USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Kategoria: Wcięcie | Pełzanie i relaksacja

 

Właściwości mechaniczne hydrożelu

WŁAŚCIWOŚCI MECHANICZNE HYDROŻELU

PRZY UŻYCIU NANOINDENTACJI

Przygotowane przez

DUANJIE LI, PhD & JORGE RAMIREZ

WPROWADZENIE

Hydrożel znany jest ze swojej super chłonności wody, pozwalającej na bliskie podobieństwo elastyczności do naturalnych tkanek. To podobieństwo sprawiło, że hydrożel stał się powszechnym wyborem nie tylko w biomateriałach, ale także w elektronice, ochronie środowiska i zastosowaniach konsumenckich, takich jak soczewki kontaktowe. Każda unikalna aplikacja wymaga specyficznych właściwości mechanicznych hydrożelu.

ZNACZENIE NANOINDENTACJI DLA HYDROŻELU

Hydrożele stanowią wyjątkowe wyzwanie dla badań metodą nanoindentacji, takie jak dobór parametrów badań i przygotowanie próbek. Wiele systemów do badań metodą nanoindentacji posiada poważne ograniczenia, ponieważ nie zostały one zaprojektowane z myślą o zastosowaniu w badaniach hydrożeli. tak miękkich materiałów. Niektóre systemy nanoindentacji wykorzystują zespół cewka/magnes do przyłożenia siły do próbki. Nie ma pomiaru rzeczywistej siły, co prowadzi do niedokładnego i nieliniowego obciążenia podczas badania miękkich materiałów. materiały. Określenie punktu styku jest niezwykle trudne, ponieważ Głębokość jest jedynym parametrem faktycznie mierzonym. Niemal niemożliwe jest zaobserwowanie zmiany nachylenia w Głębokość a czas działka podczas okres, w którym końcówka wgłębnika zbliża się do materiału hydrożelowego.

W celu przezwyciężenia ograniczeń tych systemów, nano moduł NANOVEA Tester mechaniczny mierzy sprzężenie zwrotne siły za pomocą indywidualnego ogniwa obciążnikowego, aby zapewnić wysoką dokładność na wszystkich rodzajach materiałów, miękkich i twardych. Przemieszczenie sterowane piezoelektrycznie jest niezwykle precyzyjne i szybkie. Umożliwia to niezrównany pomiar właściwości lepkosprężystych poprzez wyeliminowanie wielu założeń teoretycznych, które muszą uwzględniać systemy z zespołem cewki/magnesu i bez sprzężenia zwrotnego siły.

CEL POMIARU

W tej aplikacji NANOVEA Tester mechaniczny, w trybie nanoindentacji, służy do badania twardości, modułu sprężystości i pełzania próbki hydrożelowej.

NANOVEA

PB1000

WARUNKI BADANIA

Próbkę hydrożelu umieszczoną na szklanym szkiełku badano techniką nanoindentacji przy użyciu NANOVEA Tester mechaniczny. Dla tego miękkiego materiału zastosowano końcówkę sferyczną o średnicy 3 mm. Obciążenie liniowo wzrastało od 0,06 do 10 mN podczas okresu obciążania. Następnie mierzono pełzanie na podstawie zmiany głębokości wgłębienia przy maksymalnym obciążeniu 10 mN przez 70 sekund.

PRĘDKOŚĆ ZBLIŻANIA SIĘ: 100 μm/min

ŁADUNEK KONTAKTOWY
0,06 mN
OBCIĄŻENIE MAKSYMALNE
10 mN
PRĘDKOŚĆ ZAŁADUNKU

20 mN/min

CREEP
70 s
WYNIKI I DYSKUSJA

Ewolucja obciążenia i głębokości w funkcji czasu została przedstawiona w FUGURA 1. Można zauważyć, że na wykresie dot. Głębokość a czas, bardzo trudno jest określić punkt zmiany nachylenia na początku okresu obciążenia, który zwykle sprawdza się jako wskazówka, gdzie wgłębnik zaczyna stykać się z miękkim materiałem. Jednakże, wykres Obciążenie w zależności od czasu pokazuje osobliwe zachowanie hydrożelu pod wpływem przyłożonego obciążenia. Gdy hydrożel zaczyna stykać się z wgłębnikiem kulistym, z powodu napięcia powierzchniowego hydrożel ciągnie wgłębnik kulisty, co powoduje zmniejszenie jego powierzchni. Takie zachowanie prowadzi do ujemnego zmierzonego obciążenia na początku etapu obciążania. Obciążenie stopniowo wzrasta, gdy wgłębnik zagłębia się w hydrożel, a następnie jest kontrolowane, aby było stałe przy maksymalnym obciążeniu 10 mN przez 70 sekund w celu zbadania zachowania hydrożelu podczas pełzania.

