USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Kategoria: Profilometria | Wysokość i grubość stopnia

 

Topografia powierzchni włókna szklanego z wykorzystaniem profilometrii 3D

TOPOGRAFIA POWIERZCHNI WŁÓKNA SZKLANEGO

STOSOWANIE PROFILOMETRII 3D

Przygotowane przez

CRAIG LEISING

WPROWADZENIE

Fiberglass to materiał wykonany z niezwykle drobnych włókien szklanych. Jest on stosowany jako środek wzmacniający w wielu produktach polimerowych; powstały w ten sposób materiał kompozytowy, prawidłowo znany jako polimer wzmocniony włóknem (FRP) lub tworzywo sztuczne wzmocnione włóknem szklanym (GRP), jest w powszechnym użyciu nazywany "włóknem szklanym".

ZNACZENIE KONTROLI METROLOGICZNEJ POWIERZCHNI DLA KONTROLI JAKOŚCI

Chociaż istnieje wiele zastosowań dla wzmocnień z włókna szklanego, w większości przypadków najważniejsze jest, aby były one jak najmocniejsze. Kompozyty z włókna szklanego mają jeden z najwyższych dostępnych współczynników wytrzymałości do wagi, a w niektórych przypadkach są mocniejsze od stali. Poza wysoką wytrzymałością ważne jest również, aby ich powierzchnia była jak najmniejsza. Duże powierzchnie włókna szklanego mogą sprawić, że konstrukcja będzie bardziej podatna na atak chemiczny i ewentualne rozszerzanie się materiału. Dlatego kontrola powierzchni ma kluczowe znaczenie dla kontroli jakości produkcji.

CEL POMIARU

W tej aplikacji, NANOVEA ST400 jest używana do pomiaru chropowatości i płaskości powierzchni kompozytu z włókna szklanego. Poprzez ilościowe określenie tych cech powierzchni możliwe jest stworzenie lub optymalizacja mocniejszego, bardziej trwałego materiału kompozytowego z włókna szklanego.

NANOVEA

ST400

PARAMETRY POMIAROWE

PROBE 1 mm
WSKAŹNIK NABYCIA300 Hz
AVERAGING1
MIERZONA POWIERZCHNIA5 mm x 2 mm
ROZMIAR KROKU5 µm x 5 µm
TRYB SKANOWANIAStała prędkość

SPECYFIKACJA SONDY

POMIAR RANGE1 mm
Z REZOLUCJI 25 nm
Z DOKŁADNOŚĆ200 nm
ROZDZIELCZOŚĆ POPRZECZNA 2 μm

WYNIKI

WIDOK FAŁSZYWEGO KOLORU

Płaskość powierzchni 3D

Chropowatość powierzchni 3D

Sa15,716 μmŚrednia arytmetyczna Wysokość
Sq19,905 μmRoot Mean Square Height
Sp116,74 μmMaksymalna wysokość szczytowa
Sv136,09 μmMaksymalna wysokość szybu
Sz252,83 μmMaksymalna wysokość
Ssk0.556Skośność
Ssu3.654Kurtoza

PODSUMOWANIE

Jak pokazano w wynikach, NANOVEA ST400 Optical Profiler był w stanie dokładnie zmierzyć chropowatość i płaskość powierzchni kompozytu z włókna szklanego. Dane można mierzyć dla wielu partii kompozytów z włókien szklanych i/lub w danym okresie, aby dostarczyć kluczowych informacji na temat różnych procesów produkcji włókna szklanego i ich reakcji w czasie. Zatem ST400 jest realną opcją wzmacniającą proces kontroli jakości materiałów kompozytowych z włókna szklanego.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Pomiar konturów za pomocą profilometru przez NANOVEA

Pomiar konturu bieżnika gumowego

Pomiar konturu bieżnika gumowego

Dowiedz się więcej

 

 

 

 

 

 

 

 

 

 

 

 

 

POMIAR KONTURU BIEŻNIKA GUMOWEGO

WYKORZYSTANIE PROFILERA OPTYCZNEGO 3D

Pomiar konturu bieżnika gumowego - Profiler NANOVEA

Przygotowane przez

ANDREA HERRMANN

WPROWADZENIE

Jak wszystkie materiały, współczynnik tarcia gumy jest związany z częściowo przez chropowatość powierzchni. W zastosowaniach opon samochodowych bardzo ważna jest trakcja na drodze. Chropowatość powierzchni i bieżnik opony odgrywają w tym rolę. W tej pracy analizowane są chropowatość powierzchni gumy i wymiary bieżnika.

