USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Dynamisch-mechanische Analyse von Kork mittels Nanoindentation

DYNAMISCHE MECHANISCHE ANALYSE

VON KORK MITTELS NANOINDENTATION

Vorbereitet von

FRANK LIU

EINFÜHRUNG

Die dynamisch-mechanische Analyse (DMA) ist eine leistungsstarke Technik zur Untersuchung der mechanischen Eigenschaften von Materialien. In dieser Anwendung konzentrieren wir uns auf die Analyse von Kork, einem weit verbreiteten Material für die Versiegelung und Reifung von Wein. Kork, der aus der Rinde der Eiche Quercus suber gewonnen wird, weist ausgeprägte zelluläre Strukturen auf, die mechanische Eigenschaften aufweisen, die denen von synthetischen Polymeren ähneln. In einer Achse hat der Kork eine wabenförmige Struktur. Die beiden anderen Achsen sind in mehrere rechteckige Prismen unterteilt. Dies verleiht dem Kork je nach der geprüften Ausrichtung unterschiedliche mechanische Eigenschaften.

BEDEUTUNG DER DYNAMISCH-MECHANISCHEN ANALYSE (DMA) BEI DER BEWERTUNG DER MECHANISCHEN EIGENSCHAFTEN VON KORK

Die Qualität von Korken hängt in hohem Maße von ihren mechanischen und physikalischen Eigenschaften ab, die für ihre Effektivität beim Verschließen von Wein entscheidend sind. Zu den Schlüsselfaktoren, die die Korkqualität bestimmen, gehören Flexibilität, Isolierung, Elastizität und Undurchlässigkeit für Gas und Flüssigkeiten. Mit Hilfe der dynamisch-mechanischen Analyse (DMA) können wir die Elastizität und das Rückstellvermögen von Korken quantitativ bewerten und so eine zuverlässige Methode zur Beurteilung bieten.

Der mechanische Tester NANOVEA PB1000 im Nanoindentation Modus ermöglicht die Charakterisierung dieser Eigenschaften, insbesondere des Elastizitätsmoduls, des Speichermoduls, des Verlustmoduls und des tan delta (tan (δ)). Die DMA-Prüfung ermöglicht auch die Erfassung wertvoller Daten zu Phasenverschiebung, Härte, Spannung und Dehnung des Korkmaterials. Durch diese umfassenden Analysen erhalten wir tiefere Einblicke in das mechanische Verhalten von Korken und ihre Eignung für Weinverschlussanwendungen.

MESSZIEL

In dieser Studie wird die dynamisch-mechanische Analyse (DMA) von vier Korken mit dem NANOVEA PB1000 Mechanikprüfgerät im Nanoindentationsmodus durchgeführt. Die Qualität der Korken ist wie folgt gekennzeichnet: 1 - Flor, 2 - First, 3 - Colmated, 4 - Synthetischer Gummi. Für jeden Korken wurden DMA-Eindringtests in axialer und radialer Richtung durchgeführt. Durch die Analyse der mechanischen Reaktion der Korken wollten wir Einblicke in ihr dynamisches Verhalten gewinnen und ihre Leistung unter verschiedenen Ausrichtungen bewerten.

NANOVEA

PB1000

PRÜFPARAMETER

MAX FORCE75 mN
LADUNGSVERFAHREN150 mN/min
ENTLADUNGSRATE150 mN/min
AMPLITUDE5 mN
FREQUENZ1 Hz
CREEP60 s

Eindringkörpertyp

Kugel

51200 Stahl

3 mm Durchmesser

ERGEBNISSE

In den nachstehenden Tabellen und Diagrammen werden der Elastizitätsmodul, der Speichermodul, der Verlustmodul und tan delta für jede Probe und Orientierung verglichen.

Elastizitätsmodul: Stiffness; hohe Werte bedeuten stiff, niedrige Werte bedeuten flexibel.

Speichermodul: Elastische Reaktion; im Material gespeicherte Energie.

Verlustmodul: Viskose Reaktion; Energieverlust durch Wärme.

Tan (δ): Befeuchtung; hohe Werte bedeuten mehr Befeuchtung.

