광범위한 애플리케이션 노트 디지털 라이브러리에서 찾아보시기 바랍니다.

참조

[1] "MEMS 소개 및 응용 분야." EEHerald, 1 Mar, www.eeherald.com/section/design-guide/mems_application_introduction.html.

[루이 조스, 루이 조스-알렉산드로스; 아타나 소 풀 로스, 파나 지오티스 G.; 바티, 케빈 (2012). "마이크로 전자 기계 시스템 및 나노 기술. 차세대 스텐트 기술 시대를위한 플랫폼". Vasc 혈관 내 혈관 외과.46 (8): 605–609. doi:10.1177/1538574412462637. PMID 23047818.

[3] 하자티, 아르만; 김상국 (2011). "초 광대역 압전 에너지 하베스팅". 응용 물리학 편지. 99 (8): 083105. 도이:10.1063/1.3629551.

[4] 푸 하오란 외. "다중 안정 좌굴 역학에 의한 변형 가능한 3D 메조 구조 및 마이크로 전자 소자." 자연 재료 17.3 (2018): 268.

이제 애플리케이션에 대해 이야기해 보겠습니다.

실리콘 카바이드 웨이퍼 코팅의 기계적 특성

실리콘 카바이드 웨이퍼 코팅의 기계적 특성을 이해하는 것은 매우 중요합니다. 마이크로 전자 장치의 제조 공정에는 300개 이상의 다양한 공정 단계가 포함될 수 있으며 6주에서 8주까지 소요될 수 있습니다. 이 과정에서 웨이퍼 기판은 어느 한 단계라도 실패하면 시간과 비용 손실로 이어지기 때문에 극한의 제조 조건을 견딜 수 있어야 합니다. 테스트 대상 경도웨이퍼의 접착력/스크래치 저항성 및 COF/마모율은 제조 및 적용 과정에서 부과되는 조건을 견뎌내고 고장이 발생하지 않도록 특정 요구 사항을 충족해야 합니다.

실리콘 카바이드 웨이퍼 코팅의 기계적 특성

폴리머 필름의 습도 제어 나노 인덴테이션

폴리머의 기계적 특성은 환경 습도가 높아짐에 따라 변경됩니다. 일시적인 수분 효과, 즉 메카노 흡착 효과는 폴리머가 높은 수분 함량을 흡수하고 가속화된 크리프 거동을 경험할 때 발생합니다. 높은 크리프 준수는 분자 이동성 증가, 흡착에 의한 물리적 노화 및 흡착에 의한 응력 구배와 같은 복합적인 효과의 결과입니다.

따라서 다양한 수분 수준에서 고분자 재료의 기계적 거동에 대한 흡착에 의한 영향에 대한 신뢰성 있고 정량적인 테스트(습도 나노 압입)가 필요합니다. 나노베아 메카니컬 테스터의 나노 모듈은 고정밀 피에조로 하중을 가하고 힘과 변위의 변화를 직접 측정합니다. 절연 인클로저를 통해 압입 팁과 시료 표면 주위에 균일한 습도를 조성하여 측정 정확도를 보장하고 습도 구배로 인한 드리프트의 영향을 최소화합니다.

폴리머 필름의 습도 제어 나노 인덴테이션

탄소 섬유의 기계적 및 마찰 특성

마모 테스트와 결합 트라이보미터 광학 3D 프로파일로미터로 표면을 분석합니다.
복합 재료 테스트에서 나노베아 장비의 다양성과 정확성을 보여줍니다.
방향성 기계적 특성이 있습니다.

탄소 섬유의 기계적 및 마찰 특성

조직의 생체 역학적 경도 평가

생명 과학 분야에서 기계적 특성을 정확하게 측정하는 능력은 최근 많은 연구에서 중요한 측면이 되었습니다. 어떤 경우에는 부드러운 생물학적 표면의 기계적 특성을 이해하는 것이 질병의 기계적 영향을 밝히는 데 도움이 되었습니다. 기계적 특성을 이해하면 특정 변화와 관련된 국지적 기계적 동작을 식별하기 위한 컨텍스트가 제공됩니다. 인공바이오소재 개발에도 중요한 역할을 한다. 이 응용 프로그램에서 Nanovea는 기계 테스터, 안에 나노 인덴테이션 모드를 사용하여 프로슈토의 세 가지 부위(지방, 연육, 암육)의 생체 역학적 경도와 탄성 계수를 연구합니다.

조직의 생체 역학적 경도 평가

나노 인덴테이션을 이용한 치아 경도 평가

이 애플리케이션에서 나노베아 기계 테스터, 안에 나노 인덴테이션 모드는 치아의 상아질, 충치 및 치수의 경도와 탄성 계수를 연구하는 데 사용됩니다. 나노 식별 테스트에서 가장 중요한 측면은 샘플을 확보하는 것입니다. 여기서는 치아를 슬라이스하고 에폭시를 장착하여 테스트를 위해 세 가지 관심 영역을 모두 노출시킨 채로 촬영했습니다.

나노 인덴테이션을 이용한 치아 경도 평가

마이크로 인덴테이션을 사용한 3 포인트 굽힘 테스트

이 애플리케이션에서 나노베아 기계 테스터, 안에 마이크로 들여쓰기 모드를 사용하여 다양한 크기의 막대 샘플(파스타)의 굴곡 강도(3점 굽힘 사용)를 측정하여 다양한 데이터를 표시합니다. 탄성 및 취성 특성을 모두 보여주기 위해 두 가지 직경이 선택되었습니다. 평평한 팁 압자를 사용하여 점 하중을 가하여 강성(영 계수)을 결정하고 샘플이 파단되는 임계 하중을 식별합니다.

마이크로 인덴테이션을 사용한 3 포인트 굽힘 테스트