RYSUNEK 1: Ewolucja obciążenia i głębokości w funkcji czasu.

Działka o pow. Głębokość pełzania w funkcji czasu zaznaczono w RYSUNEK 2, oraz Obciążenie a przemieszczenie wykres badania metodą nanoindentacji pokazany jest w RYSUNEK 3. Hydrożel w tej pracy posiada twardość 16,9 KPa i moduł Younga 160,2 KPa, obliczone na podstawie krzywej przemieszczenia obciążenia metodą Olivera-Pharra.

Pełzanie jest ważnym czynnikiem w badaniach właściwości mechanicznych hydrożelu. Sterowanie w ścisłej pętli sprzężenia zwrotnego pomiędzy piezoelementem a ultraczułym ogniwem obciążnikowym zapewnia rzeczywiste stałe obciążenie w czasie pełzania przy maksymalnym obciążeniu. Jak pokazano w RYSUNEK 2, hydrożel ustępuje ~42 μm w wyniku pełzania w ciągu 70 sekund pod maksymalnym obciążeniem 10 mN przyłożonym przez końcówkę kulkową 3 mm.

RYSUNEK 2: Pełzanie przy maksymalnym obciążeniu 10 mN przez 70 sekund.

RYSUNEK 3: Wykres zależności obciążenia od przemieszczenia hydrożelu.

PODSUMOWANIE

W tym badaniu wykazaliśmy, że NANOVEA Tester mechaniczny, w trybie nanoindentacji, zapewnia precyzyjny i powtarzalny pomiar właściwości mechanicznych hydrożelu, w tym twardości, modułu Younga i pełzania. Duża 3 mm końcówka kulkowa zapewnia prawidłowy kontakt z powierzchnią hydrożelu. Wysokoprecyzyjny zmotoryzowany statyw do próbek umożliwia dokładne pozycjonowanie płaskiej powierzchni próbki hydrożelu pod końcówką kulkową. Hydrożel w tym badaniu wykazuje twardość 16,9 KPa i moduł Younga 160,2 KPa. Głębokość pełzania wynosi ~42 μm pod obciążeniem 10 mN przez 70 sekund.

NANOVEA Testery mechaniczne zapewniają niezrównaną wielofunkcyjność modułów Nano i Micro na jednej platformie. Oba moduły zawierają tryb testera zarysowań, testera twardości oraz testera zużycia, oferując najszerszy i najbardziej przyjazny dla użytkownika zakres badań dostępny na jednej platformie.
system.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Odkształcanie pełzające polimerów metodą nanoindentacji

Odkształcanie pełzające polimerów metodą nanoindentacji

Dowiedz się więcej

ODKSZTAŁCENIE PEŁZAJĄCE

POLIMERÓW ZA POMOCĄ NANOINDENTACJI

Przygotowane przez

DUANJIE LI, dr

WPROWADZENIE

Jako materiały lepkosprężyste, polimery często ulegają deformacji zależnej od czasu pod wpływem określonego przyłożonego obciążenia, znanego również jako pełzanie. Pełzanie staje się czynnikiem krytycznym, gdy części polimerowe mają być narażone na ciągłe naprężenia, takie jak elementy konstrukcyjne, połączenia i złącza oraz hydrostatyczne zbiorniki ciśnieniowe.

ZNACZENIE POMIARU PEŁZANIA DLA POLIMERÓW

Naturalna natura lepkosprężystości odgrywa kluczową rolę w działaniu polimerów i bezpośrednio wpływa na ich niezawodność działania. Warunki środowiskowe, takie jak obciążenie i temperatura, wpływają na zachowanie pełzania polimerów. Awarie związane z pełzaniem często występują z powodu braku czujności w zakresie zależnego od czasu zachowania pełzania materiałów polimerowych stosowanych w określonych warunkach pracy. W rezultacie ważne jest opracowanie wiarygodnego i ilościowego testu lepkosprężystego zachowania mechanicznego polimerów. Moduł Nano NANOVEA Testery mechaniczne przykłada obciążenie za pomocą precyzyjnego piezoelektrycznego czujnika i bezpośrednio mierzy ewolucję siły i przemieszczenia na miejscu. Połączenie dokładności i powtarzalności sprawia, że jest to idealne narzędzie do pomiaru pełzania.

CEL POMIARU

W tej aplikacji pokazaliśmy, że
Tester mechaniczny NANOVEA PB1000
w Nanoindentacja Tryb jest idealnym narzędziem
do badania lepkosprężystych właściwości mechanicznych
w tym twardość, moduł Younga
i pełzanie materiałów polimerowych.

