USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Kategoria: Testy mechaniczne

 

Test zużycia powłoki PTFE

BADANIE ZUŻYCIA POWŁOKI PTFE

Z WYKORZYSTANIEM TRIBOMETRA I TESTERA MECHANICZNEGO

Przygotowane przez

DUANJIE LI, PhD

WPROWADZENIE

Politetrafluoroetylen (PTFE), powszechnie znany jako teflon, jest polimerem o wyjątkowo niskim współczynniku tarcia (COF) i doskonałej odporności na zużycie w zależności od zastosowanych obciążeń. PTFE wykazuje doskonałą obojętność chemiczną, wysoką temperaturę topnienia 327°C (620°F) oraz zachowuje wysoką wytrzymałość, ciągliwość i samosmarowność w niskich temperaturach. Wyjątkowa odporność na zużycie powłok PTFE sprawia, że są one bardzo poszukiwane w wielu zastosowaniach przemysłowych, takich jak motoryzacja, lotnictwo, medycyna, a zwłaszcza naczynia kuchenne.

ZNACZENIE ILOŚCIOWEJ OCENY POWŁOK PTFE

Połączenie bardzo niskiego współczynnika tarcia (COF), doskonałej odporności na zużycie i wyjątkowej obojętności chemicznej w wysokich temperaturach sprawia, że PTFE jest idealnym wyborem do nieprzywierających powłok patelni. Aby jeszcze bardziej udoskonalić swoje procesy mechaniczne podczas prac badawczo-rozwojowych, a także zapewnić optymalną kontrolę nad zapobieganiem awariom i środkami bezpieczeństwa w procesie kontroli jakości, kluczowe znaczenie ma posiadanie niezawodnej techniki ilościowej oceny procesów trybomechanicznych powłok PTFE. Precyzyjna kontrola tarcia powierzchni, zużycia i przyczepności powłok jest niezbędna do zapewnienia ich zamierzonego działania.

CEL POMIARU

W tej aplikacji proces zużycia powłoki PTFE na nieprzywierającej patelni jest symulowany za pomocą trybometru NANOVEA w liniowym trybie posuwisto-zwrotnym.

NANOVEA T50

Kompaktowy trybometr z wolnym ciężarem

Ponadto tester mechaniczny NANOVEA został wykorzystany do przeprowadzenia testu przyczepności mikrozarysowań w celu określenia obciążenia krytycznego braku przyczepności powłoki PTFE.

NANOVEA PB1000

Tester mechaniczny dużej platformy

PROCEDURA TESTOWA

TEST ZUŻYCIA

LINIOWE ZUŻYCIE TAŁKOWE Z WYKORZYSTANIEM TRYBOMETRU

Zachowanie trybologiczne próbki powłoki PTFE, w tym współczynnik tarcia (COF) i odporność na zużycie, oceniano za pomocą NANOVEA Tribometr w trybie liniowym, posuwisto-zwrotnym. Na powłokę zastosowano kulistą końcówkę ze stali nierdzewnej 440 o średnicy 3 mm (klasa 100). Współczynnik COF był stale monitorowany podczas testu zużycia powłoki PTFE.

 

Szybkość zużycia K obliczono ze wzoru K=V/(F×s)=A/(F×n), gdzie V oznacza objętość zużycia, F to normalne obciążenie, s to droga poślizgu, A to pole przekroju poprzecznego toru zużycia, n to liczba uderzeń. Profile śladów zużycia oceniano za pomocą NANOVEA Profilometr optycznyi zbadano morfologię śladów zużycia za pomocą mikroskopu optycznego.

PARAMETRY BADANIA ZUŻYCIA

LOAD 30 N
CZAS TRWANIA TESTU 5 minut
SZYBKOŚĆ SUWAKU 80 obr./min
AMPLITUDA ŚCIEŻKI 8 mm
REWOLUCJE 300
ŚREDNICA KULKI 3 mm
MATERIAŁ KULKI Stal nierdzewna 440
SMAROWIDŁO Nic
ATMOSFERY Air
TEMPERATURA 230C (RT)
HUMIDITY 43%

PROCEDURA TESTOWA

TEST NA ZADRAŻNIENIA

BADANIE PRZYCZEPNOŚCI MIKRO ZARYSOWAŃ Z WYKORZYSTANIEM TESTERA MECHANICZNEGO

Pomiar przyczepności przy zarysowaniu PTFE przeprowadzono przy użyciu NANOVEA Tester mechaniczny za pomocą diamentowej igły 1200 Rockwell C (promień 200 μm) w trybie Micro Scratch Tester.