AXIALE AUSRICHTUNG

StopperELASTIZITÄTSMODULSPEICHERMODULMODULUS VERLUSTTAN
#(MPa)(MPa)(MPa)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



RADIALE ORIENTIERUNG

StopperELASTIZITÄTSMODULSPEICHERMODULMODULUS VERLUSTTAN
#(MPa)(MPa)(MPa)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

ELASTIZITÄTSMODUL

SPEICHERMODUL

MODULUS VERLUST

TAN DELTA

Zwischen den Korken ist der Elastizitätsmodul nicht sehr unterschiedlich, wenn sie in axialer Richtung geprüft werden. Nur die Korken #2 und #3 zeigten einen deutlichen Unterschied im Elastizitätsmodul zwischen radialer und axialer Richtung. Infolgedessen sind auch der Speichermodul und der Verlustmodul in radialer Richtung höher als in axialer Richtung. Der Stopfen #4 zeigt ähnliche Eigenschaften wie die Naturkorkstopfen, mit Ausnahme des Verlustmoduls. Dies ist recht interessant, da es bedeutet, dass der Naturkorken eine zähere Eigenschaft hat als das synthetische Gummimaterial.

SCHLUSSFOLGERUNG

Die NANOVEA Mechanischer Tester Im Nano-Scratch-Tester-Modus können viele reale Fehler von Lackbeschichtungen und Hartbeschichtungen simuliert werden. Durch die kontrollierte und genau überwachte Anwendung steigender Lasten ermöglicht das Instrument die Erkennung, bei welcher Last Ausfälle auftreten. Daraus lassen sich dann quantitative Werte für die Kratzfestigkeit ermitteln. Es ist bekannt, dass die getestete Beschichtung ohne Witterungseinflüsse einen ersten Riss bei etwa 22 mN aufweist. Bei Werten, die näher bei 5 mN liegen, ist klar, dass die 7-Jahres-Runde den Lack beschädigt hat.

Die Kompensation des ursprünglichen Profils ermöglicht es, die korrigierte Tiefe während des Ritzens zu erhalten und auch die Resttiefe nach dem Ritzen zu messen. Dies gibt zusätzliche Informationen über das plastische bzw. elastische Verhalten der Beschichtung bei zunehmender Belastung. Sowohl die Rissbildung als auch die Informationen über die Verformung können von großem Nutzen für die Verbesserung der Hartstoffschicht sein. Die sehr geringen Standardabweichungen zeigen auch die Reproduzierbarkeit der Technik des Geräts, die den Herstellern helfen kann, die Qualität ihrer Hartbeschichtung/Lackierung zu verbessern und Bewitterungseffekte zu untersuchen.

UND NUN ZU IHRER BEWERBUNG

Nano Scratch & Mar Testing von Farbe auf Metallsubstrat

Nano Scratch & Mar Testing

von Farbe auf Metallsubstrat

Vorbereitet von

SUSANA CABELLO

EINFÜHRUNG

Farbe mit oder ohne Hartauftrag ist eine der am häufigsten verwendeten Beschichtungen. Wir sehen sie auf Autos, Wänden, Geräten und praktisch überall, wo eine Schutzschicht benötigt wird oder wo sie einfach nur der Ästhetik dient. Die Farben, die den Untergrund schützen sollen, enthalten oft Chemikalien, die verhindern, dass die Farbe Feuer fängt, oder die einfach verhindern, dass sie ihre Farbe verliert oder Risse bekommt. Die für ästhetische Zwecke verwendeten Farben sind oft in verschiedenen Farben erhältlich, aber nicht unbedingt für den Schutz des Untergrunds oder für eine lange Lebensdauer gedacht.

Dennoch unterliegt jede Farbe im Laufe der Zeit einer gewissen Verwitterung. Durch die Verwitterung von Farbe können sich die vom Hersteller beabsichtigten Eigenschaften oft ändern. Sie kann schneller abplatzen, bei Hitze abblättern, ihre Farbe verlieren oder Risse bekommen. Die unterschiedlichen Eigenschaften von Farben, die sich im Laufe der Zeit verändern, sind der Grund, warum die Hersteller eine so große Auswahl anbieten. Die Farben sind auf die unterschiedlichen Anforderungen der einzelnen Kunden zugeschnitten.