* THE SAMPLE

WAŻNE

PROFILOMETRII BEZKONTAKTOWEJ 3D

DLA BADAŃ NAD GUMĄ

W przeciwieństwie do innych technik, takich jak sondy dotykowe czy interferometria, NANOVEA Bezkontaktowe profilery optyczne 3D użyj chromatyzmu osiowego do pomiaru prawie każdej powierzchni. 

Otwarta konstrukcja systemu Profiler pozwala na stosowanie próbek o różnych rozmiarach i nie wymaga żadnego przygotowania próbki. Cechy z zakresu od nano do makro mogą być wykryte podczas pojedynczego skanowania bez wpływu odbicia lub absorpcji próbki. Ponadto, profilery te posiadają zaawansowaną zdolność do pomiaru wysokich kątów powierzchni bez konieczności manipulowania wynikami przez oprogramowanie.

Łatwy pomiar dowolnego materiału: przezroczystego, nieprzezroczystego, spekularnego, dyfuzyjnego, polerowanego, chropowatego itp. Technika pomiarowa bezdotykowych profilerów NANOVEA 3D zapewnia idealne, szerokie i przyjazne dla użytkownika możliwości maksymalizacji badań powierzchni wraz z korzyściami płynącymi z połączenia możliwości 2D i 3D.

CEL POMIARU

W tej aplikacji prezentujemy urządzenie NANOVEA ST400, bezdotykowy profiler optyczny 3D mierzący powierzchnia i bieżniki gumowej opony.

Powierzchnia próbki wystarczająco duża, aby reprezentować cała powierzchnia opony została wybrana losowo do tego badania. 

Aby określić ilościowo cechy gumy, użyliśmy oprogramowanie analityczne NANOVEA Ultra 3D do zmierzyć wymiary konturu, głębokość, chropowatości i rozwiniętej powierzchni.

NANOVEA

ST400

ANALIZA: TREAD OPONY

Widok 3D i Widok Fałszywego Koloru bieżników pokazuje wartość mapowania projektów powierzchni 3D. Dostarczają one użytkownikom proste narzędzie do bezpośredniej obserwacji rozmiaru i kształtu bieżników pod różnymi kątami. Zaawansowana analiza konturu i analiza wysokości stopnia są niezwykle potężnymi narzędziami do pomiaru precyzyjnych wymiarów przykładowych kształtów i wzorów.

ZAAWANSOWANA ANALIZA KONTURÓW

ANALIZA WYSOKOŚCI KROKU

ANALIZA: POWIERZCHNIA GUMOWA

Powierzchnia gumy może być określona na wiele sposobów przy użyciu wbudowanych narzędzi programowych, jak pokazano na poniższych rysunkach jako przykłady. Można zauważyć, że chropowatość powierzchni wynosi 2,688 μm, a powierzchnia rozwinięta w stosunku do powierzchni rzutowanej wynosi 9,410 mm² w stosunku do 8,997 mm². Informacje te pozwalają na zbadanie zależności pomiędzy wykończeniem powierzchni a trakcją różnych preparatów gumowych lub nawet gumy o różnym stopniu zużycia powierzchni.

PODSUMOWANIE

W tej aplikacji pokazaliśmy, jak NANOVEA 3D Non-Contact Optical Profiler może dokładnie scharakteryzować chropowatość powierzchni i wymiary bieżnika gumy.

Dane wskazują na chropowatość powierzchni 2,69 µm i powierzchnię rozwiniętą 9,41 mm² przy powierzchni rzutowej 9 mm². Różne wymiary i promienie gumowych bieżników były mierzone również.

Informacje przedstawione w tym opracowaniu mogą być wykorzystane do porównania osiągów opon gumowych o różnych konstrukcjach bieżnika, recepturach lub różnym stopniu zużycia. Przedstawione tu dane stanowią jedynie część obliczenia dostępne w oprogramowaniu do analizy Ultra 3D.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Analiza powierzchni rybiej łuski z wykorzystaniem optycznego profilera 3D

