USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Messung der Kratzhärte mit einem mechanischen Prüfgerät

MESSUNG DER RITZHÄRTE

MIT EINEM MECHANISCHEN PRÜFGERÄT

Vorbereitet von

DUANJIE LI, PhD

EINFÜHRUNG

Im Allgemeinen wird mit Härteprüfungen die Widerstandsfähigkeit von Werkstoffen gegen dauerhafte oder plastische Verformung gemessen. Es gibt drei Arten von Härtemessungen: Ritzhärte, Eindrückhärte und Rückprallhärte. Die Ritzhärteprüfung misst die Widerstandsfähigkeit eines Materials gegen Kratzer und Abrieb durch Reibung mit einem scharfen Gegenstand1. Sie wurde ursprünglich von dem deutschen Mineralogen Friedrich Mohs im Jahr 1820 entwickelt und wird immer noch häufig zur Bewertung der physikalischen Eigenschaften von Mineralien verwendet2. Diese Prüfmethode ist auch auf Metalle, Keramiken, Polymere und beschichtete Oberflächen anwendbar.

Bei einer Ritzhärtemessung kratzt ein Diamantstift mit vorgegebener Geometrie unter einer konstanten Normalkraft und mit konstanter Geschwindigkeit entlang einer linearen Bahn in die Oberfläche eines Materials. Die durchschnittliche Breite des Kratzers wird gemessen und zur Berechnung der Ritzhärtezahl (HSP) verwendet. Diese Technik bietet eine einfache Lösung für die Skalierung der Härte verschiedener Materialien.

MESSZIEL

In dieser Studie wird das mechanische Prüfgerät NANOVEA PB1000 zur Messung der Ritzhärte verschiedener Metalle in Übereinstimmung mit ASTM G171-03 verwendet.

Gleichzeitig zeigt diese Studie die Leistungsfähigkeit des NANOVEA Mechanischer Tester bei der Durchführung von Ritzhärtemessungen mit hoher Präzision und Reproduzierbarkeit.

NANOVEA

PB1000

TESTBEDINGUNGEN

Mit dem mechanischen Prüfgerät NANOVEA PB1000 wurden Ritzhärtetests an drei polierten Metallen (Cu110, Al6061 und SS304) durchgeführt. Es wurde eine konische Diamantnadel mit einem Spitzenwinkel von 120° und einem Spitzenradius von 200 µm verwendet. Jede Probe wurde dreimal mit denselben Prüfparametern geritzt, um die Reproduzierbarkeit der Ergebnisse zu gewährleisten. Die Prüfparameter sind im Folgenden zusammengefasst. Ein Profilscan bei einer niedrigen Normallast von 10 mN wurde vor und nach der Prüfung durchgeführt. Kratzertest um die Veränderung des Oberflächenprofils des Kratzers zu messen.

PRÜFPARAMETER

NORMALE KRAFT

10 N

TEMPERATUR

24°C (RT)

GLEITGESCHWINDIGKEIT

20 mm/min

GLEITSTRECKE

10 mm

ATMOSPHÄRE

Luft

ERGEBNISSE & DISKUSSION

Die Bilder der Kratzspuren von drei Metallen (Cu110, Al6061 und SS304) nach den Tests sind in ABBILDUNG 1 dargestellt, um die Kratzhärte der verschiedenen Materialien zu vergleichen. Die Mapping-Funktion der NANOVEA Mechanical Software wurde verwendet, um drei parallele Kratzspuren zu erzeugen, die unter den gleichen Bedingungen in einem automatisierten Protokoll getestet wurden. Die gemessene Ritzspurbreite und die berechnete Ritzhärtezahl (HSP) sind in TABELLE 1 zusammengefasst und verglichen. Die Metalle zeigen unterschiedliche Verschleißspurbreiten von 174, 220 und 89 µm für Al6061, Cu110 bzw. SS304, was zu einer berechneten HSP von 0,84, 0,52 und 3,2 GPa führt.

Zusätzlich zu der aus der Ritzspurbreite berechneten Ritzhärte wurden die Entwicklung des Reibungskoeffizienten (COF), der wahren Tiefe und der Schallemission während des Ritzhärtetests in situ aufgezeichnet. Die wahre Tiefe ist die Differenz zwischen der Eindringtiefe des Stiftes während des Kratztests und dem im Pre-Scan gemessenen Oberflächenprofil. Die COF, die wahre Tiefe und die Schallemission von Cu110 sind in ABBILDUNG 2 als Beispiel dargestellt. Diese Informationen geben Aufschluss über mechanische Fehler, die während des Kratzens auftreten, und ermöglichen es dem Benutzer, mechanische Defekte zu erkennen und das Kratzverhalten des geprüften Materials weiter zu untersuchen.

Die Ritzhärteprüfungen können innerhalb weniger Minuten mit hoher Präzision und Wiederholbarkeit durchgeführt werden. Im Vergleich zu herkömmlichen Eindringverfahren bietet die Ritzhärteprüfung in dieser Studie eine alternative Lösung für Härtemessungen, die für die Qualitätskontrolle und die Entwicklung neuer Werkstoffe nützlich ist.

Al6061

Cu110

SS304

ABBILDUNG 1: Mikroskopische Aufnahme der Kratzspuren nach dem Test (100-fache Vergrößerung).

 Breite der Kratzspur (μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

TABELLE 1: Zusammenfassung der Kratzspurbreite und der Kratzhärtezahl.

ABBILDUNG 2: Die Entwicklung des Reibungskoeffizienten, der wahren Tiefe und der akustischen Emissionen während des Ritzhärtetests an Cu110.

SCHLUSSFOLGERUNG

In dieser Studie haben wir die Leistungsfähigkeit des NANOVEA Mechanical Testers bei der Durchführung von Ritzhärtetests gemäß ASTM G171-03 unter Beweis gestellt. Neben der Beschichtungshaftung und der Kratzfestigkeit bietet der Kratztest bei konstanter Belastung eine alternative einfache Lösung für den Vergleich der Härte von Materialien. Im Gegensatz zu herkömmlichen Ritzhärteprüfgeräten bieten die NANOVEA Mechanical Tester optionale Module zur Überwachung der Entwicklung des Reibungskoeffizienten, der Schallemission und der wahren Tiefe in situ.

Die Nano- und Mikromodule eines NANOVEA-Mechanikprüfgeräts umfassen ISO- und ASTM-konforme Eindring-, Kratz- und Verschleißprüfungsmodi und bieten das breiteste und benutzerfreundlichste Prüfspektrum in einem einzigen System. Das unübertroffene Angebot von NANOVEA ist eine ideale Lösung für die Bestimmung der gesamten Bandbreite mechanischer Eigenschaften von dünnen oder dicken, weichen oder harten Beschichtungen, Filmen und Substraten, einschließlich Härte, E-Modul, Bruchzähigkeit, Haftung, Verschleißfestigkeit und vielen anderen.

UND NUN ZU IHRER BEWERBUNG

Kommentar