NANOVEA

PB1000

WARUNKI BADANIA

Osiem różnych próbek polimerowych badano techniką nanoindentacji przy użyciu testera mechanicznego NANOVEA PB1000. W miarę liniowego wzrostu obciążenia od 0 do 40 mN, głębokość wgłębienia stopniowo wzrastała podczas etapu obciążania. Pełzanie mierzono następnie na podstawie zmiany głębokości wgniecenia przy maksymalnym obciążeniu 40 mN przez 30 s.

OBCIĄŻENIE MAKSYMALNE 40 mN
PRĘDKOŚĆ ZAŁADUNKU
80 mN/min
PRĘDKOŚĆ ROZŁADUNKU 80 mN/min
CREEP TIME
30 s

TYP INDENTER

Berkovich

Diament

*konfiguracja badania metodą nanoindentacji

WYNIKI I DYSKUSJA

Wykres zależności obciążenia od przemieszczenia w badaniach nanoindentacji różnych próbek polimerowych przedstawiono na RYSUNKU 1, a krzywe pełzania porównano na RYSUNKU 2. Twardość i moduł Younga są podsumowane na RYSUNKU 3, a głębokość pełzania jest pokazana na RYSUNKU 4. Jako przykłady na RYSUNKU 1, części AB, BC i CD krzywej obciążenie-przemieszczenie dla pomiaru nanoindentacji reprezentują odpowiednio procesy ładowania, pełzania i rozładowania.

Delrin i PVC wykazują najwyższą twardość odpowiednio 0,23 i 0,22 GPa, podczas gdy LDPE posiada najniższą twardość 0,026 GPa wśród badanych polimerów. Ogólnie rzecz biorąc, twardsze polimery wykazują mniejszą szybkość pełzania. Najbardziej miękki LDPE ma największą głębokość pełzania 798 nm, w porównaniu do ~120 nm dla Delrinu.

Właściwości pełzania polimerów są krytyczne, gdy są one stosowane w częściach konstrukcyjnych. Poprzez precyzyjny pomiar twardości i pełzania polimerów, można uzyskać lepsze zrozumienie niezawodności polimerów w zależności od czasu. Pełzanie, zmiana przemieszczenia przy danym obciążeniu, może być również mierzone w różnych podwyższonych temperaturach i wilgotności przy użyciu testera mechanicznego NANOVEA PB1000, zapewniając idealne narzędzie do ilościowego i wiarygodnego pomiaru lepkosprężystych zachowań mechanicznych polimerów.
w symulowanym realistycznym środowisku aplikacji.

RYSUNEK 1: Wykresy zależności obciążenia od przemieszczenia
różnych polimerów.

RYSUNEK 2: Pełzanie przy maksymalnym obciążeniu 40 mN przez 30 s.

RYSUNEK 3: Twardość i moduł Younga polimerów.

RYSUNEK 4: Głębokość pełzania polimerów.

PODSUMOWANIE

W tym badaniu wykazaliśmy, że NANOVEA PB1000
Mechanical Tester mierzy właściwości mechaniczne różnych polimerów, w tym twardość, moduł Younga i pełzanie. Takie właściwości mechaniczne są niezbędne przy wyborze odpowiedniego materiału polimerowego do planowanych zastosowań. Derlin i PVC wykazują najwyższą twardość odpowiednio 0,23 i 0,22 GPa, podczas gdy LDPE posiada najniższą twardość 0,026 GPa wśród badanych polimerów. Ogólnie rzecz biorąc, twardsze polimery wykazują mniejszą szybkość pełzania. Najbardziej miękki LDPE wykazuje największą głębokość pełzania 798 nm, w porównaniu do ~120 nm dla Derlinu.

Testery mechaniczne NANOVEA zapewniają niezrównaną wielofunkcyjność modułów Nano i Micro na jednej platformie. Zarówno moduły Nano jak i Micro zawierają tryby testera zarysowań, testera twardości oraz testera zużycia, zapewniając najdzikszy i najbardziej przyjazny dla użytkownika zakres badań dostępny w jednym systemie.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Pomiar relaksacji naprężeń za pomocą nanoindentacji

WPROWADZENIE

Materiały lepkosprężyste charakteryzują się tym, że posiadają zarówno lepkie, jak i sprężyste właściwości materiałowe. Materiały te podlegają zależnemu od czasu zmniejszeniu naprężenia ("relaksacja" naprężenia) przy stałym naprężeniu, co prowadzi do znacznej utraty początkowej siły kontaktu. Relaksacja naprężeń zależy od rodzaju materiału, tekstury, temperatury, naprężenia początkowego i czasu. Zrozumienie relaksacji naprężeń jest kluczowe w wyborze optymalnych materiałów, które mają wytrzymałość i elastyczność (relaksację) wymaganą w konkretnych zastosowaniach.