BEDEUTUNG DER NANORITZPRÜFUNG FÜR DIE QUALITÄTSKONTROLLE

Ein wichtiges Anliegen der Farbenhersteller ist die Widerstandsfähigkeit ihrer Produkte gegen Rissbildung. Sobald der Lack Risse bekommt, kann er den Untergrund, auf den er aufgetragen wurde, nicht mehr schützen und stellt somit den Kunden nicht mehr zufrieden. Wenn z. B. ein Ast die Seite eines Autos streift und sofort danach der Lack abplatzt, verliert der Lackhersteller aufgrund der schlechten Qualität des Lacks sein Geschäft. Die Qualität der Farbe ist sehr wichtig, denn wenn das Metall unter der Farbe freiliegt, kann es aufgrund der neuen Exposition zu rosten oder zu korrodieren beginnen.

 

Diese Gründe gelten auch für andere Bereiche wie Haushalts- und Büroartikel, Elektronik, Spielzeug, Forschungswerkzeuge und vieles mehr. Auch wenn die Farbe beim ersten Auftragen auf Metallbeschichtungen rissbeständig ist, können sich die Eigenschaften im Laufe der Zeit ändern, wenn die Probe etwas verwittert ist. Aus diesem Grund ist es sehr wichtig, die Lackproben im bewitterten Zustand zu prüfen. Auch wenn die Rissbildung unter hoher Belastung unvermeidlich ist, muss der Hersteller vorhersagen, wie stark die Veränderungen im Laufe der Zeit ausfallen und wie tief der Riss sein muss, damit er seinen Kunden die bestmöglichen Produkte anbieten kann.

MESSZIEL

Wir müssen den Prozess des Kratzens in einer kontrollierten und überwachten Weise simulieren, um das Verhalten der Probe zu beobachten. In dieser Anwendung wird der NANOVEA PB1000 Mechanik-Tester im Nano-Scratch-Testing-Modus verwendet, um die Last zu messen, die erforderlich ist, um ein Versagen einer etwa 7 Jahre alten, 30-50 μm dicken Lackprobe auf einem Metallsubstrat zu verursachen.

Ein 2 μm großer, diamantbestückter Stift wird mit einer progressiven Kraft von 0,015 mN bis 20,00 mN verwendet, um die Beschichtung zu zerkratzen. Wir haben einen Vor- und Nachscan des Lacks mit einer Belastung von 0,2 mN durchgeführt, um den Wert für die tatsächliche Tiefe des Kratzers zu ermitteln. Die wahre Tiefe analysiert die plastische und elastische Verformung der Probe während der Prüfung, während der Post-Scan nur die plastische Verformung des Kratzers analysiert. Der Punkt, an dem die Beschichtung durch Rissbildung versagt, wird als Versagenspunkt angesehen. Wir haben die ASTMD7187 als Leitfaden für die Festlegung unserer Prüfparameter verwendet.

 

Daraus können wir schließen, dass wir eine verwitterte Probe verwendet haben und daher bei der Prüfung einer Farbprobe in ihrem schwächeren Stadium weniger Fehlerpunkte auftraten.

 

An dieser Probe wurden fünf Tests durchgeführt, um

die genauen versagenskritischen Lasten zu bestimmen.

NANOVEA

PB1000

PRÜFPARAMETER

unter ASTM D7027

Die Oberfläche eines Rauheitsnormals wurde mit einem NANOVEA ST400 abgetastet, der mit einem Hochgeschwindigkeitssensor ausgestattet ist, der eine helle Linie mit 192 Punkten erzeugt, wie in ABBILDUNG 1 dargestellt. Diese 192 Punkte tasten die Probenoberfläche gleichzeitig ab, was zu einer deutlich höheren Abtastgeschwindigkeit führt.