Analiza powierzchni rybiej łuski z wykorzystaniem optycznego profilera 3D

Dowiedz się więcej

ANALIZA POWIERZCHNI RYBIEJ ŁUSKI

przy użyciu PROFILERA OPTYCZNEGO 3D

Profilometr Fish Scales

Przygotowane przez

Andrea Novitsky

WPROWADZENIE

Morfologię, wzory i inne cechy łuski ryb bada się za pomocą NANOVEA Bezkontaktowy profiler optyczny 3D. Delikatny charakter tej próbki biologicznej wraz z jej bardzo małymi rowkami o dużym kącie nachylenia również podkreśla znaczenie bezkontaktowej techniki profilowania. Rowki na skali nazywane są circuli i można je badać, aby oszacować wiek ryby, a nawet rozróżnić okresy o różnym tempie wzrostu, podobnie jak słoje drzewa. Jest to bardzo ważna informacja dla zarządzania populacjami dzikich ryb w celu zapobiegania przełowieniu.

Znaczenie profilometrii bezdotykowej 3D w badaniach BIOLOGICZNYCH

W przeciwieństwie do innych technik, takich jak sondy dotykowe czy interferometria, bezkontaktowy profiler optyczny 3D, wykorzystujący chromatyzm osiowy, może mierzyć niemal każdą powierzchnię. Wielkość próbek może się znacznie różnić dzięki otwartemu stagingu i nie ma potrzeby przygotowania próbki. Cechy od nano do makro zakresu są uzyskiwane podczas pomiaru profilu powierzchni bez wpływu odbicia lub absorpcji próbki. Urządzenie zapewnia zaawansowaną możliwość pomiaru wysokich kątów powierzchni bez konieczności manipulowania wynikami przez oprogramowanie. Każdy materiał może być łatwo zmierzony, niezależnie od tego, czy jest przezroczysty, nieprzezroczysty, spekularny, dyfuzyjny, polerowany czy chropowaty. Technika ta zapewnia idealne, szerokie i przyjazne dla użytkownika możliwości maksymalizacji badań powierzchni wraz z korzyściami wynikającymi z połączenia możliwości 2D i 3D.

CEL POMIARU

W tej aplikacji prezentujemy NANOVEA ST400, bezkontaktowy profiler 3D z szybkim czujnikiem, zapewniający kompleksową analizę powierzchni kamienia.

Urządzenie zostało użyte do zeskanowania całej próbki, wraz ze skanem o wyższej rozdzielczości obszaru środkowego. Dla porównania zmierzono również chropowatość powierzchni zewnętrznej i wewnętrznej strony skali.

NANOVEA

ST400

Charakterystyka powierzchni 3D i 2D Skala zewnętrzna

Widok 3D i Widok Fałszywego Koloru zewnętrznej skali pokazują złożoną strukturę podobną do odcisku palca lub słojów drzewa. Zapewnia to użytkownikom proste narzędzie do bezpośredniej obserwacji charakterystyki powierzchni skali pod różnymi kątami. Różne inne pomiary skali zewnętrznej są pokazane wraz z porównaniem zewnętrznej i wewnętrznej strony skali.

Skanowanie ryb w skali 3D Profilometr widokowy
Skaner rybny Profilometr 3D
Skanowanie ryb na wysokość kroku Profiler optyczny 3D

PORÓWNANIE CHROPOWATOŚCI POWIERZCHNI

Profilometr rybacki Skanowanie 3D

PODSUMOWANIE

W tej aplikacji pokazaliśmy, jak NANOVEA 3D Non-Contact Optical Profiler może scharakteryzować rybią łuskę na wiele sposobów. 

Zewnętrzną i wewnętrzną powierzchnię łuski można łatwo rozróżnić na podstawie samej chropowatości powierzchni, przy czym wartości chropowatości wynoszą odpowiednio 15,92μm i 1,56μm. Dodatkowo, precyzyjne i dokładne informacje o łusce ryby można poznać analizując rowki, czyli circuli, na zewnętrznej powierzchni łuski. Zmierzono odległość pasm cyrkli od ogniska środkowego, stwierdzono również, że wysokość cyrkli wynosi średnio około 58μm. 

Przedstawione dane stanowią jedynie część obliczeń dostępnych w oprogramowaniu analitycznym.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Topografia soczewki Fresnela

SOCZEWKI FRESNEL

WYMIARY Z WYKORZYSTANIEM PROFILOMETRII 3D

Przygotowane przez

Duanjie Li & Benjamin Mell

WPROWADZENIE

Soczewka to urządzenie optyczne o symetrii osiowej, które transmituje i załamuje światło. Prosta soczewka składa się z pojedynczego elementu optycznego służącego do zbierania lub rozbierania światła. Chociaż powierzchnie sferyczne nie są idealnym kształtem do tworzenia soczewek, są często używane jako najprostszy kształt, do którego można szlifować i polerować szkło.