Znaczenie pomiaru relaksacji stresu

Zgodnie z normą ASTM E328i "Standardowe metody testowania relaksacji naprężeń w materiałach i strukturach", zewnętrzna siła jest początkowo przykładana do materiału lub struktury za pomocą wgłębnika, aż do osiągnięcia wcześniej określonej maksymalnej siły. Po osiągnięciu maksymalnej siły, pozycja wgłębnika jest utrzymywana na stałej głębokości. Następnie mierzona jest zmiana siły zewnętrznej niezbędnej do utrzymania pozycji wgłębnika w funkcji czasu. Trudność w testowaniu relaksacji naprężeń polega na utrzymaniu stałej głębokości. Tester mechaniczny Nanovea nanoindentacja Moduł dokładnie mierzy relaksację naprężeń poprzez zastosowanie zamkniętej pętli (sprzężenia zwrotnego) kontroli głębokości za pomocą siłownika piezoelektrycznego. Siłownik reaguje w czasie rzeczywistym, aby utrzymać stałą głębokość, podczas gdy zmiana obciążenia jest mierzona i rejestrowana przez bardzo czuły czujnik obciążenia. Test ten może być przeprowadzony na praktycznie wszystkich rodzajach materiałów, bez konieczności spełniania rygorystycznych wymagań dotyczących wymiarów próbki. Ponadto na jednej płaskiej próbce można przeprowadzić wiele testów, aby zapewnić powtarzalność badania

CEL POMIARU

W tym zastosowaniu moduł nanoindentacji testera mechanicznego Nanovea mierzy zachowanie relaksacji naprężeń próbki akrylu i miedzi. Przedstawiamy tę Nanoveę Tester mechaniczny jest idealnym narzędziem do oceny zależnego od czasu zachowania lepkosprężystego materiałów polimerowych i metalowych.

WARUNKI BADANIA

Za pomocą modułu nanoindentacji Nanovea Mechanical Tester zmierzono relaksację naprężeń w próbce akrylowej i miedzianej. Zastosowano różne szybkości obciążenia wgłębnego w zakresie od 1 do 10 µm/min. Po osiągnięciu docelowego maksymalnego obciążenia mierzono relaksację na ustalonej głębokości. Zastosowano 100 sekundowy okres zatrzymania na stałej głębokości, a zmiana obciążenia była rejestrowana w miarę upływu czasu zatrzymania. Wszystkie badania przeprowadzono w warunkach otoczenia (temperatura pokojowa 23 °C), a parametry próby wgniatania zestawiono w tabeli 1.

WYNIKI I DYSKUSJA

Rysunek 2 przedstawia ewolucję przemieszczenia i obciążenia w funkcji czasu podczas pomiaru relaksacji naprężeń dla próbki akrylowej i przykładowej prędkości obciążania wgłębnika 3 µm/min. Całość tego badania można podzielić na trzy etapy: Loading, Relaxation i Unloading. Podczas etapu obciążenia, głębokość liniowo wzrastała wraz z postępującym wzrostem obciążenia. Etap relaksacji rozpoczyna się po osiągnięciu maksymalnego obciążenia. Podczas tego etapu utrzymywano stałą głębokość przez 100 sekund, wykorzystując funkcję kontroli głębokości z zamkniętą pętlą sprzężenia zwrotnego. Cała próba zakończyła się etapem rozładowania w celu usunięcia wgłębnika z próbki akrylowej.

Przeprowadzono dodatkowe próby wgniatania z zastosowaniem tych samych prędkości obciążenia wgłębnika, ale z wyłączeniem okresu relaksacji (pełzania). Z tych badań uzyskano wykresy zależności obciążenia od przemieszczenia, które połączono w wykresy na rysunku 3 dla próbek akrylowych i miedzianych. W miarę zmniejszania szybkości obciążania wgłębnika z 10 do 1 µm/min, krzywa obciążenie-przemieszczenie przesuwała się stopniowo w kierunku większych głębokości penetracji zarówno dla akrylu jak i miedzi. Taki zależny od czasu wzrost odkształcenia wynika z efektu lepkosprężystego pełzania materiałów. Niższa prędkość obciążenia pozwala materiałowi lepkosprężystemu mieć więcej czasu na reakcję na naprężenia zewnętrzne, których doświadcza i odpowiednio się odkształcić...