LADUNGSTYP Progressiv
ANFANGSLADUNG 0,015 mN
ENDLADUNG 20 mN
LADUNGSVERFAHREN 20 mN/min
SCRATCH LENGTH 1,6 mm
KREUZGESCHWINDIGKEIT, dx/dt 1.601 mm/min
PRE-SCAN LADEN 0,2 mN
POST-SCAN LADEN 0,2 mN
Konischer Eindringkörper 90° Konus 2 µm Spitzenradius

Eindringkörpertyp

Konisch

Diamant 90° Kegel

2 µm Spitzenradius

Konischer Eindringkörper Diamant 90° Kegel 2 µm Spitzenradius

ERGEBNISSE

In diesem Abschnitt werden die während des Scratch-Tests gesammelten Daten zu den Ausfällen vorgestellt. Der erste Abschnitt beschreibt die im Kratzversuch beobachteten Ausfälle und definiert die gemeldeten kritischen Belastungen. Der nächste Teil enthält eine zusammenfassende Tabelle mit den kritischen Belastungen für alle Proben und eine grafische Darstellung. Der letzte Teil enthält die detaillierten Ergebnisse für jede Probe: die kritischen Lasten für jeden Kratzer, die Mikrofotografien jedes Versagens und die Grafik des Tests.

BEOBACHTETE AUSFÄLLE UND DEFINITION DER KRITISCHEN LASTEN

KRITISCHES VERSAGEN:

ANFANGSSCHADEN

Dies ist der erste Punkt, an dem der Schaden entlang der Kratzspur beobachtet wird.

Nanokratzer kritisches Versagen Anfangsschaden

KRITISCHES VERSAGEN:

VOLLSTÄNDIGER SCHADEN

An diesem Punkt ist der Schaden größer, da der Lack entlang der Kratzspur abplatzt und Risse aufweist.

Nanokratzer kritisches Versagen vollständige Beschädigung

DETAILLIERTE ERGEBNISSE

* Versagenswerte an der Stelle, an der das Substrat reißt.

KRITISCHE LASTEN
SCRATCH ANFANGSSCHADEN [mN] VOLLSTÄNDIGE SCHÄDIGUNG [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
DURCHSCHNITT 3.988 4.900
STD DEV 0.143 0.054
Mikroskopische Aufnahme eines vollständigen Kratzers aus einem Nanokratztest (1000-fache Vergrößerung).

ABBILDUNG 2: Mikroskopische Aufnahme eines vollständigen Kratzers (1000-fache Vergrößerung).

Mikroskopische Aufnahme der anfänglichen Beschädigung durch den Nanokratztest (1000-fache Vergrößerung)

ABBILDUNG 3: Mikroskopische Aufnahme der ursprünglichen Beschädigung (1000-fache Vergrößerung).

Mikroskopische Aufnahme der vollständigen Beschädigung durch den Nanokratztest (1000-fache Vergrößerung).

ABBILDUNG 4: Mikroskopische Aufnahme der vollständigen Beschädigung (1000-fache Vergrößerung).

Linearer Nano-Kratztest Reibungskraft und Reibungskoeffizient

ABBILDUNG 5: Reibungskraft und Reibungskoeffizient.

Linearer Nanokratzer Oberflächenprofil

ABBILDUNG 6: Oberflächenprofil.

Linearer Nano-Kratztest Echte Tiefe und Resttiefe

ABBILDUNG 7: Wahre Tiefe und Resttiefe.

SCHLUSSFOLGERUNG

Die NANOVEA Mechanischer Tester im Nano-Kratzer-Tester Modus ermöglicht die Simulation vieler realer Fehlfunktionen von Farb- und Hartbeschichtungen. Durch die kontrollierte und genau überwachte Aufbringung zunehmender Lasten lässt sich mit dem Gerät feststellen, bei welcher Belastung Ausfälle auftreten. Dies kann dann zur Bestimmung quantitativer Werte für die Kratzfestigkeit genutzt werden. Bei der getesteten Beschichtung ohne Bewitterung ist bekannt, dass der erste Riss bei etwa 22 mN auftritt. Bei Werten, die näher bei 5 mN liegen, ist es klar, dass die 7-jährige Überlappung den Lack verschlechtert hat.