Soczewka Fresnela składa się z serii koncentrycznych pierścieni, które są cienkimi częściami prostej soczewki o szerokości tak małej jak kilka tysięcznych cala. Soczewki Fresnela mają dużą aperturę i krótką ogniskową, a ich zwarta konstrukcja zmniejsza masę i objętość wymaganego materiału w porównaniu z konwencjonalnymi soczewkami o tych samych właściwościach optycznych. Ze względu na cienką geometrię soczewki Fresnela bardzo mała ilość światła jest tracona przez absorpcję.

ZNACZENIE PROFILOMETRII BEZKONTAKTOWEJ 3D W KONTROLI SOCZEWEK FRESNELA

Soczewki Fresnela są szeroko stosowane w przemyśle motoryzacyjnym, latarniach morskich, energii słonecznej i optycznych systemach lądowania lotniskowców. Formowanie lub tłoczenie soczewek z przezroczystych tworzyw sztucznych może sprawić, że ich produkcja będzie opłacalna. Jakość obsługi soczewek Fresnela zależy w dużej mierze od precyzji i jakości powierzchni ich koncentrycznego pierścienia. W przeciwieństwie do techniki sondy dotykowej, NANOVEA Profilery optyczne wykonuj pomiary powierzchni 3D bez dotykania powierzchni, unikając ryzyka powstania nowych zarysowań. Technika światła chromatycznego jest idealna do precyzyjnego skanowania skomplikowanych kształtów, takich jak soczewki o różnej geometrii.

SCHEMAT SOCZEWKI FRESNELA

Przezroczyste plastikowe soczewki Fresnela mogą być produkowane metodą formowania lub tłoczenia. Dokładna i skuteczna kontrola jakości ma kluczowe znaczenie dla wykrycia wadliwych form produkcyjnych lub stempli. Dzięki pomiarowi wysokości i skoku pierścieni koncentrycznych można wykryć różnice w produkcji, porównując zmierzone wartości z wartościami podanymi w specyfikacji przez producenta soczewki.

Precyzyjny pomiar profilu soczewki zapewnia prawidłową obróbkę form lub stempli w celu dopasowania ich do specyfikacji producenta. Ponadto stempel może z czasem ulec stopniowemu zużyciu, powodując utratę początkowego kształtu. Stałe odchylenie od specyfikacji producenta obiektywu jest pozytywnym sygnałem, że forma wymaga wymiany.

CEL POMIARU

W tej aplikacji prezentujemy NANOVEA ST400, bezkontaktowy profiler 3D z szybkim czujnikiem, zapewniający kompleksową analizę profilu 3D elementu optycznego o złożonym kształcie.Aby zademonstrować niezwykłe możliwości naszej technologii światła chromatycznego, analiza konturu jest wykonywana na soczewce Fresnela.

NANOVEA

ST400

Użyta w tym badaniu akrylowa soczewka Fresnela o wymiarach 2,3" x 2,3" składa się z. 

serię koncentrycznych pierścieni i złożony ząbkowany profil przekroju poprzecznego. 

Posiada ogniskową 1,5", średnicę efektywną 2,0", 

125 rowków na cal, oraz indeks załamania światła 1,49.

Skan NANOVEA ST400 soczewki Fresnela pokazuje zauważalny wzrost wysokości koncentrycznych pierścieni, odchodzących na zewnątrz od centrum.

2D FALSE COLOR

Przedstawienie wysokości

WIDOK 3D

PROFIL WYODRĘBNIONY

SZCZYT I DOLINA

Analiza wymiarowa profilu

PODSUMOWANIE

W tej aplikacji pokazaliśmy, że bezkontaktowy profiler optyczny NANOVEA ST400 dokładnie mierzy topografię powierzchni soczewek Fresnela. 

Wymiary wysokości i skoku mogą być dokładnie określone na podstawie złożonego profilu ząbkowanego przy użyciu oprogramowania analitycznego NANOVEA. Użytkownicy mogą skutecznie kontrolować jakość form produkcyjnych lub stempli, porównując wymiary wysokości i skoku pierścienia w wyprodukowanych soczewkach z idealną specyfikacją pierścienia.

Przedstawione dane stanowią jedynie część obliczeń dostępnych w oprogramowaniu analitycznym. 