 

Aby zapewnić powtarzalność wyników, przeprowadzono trzy testy w identycznych warunkach testowych.

PARAMETRY BADANIA ZARYSOWANIA

TYP OBCIĄŻENIA Postępowe
OBCIĄŻENIE POCZĄTKOWE 0,01 mN
OBCIĄŻENIE KOŃCOWE 20 mN
PRĘDKOŚĆ ZAŁADUNKU 40 mN/min
DŁUGOŚĆ SKRATKI 3 mm
PRĘDKOŚĆ SKRATOWANIA, dx/dt 6,0 mm/min
GEOMETRIA WGŁĘBNIKA 120o Rockwell C
MATERIAŁ DO INDENTERÓW (końcówka) Diament
PROMIEŃ KOŃCÓWKI WGŁĘBNIKA 200 μm

WYNIKI I DYSKUSJA

LINIOWE ZUŻYCIE TAŁKOWE Z WYKORZYSTANIEM TRYBOMETRU

COF zarejestrowany in situ pokazano na FIGURZE 1. Próbka testowa wykazywała COF ~0,18 podczas pierwszych 130 obrotów, ze względu na niską lepkość PTFE. Jednakże nastąpił nagły wzrost COF do ~1, gdy powłoka przebiła się, odsłaniając podłoże pod spodem. Po liniowych testach ruchu posuwisto-zwrotnego zmierzono profil zużycia za pomocą NANOVEA Bezkontaktowy proflometr optycznyjak pokazano na RYSUNKU 2. Na podstawie uzyskanych danych obliczono odpowiednią szybkość zużycia na ~2,78 × 10-3 mm3/Nm, natomiast głębokość śladu zużycia określono na 44,94 µm.

Konfiguracja testu zużycia powłoki PTFE na trybometrze NANOVEA T50.

RYSUNEK 1: Ewolucja COF podczas testu zużycia powłoki PTFE.

RYSUNEK 2: Ekstrakcja profilu śladu zużycia PTFE.

PTFE Przed przełomem

Maksymalny współczynnik COF 0.217
Min. COF 0.125
Średni współczynnik COF 0.177

PTFE Po przebiciu

Maksymalny współczynnik COF 0.217
Min. COF 0.125
Średni współczynnik COF 0.177

TABELA 1: COF przed i po przebiciu podczas testu zużycia.

WYNIKI I DYSKUSJA

BADANIE PRZYCZEPNOŚCI MIKRO ZARYSOWAŃ Z WYKORZYSTANIEM TESTERA MECHANICZNEGO

Przyczepność powłoki PTFE do podłoża jest mierzona za pomocą testów zarysowania diamentowym trzpieniem o średnicy 200 µm. Mikrografię przedstawiono na RYSUNKU 3 i RYSUNKU 4, Ewolucja COF i głębokość penetracji na RYSUNKU 5. Wyniki testu zarysowania powłoki PTFE podsumowano w TABELI 4. Wraz ze wzrostem obciążenia trzpienia diamentowego stopniowo wnikał on w powłokę, co powoduje wzrost COF. Po osiągnięciu obciążenia ~8,5 N przebicie powłoki i odsłonięcie podłoża nastąpiło pod wysokim ciśnieniem, co doprowadziło do wysokiego współczynnika COF ~0,3. Niska wartość St Dev przedstawiona w TABELI 2 pokazuje powtarzalność testu zarysowania powłoki PTFE przeprowadzonego przy użyciu testera mechanicznego NANOVEA.

RYSUNEK 3: Mikrofotografia pełnej rysy na PTFE (10X).

RYSUNEK 4: Mikrofotografia pełnej rysy na PTFE (10X).