Die Kompensation des ursprünglichen Profils ermöglicht die Ermittlung der korrigierten Tiefe während des Ritzens und die Messung der Resttiefe nach dem Ritzen. Dies gibt zusätzliche Informationen über das plastische bzw. elastische Verhalten der Beschichtung bei zunehmender Belastung. Sowohl die Rissbildung als auch die Informationen über die Verformung können von großem Nutzen für die Verbesserung der Hartstoffschicht sein. Die sehr geringen Standardabweichungen zeigen auch die Reproduzierbarkeit der Gerätetechnik, die den Herstellern helfen kann, die Qualität ihrer Hartstoffbeschichtung/Lackierung zu verbessern und Bewitterungseffekte zu untersuchen.

UND NUN ZU IHRER BEWERBUNG

Rauheitskartierung mit 3D-Profilometrie

PRÜFUNG DER RAUHEITSKARTIERUNG

3D-PROFILOMETRIE VERWENDEN

Vorbereitet von

DUANJIE, PhD

EINFÜHRUNG

Oberflächenrauheit und -beschaffenheit sind entscheidende Faktoren, die sich auf die endgültige Qualität und Leistung eines Produkts auswirken. Ein gründliches Verständnis von Oberflächenrauheit, -textur und -konsistenz ist für die Auswahl der besten Verarbeitungs- und Kontrollmaßnahmen unerlässlich. Eine schnelle, quantifizierbare und zuverlässige Inline-Inspektion von Produktoberflächen ist notwendig, um fehlerhafte Produkte rechtzeitig zu erkennen und die Bedingungen in der Produktionslinie zu optimieren.

BEDEUTUNG DES BERÜHRUNGSLOSEN 3D-PROFILOMETERS FÜR DIE INLINE-OBERFLÄCHENPRÜFUNG

Oberflächenfehler an Produkten entstehen durch Materialverarbeitung und Produktherstellung. Die Inline-Oberflächenqualitätsprüfung gewährleistet eine strengste Qualitätskontrolle der Endprodukte. NANOVEA Berührungslose optische 3D-Profiler Nutzen Sie die Chromatic Light-Technologie mit der einzigartigen Fähigkeit, die Rauheit einer Probe berührungslos zu bestimmen. Der Zeilensensor ermöglicht das Scannen des 3D-Profils einer großen Oberfläche mit hoher Geschwindigkeit. Der von der Analysesoftware in Echtzeit berechnete Rauheitsschwellenwert dient als schnelles und zuverlässiges Gut/Schlecht-Instrument.

MESSZIEL

In dieser Studie wird das mit einem Hochgeschwindigkeitssensor ausgestattete NANOVEA ST400 zur Inspektion der Oberfläche einer Teflon-Probe mit einem Defekt verwendet, um die Fähigkeiten des NANOVEA

Berührungslose Profilometer ermöglichen eine schnelle und zuverlässige Oberflächenprüfung in einer Produktionslinie.

NANOVEA

ST400

ERGEBNISSE & DISKUSSION

3D-Oberflächenanalyse des Rauhigkeit Standardprobe

Die Oberfläche eines Rauheitsnormals wurde mit einem NANOVEA ST400 abgetastet, der mit einem Hochgeschwindigkeitssensor ausgestattet ist, der eine helle Linie mit 192 Punkten erzeugt, wie in ABBILDUNG 1 dargestellt. Diese 192 Punkte tasten die Probenoberfläche gleichzeitig ab, was zu einer deutlich höheren Abtastgeschwindigkeit führt.

ABBILDUNG 2 zeigt Falschfarbenansichten der Oberflächenhöhenkarte und der Rauheitsverteilungskarte der Rauheitsstandardprobe. In ABBILDUNG 2a weist der Rauheitsstandard eine leicht schräge Oberfläche auf, die durch den unterschiedlichen Farbverlauf in jedem der Standard-Rauheitsblöcke dargestellt wird. In ABBILDUNG 2b wird eine homogene Rauheitsverteilung in verschiedenen Rauheitsblöcken gezeigt, deren Farbe die Rauheit in den Blöcken darstellt.