Profilery optyczne NANOVEA mierzą praktycznie każdą powierzchnię w takich dziedzinach jak półprzewodniki, mikroelektronika, energia słoneczna, światłowody, przemysł samochodowy, lotniczy, metalurgia, obróbka, powłoki, przemysł farmaceutyczny, biomedyczny, ochrona środowiska i wiele innych.

 

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Zrozumienie uszkodzeń powłok za pomocą próby zarysowania

Wprowadzenie:

Inżynieria powierzchniowa materiałów odgrywa znaczącą rolę w wielu zastosowaniach funkcjonalnych, począwszy od dekoracyjnego wyglądu do ochrony podłoży przed zużyciem, korozją i innymi formami ataków. Ważnym i nadrzędnym czynnikiem, który decyduje o jakości i żywotności powłok jest ich siła spójności i przyczepności.

Kliknij tutaj, aby przeczytać!

Chropowatość powierzchni a cechy ogniwa słonecznego

Znaczenie testów paneli słonecznych

Maksymalizacja absorpcji energii przez ogniwa słoneczne jest kluczowa dla przetrwania technologii jako źródła odnawialnego. Wiele warstw powłoki i ochrony szkła pozwala na absorpcję, transmisję i odbicie światła, które jest niezbędne do funkcjonowania ogniw fotowoltaicznych. Biorąc pod uwagę, że większość konsumenckich ogniw słonecznych działa z wydajnością 15-18%, optymalizacja ich wydajności energetycznej jest ciągłą walką.


Badania wykazały, że chropowatość powierzchni odgrywa kluczową rolę w odbijaniu światła. Początkowa warstwa szkła musi być tak gładka, jak to tylko możliwe, aby zmniejszyć współczynnik odbicia światła, ale kolejne warstwy nie spełniają tych wytycznych. Pewien stopień chropowatości jest niezbędny na styku każdej powłoki z inną, aby zwiększyć możliwość rozpraszania światła w odpowiednich strefach zubożenia i zwiększyć absorpcję światła w komórce1. Optymalizacja chropowatości powierzchni w tych regionach pozwala ogniwu słonecznemu działać jak najlepiej, a dzięki szybkiemu czujnikowi Nanovea HS2000 pomiar chropowatości powierzchni można wykonać szybko i dokładnie.



Cel pomiaru

W tym badaniu pokażemy możliwości Nanovea Profilometr HS2000 z czujnikiem High Speed Sensor poprzez pomiar chropowatości powierzchni i cech geometrycznych ogniwa fotowoltaicznego. Na potrzeby tej demonstracji zmierzone zostanie monokrystaliczne ogniwo słoneczne bez ochrony szklanej, ale metodologia ta może być wykorzystywana do różnych innych zastosowań.




Procedura badania i procedury

Do pomiaru powierzchni ogniwa słonecznego zastosowano następujące parametry badawcze.




Wyniki i dyskusja

Poniżej przedstawiono widok ogniwa słonecznego 2D w fałszywym kolorze oraz ekstrakcję powierzchni z odpowiednimi parametrami wysokości. Do obu powierzchni zastosowano filtr gaussowski, a do spłaszczenia wyodrębnionego obszaru użyto bardziej agresywnego indeksu. Wyklucza to formę (lub falistość) większą niż indeks odcięcia, pozostawiając cechy reprezentujące chropowatość ogniwa słonecznego.











Profil został wykonany prostopadle do orientacji linii siatki, aby zmierzyć ich właściwości geometryczne, co zostało przedstawione poniżej. Szerokość linii siatki, wysokość stopnia i nachylenie mogą być mierzone dla każdego konkretnego miejsca na ogniwie słonecznym.









Wniosek





W tym badaniu mogliśmy zaprezentować zdolność czujnika liniowego Nanovea HS2000 do pomiaru chropowatości powierzchni monokrystalicznego ogniwa fotowoltaicznego i jego cech. Dzięki możliwości automatyzacji dokładnych pomiarów wielu próbek i ustawieniu limitów pass fail, czujnik liniowy Nanovea HS2000 jest doskonałym wyborem dla kontroli jakości.