Na rysunku 4 przedstawiono ewolucję obciążenia przy stałym odkształceniu z zastosowaniem różnych szybkości obciążania wgłębnego dla obu badanych materiałów. Obciążenie malało z większą prędkością we wczesnych etapach relaksacji (100-sekundowy okres wstrzymania) badań i zwolniło po osiągnięciu czasu wstrzymania ~50 sekund. Materiały lepkosprężyste, takie jak polimery i metale, wykazują większą szybkość utraty obciążenia, gdy są poddawane wyższym wartościom obciążenia wgłębnego. Szybkość utraty obciążenia podczas relaksacji wzrosła z 51,5 do 103,2 mN dla akrylu i z 15,0 do 27,4 mN dla miedzi, odpowiednio, gdy szybkość obciążenia wgłębnika wzrosła z 1 do 10 µm/min, jak podsumowano w Rysunek 5.

Jak wspomniano w normie ASTM E328ii, głównym problemem napotykanym w badaniach relaksacji naprężeń jest niemożność utrzymania przez urządzenie stałej wartości odkształcenia/głębokości. Tester mechaniczny Nanovea zapewnia bardzo dokładne pomiary relaksacji naprężeń dzięki możliwości zastosowania zamkniętej pętli sprzężenia zwrotnego sterującego głębokością pomiędzy szybko działającym siłownikiem piezoelektrycznym a niezależnym kondensatorowym czujnikiem głębokości. Podczas etapu relaksacji, piezoelektryczny siłownik reguluje wgłębnik w celu utrzymania stałej głębokości w czasie rzeczywistym, podczas gdy zmiana obciążenia jest mierzona i rejestrowana przez niezależny, precyzyjny czujnik obciążenia.

PODSUMOWANIE

Za pomocą modułu nanoindentacji Nanovea Mechanical Tester zmierzono relaksację naprężeń w próbce akrylowej i miedzianej przy różnych prędkościach obciążenia. Większa głębokość maksymalna jest osiągana podczas wgłębiania przy niższych prędkościach obciążania ze względu na efekt pełzania materiału podczas obciążania. Zarówno próbka akrylowa jak i miedziana wykazują zachowanie relaksacyjne, gdy pozycja wgłębnika przy docelowym maksymalnym obciążeniu jest utrzymywana na stałym poziomie. Większe zmiany strat obciążenia w fazie relaksacji zaobserwowano dla prób z wyższymi prędkościami obciążenia wgłębnika.

Testy relaksacji naprężeń wykonane przez Nanovea Mechanical Tester pokazują zdolność urządzenia do ilościowego i wiarygodnego pomiaru zależnego od czasu zachowania lepkosprężystego materiałów polimerowych i metalowych. Posiada niezrównaną wielofunkcyjność modułów Nano i Micro na jednej platformie. Moduły kontroli wilgotności i temperatury mogą być sparowane z tymi urządzeniami w celu zapewnienia możliwości prowadzenia badań środowiskowych w szerokim zakresie branż. Zarówno moduły Nano jak i Micro zawierają tryby do badania zarysowań, twardości i zużycia, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres możliwości badań mechanicznych dostępnych w jednym urządzeniu.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Nanoindentacja folii polimerowych w kontrolowanej wilgotności

Właściwości mechaniczne polimeru zmieniają się wraz ze wzrostem wilgotności otoczenia. Przejściowe efekty wilgoci, znane również jako efekty mechano-sorpcyjne, powstają, gdy polimer absorbuje wysoką zawartość wilgoci i doświadcza przyspieszonego pełzania. Wyższa podatność na pełzanie jest wynikiem złożonych połączonych efektów, takich jak zwiększona ruchliwość cząsteczek, starzenie fizyczne wywołane sorpcją i gradienty naprężeń wywołane sorpcją.

W związku z tym potrzebny jest wiarygodny i ilościowy test (nanoindentacja wilgotnościowa) wpływu sorpcji na zachowanie mechaniczne materiałów polimerowych przy różnym poziomie wilgotności. Moduł Nano testera mechanicznego Nanovea przykłada obciążenie za pomocą precyzyjnego piezoelektrycznego czujnika i bezpośrednio mierzy ewolucję siły i przemieszczenia. Jednolita wilgotność jest wytwarzana wokół końcówki wgłębnika i powierzchni próbki za pomocą obudowy izolacyjnej, co zapewnia dokładność pomiaru i minimalizuje wpływ dryftu spowodowanego gradientem wilgotności.

Nanoindentacja folii polimerowych w kontrolowanej wilgotności