ABBILDUNG 3 zeigt Beispiele für die Pass/Fail-Karten, die von der Analysesoftware auf der Grundlage verschiedener Rauheitsschwellenwerte erstellt wurden. Die Rauheitsblöcke werden rot hervorgehoben, wenn ihre Oberflächenrauheit über einem bestimmten Schwellenwert liegt. Auf diese Weise kann der Benutzer einen Rauheitsschwellenwert festlegen, um die Qualität der Oberflächenbeschaffenheit einer Probe zu bestimmen.

ABBILDUNG 1: Abtastung des optischen Zeilensensors auf der Probe des Rauheitsnormals

a. Karte der Oberflächenhöhe:

b. Rauhigkeitskarte:

ABBILDUNG 2: Falschfarbenansichten der Oberflächenhöhenkarte und der Rauheitsverteilungskarte der Rauheitsstandardprobe.

ABBILDUNG 3: Pass/Fail Map basierend auf dem Roughness Threshold.

Oberflächeninspektion einer Teflonprobe mit Defekten

Die Oberflächenhöhenkarte, die Rauheitsverteilungskarte und die Pass/Fail-Rauheitsschwellenkarte der Oberfläche der Teflon-Probe sind in ABBILDUNG 4 dargestellt. Die Teflon-Probe weist in der rechten Mitte der Probe eine Rippenform auf, wie in der Oberflächenhöhenkarte dargestellt.

a. Karte der Oberflächenhöhe:

Die verschiedenen Farben in der Palette von ABBILDUNG 4b stellen den Rauheitswert auf der lokalen Oberfläche dar. Die Rauhigkeitskarte zeigt eine homogene Rauheit im intakten Bereich der Teflon-Probe. Die Defekte in Form eines eingedrückten Rings und einer Verschleißnarbe sind jedoch in heller Farbe hervorgehoben. Der Benutzer kann leicht einen Schwellenwert für die Pass/Fail-Rauheit festlegen, um die Oberflächendefekte zu lokalisieren, wie in ABBILDUNG 4c gezeigt. Mit einem solchen Werkzeug kann der Benutzer die Oberflächenqualität des Produkts in der Produktionslinie vor Ort überwachen und fehlerhafte Produkte rechtzeitig erkennen. Der Echtzeit-Rauigkeitswert wird berechnet und aufgezeichnet, während die Produkte den optischen Inline-Sensor passieren, was als schnelles und zuverlässiges Werkzeug für die Qualitätskontrolle dienen kann.

b. Rauhigkeitskarte:

c. Pass/Fail Roughness Threshold Map:

ABBILDUNG 4: Oberflächenhöhenkarte, Rauhigkeitsverteilungskarte und Pass/Fail-Rauhigkeitsschwellenwertkarte der Teflon-Probenoberfläche.

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, wie der berührungslose optische 3D-Profiler NANOVEA ST400, ausgestattet mit einem optischen Zeilensensor, als zuverlässiges Qualitätskontrollwerkzeug effektiv und effizient arbeitet.

Der optische Zeilensensor erzeugt eine helle Linie aus 192 Punkten, die die Probenoberfläche gleichzeitig abtasten, was zu einer deutlich höheren Abtastgeschwindigkeit führt. Er kann in der Produktionslinie installiert werden, um die Oberflächenrauhigkeit der Produkte vor Ort zu überwachen. Der Schwellenwert für die Rauheit dient als zuverlässiges Kriterium zur Bestimmung der Oberflächenqualität der Produkte und ermöglicht es dem Benutzer, fehlerhafte Produkte rechtzeitig zu erkennen.

Die hier gezeigten Daten stellen nur einen Teil der in der Analysesoftware verfügbaren Berechnungen dar. NANOVEA Profilometer messen praktisch jede Oberfläche in Bereichen wie Halbleiter, Mikroelektronik, Solar, Faseroptik, Automobil, Luft- und Raumfahrt, Metallurgie, Bearbeitung, Beschichtungen, Pharmazeutik, Biomedizin, Umwelt und vielen anderen.

UND NUN ZU IHRER BEWERBUNG