Odnośnik

1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. "Influence of Surface Roughness on Optical Characteristics of Multilayer Solar Cells " Advances in Electrical and Electronic Engineering, vol. 12, nr 6, 2014, s. 631-638.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Zużycie obrotowe czy liniowe & COF? (Kompleksowe badanie przy użyciu Tribometru Nanovea)

Zużycie to proces usuwania i odkształcania materiału na powierzchni w wyniku mechanicznego działania przeciwległej powierzchni. Wpływ na to ma wiele czynników, w tym jednokierunkowe poślizg, toczenie, prędkość, temperatura i wiele innych. Badanie zużycia, trybologia, obejmuje wiele dyscyplin, od fizyki i chemii po inżynierię mechaniczną i naukę o materiałach. Złożony charakter zużycia wymaga oddzielnych badań w kierunku konkretnych mechanizmów lub procesów zużycia, takich jak zużycie adhezyjne, zużycie ścierne, zmęczenie powierzchni, zużycie frettingowe i zużycie erozyjne. Jednak „zużycie przemysłowe” zwykle wiąże się z wieloma mechanizmami zużycia zachodzącymi w synergii.

Testy zużycia liniowego i obrotowego (Pin on Disk) to dwie szeroko stosowane konfiguracje zgodne z ASTM do pomiaru zachowań materiałów w zakresie zużycia ślizgowego. Ponieważ wartość szybkości zużycia dowolnej metody badania zużycia jest często wykorzystywana do przewidywania względnego rankingu kombinacji materiałów, niezwykle ważne jest potwierdzenie powtarzalności szybkości zużycia mierzonej przy użyciu różnych konfiguracji testowych. Umożliwia to użytkownikom dokładne rozważenie wartości szybkości zużycia podawanej w literaturze, co ma kluczowe znaczenie dla zrozumienia właściwości tribologicznych materiałów.

Read More!

Przenośność i elastyczność profilometru bezdotykowego Jr25 3D

Zrozumienie i określenie ilościowe powierzchni próbki ma kluczowe znaczenie dla wielu zastosowań, w tym kontroli jakości i badań. Do badania powierzchni często stosuje się profilometry do skanowania i obrazowania próbek. Dużym problemem związanym z konwencjonalnymi przyrządami do profilometrii jest niemożność dostosowania się do niekonwencjonalnych próbek. Trudności w pomiarze niekonwencjonalnych próbek mogą wynikać z rozmiaru próbki, geometrii, braku możliwości przesuwania próbki lub innego niewygodnego przygotowania próbki. Przenośna Nanovea Profilometry bezkontaktowe 3D, seria JR, jest w stanie rozwiązać większość tych problemów dzięki możliwości skanowania powierzchni próbek pod różnymi kątami i przenośności.

Przeczytaj o profilometrze bezkontaktowym Jr25!

Wysokość kroku szklanego 500nm: Wyjątkowa dokładność dzięki profilometrii bezkontaktowej

Charakteryzacja powierzchni to aktualny temat poddawany intensywnym badaniom. Powierzchnie materiałów są ważne, ponieważ są to obszary, w których zachodzą fizyczne i chemiczne interakcje pomiędzy materiałem a środowiskiem. Dlatego możliwość obrazowania powierzchni z wysoką rozdzielczością jest pożądana, ponieważ pozwala naukowcom na wizualną obserwację najmniejszych szczegółów powierzchni. Typowe dane obrazowania powierzchni obejmują topografię, chropowatość, wymiary boczne i wymiary pionowe. Identyfikacja powierzchni nośnej, rozstawu i wysokości stopni mikrostruktur oraz defektów na powierzchni to niektóre zastosowania, które można uzyskać dzięki obrazowaniu powierzchni. Wszystkie techniki obrazowania powierzchni nie są jednak jednakowe.

Wysokość kroku szklanego 500nm: Wyjątkowa dokładność dzięki profilometrii bezkontaktowej

Pomiar grubości powłoki wafla za pomocą profilometrii 3D

Pomiar grubości powłok na płytkach krzemowych ma znaczenie krytyczne. Wafle krzemowe są szeroko stosowane w produkcji układów scalonych i innych mikrourządzeń wykorzystywanych w wielu gałęziach przemysłu. Stałe zapotrzebowanie na cieńsze i gładsze płytki i powłoki na płytkach sprawia, że bezdotykowy Nanovea 3D Profilometr jest doskonałym narzędziem do ilościowej oceny grubości powłoki i chropowatości niemal każdej powierzchni. Pomiary w tym artykule zostały wykonane na próbce pokrytego wafla w celu zademonstrowania możliwości naszego Profilometru Bezkontaktowego 3D.

Pomiar grubości powłoki wafla za pomocą profilometrii 3D