RYSUNEK 5: Wykres tarcia przedstawiający linię krytycznego punktu zniszczenia PTFE.

Scratch Punkt awarii [N] Siła tarcia [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Przeciętny 8.52 2.47 0.297
Św 0.17 0.16 0.012

TABELA 2: Podsumowanie obciążenia krytycznego, siły tarcia i COF podczas testu zarysowania.

PODSUMOWANIE

W tym badaniu przeprowadziliśmy symulację procesu zużycia powłoki PTFE na nieprzywierających patelniach za pomocą tribometru NANOVEA T50 w liniowym trybie posuwisto-zwrotnym. Powłoka PTFE wykazywała niski współczynnik COF wynoszący ~0,18. Powłoka uległa przebiciu przy około 130 obrotach. Ilościową ocenę przyczepności powłoki PTFE do podłoża metalowego przeprowadzono za pomocą testera mechanicznego NANOVEA, który w tym teście określił obciążenie krytyczne utraty przyczepności powłoki na ~8,5 N.

 

Trybometry NANOVEA oferują precyzyjne i powtarzalne możliwości testowania zużycia i tarcia przy użyciu trybów obrotowych i liniowych zgodnych z ISO i ASTM. Zapewniają opcjonalne moduły do zużycia w wysokich temperaturach, smarowania i tribokorozji, a wszystko to zintegrowane w jednym systemie. Ta wszechstronność pozwala użytkownikom dokładniej symulować rzeczywiste środowiska aplikacji i lepiej zrozumieć mechanizmy zużycia i właściwości tribologiczne różnych materiałów.

 

Testery mechaniczne NANOVEA oferują moduły Nano, Micro i Macro, z których każdy zawiera zgodne z ISO i ASTM tryby testowania wgnieceń, zarysowania i zużycia, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres możliwości testowania dostępnych w jednym systemie.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Dynamiczna analiza mechaniczna korka przy użyciu nanoindentacji

DYNAMICZNA ANALIZA MECHANICZNA

KORKA PRZY UŻYCIU NANOINDENTACJI

Przygotowane przez

FRANK LIU

WPROWADZENIE

Dynamiczna analiza mechaniczna (DMA) jest potężną techniką wykorzystywaną do badania właściwości mechanicznych materiałów. W tym zastosowaniu skupiamy się na analizie korka, szeroko stosowanego materiału w procesach uszczelniania i starzenia wina. Korek, uzyskiwany z kory dębu Quercus suber, wykazuje wyraźne struktury komórkowe, które zapewniają właściwości mechaniczne przypominające syntetyczne polimery. W jednej osi korek ma strukturę plastra miodu. Dwie pozostałe osie mają strukturę wielu prostokątnych pryzmatów. Daje to korkowi różne właściwości mechaniczne w zależności od testowanej orientacji.

ZNACZENIE DYNAMICZNEJ ANALIZY MECHANICZNEJ (DMA) W OCENIE WŁAŚCIWOŚCI MECHANICZNYCH KORKA

Jakość korków w dużej mierze zależy od ich właściwości mechanicznych i fizycznych, które mają kluczowe znaczenie dla ich skuteczności w uszczelnianiu wina. Kluczowe czynniki określające jakość korka obejmują elastyczność, izolację, sprężystość i nieprzepuszczalność dla gazów i cieczy. Wykorzystując dynamiczną analizę mechaniczną (DMA), możemy ilościowo ocenić właściwości elastyczności i sprężystości korków, zapewniając wiarygodną metodę oceny.

Tester mechaniczny NANOVEA PB1000 w zestawie Nanoindentacja umożliwia scharakteryzowanie tych właściwości, w szczególności modułu Younga, modułu magazynowania, modułu stratności i tan delta (tan (δ)). Testy DMA pozwalają również na gromadzenie cennych danych na temat przesunięcia fazowego, twardości, naprężenia i odkształcenia materiału korka. Dzięki tym kompleksowym analizom uzyskujemy głębszy wgląd w mechaniczne zachowanie korków i ich przydatność do uszczelniania wina.

CEL POMIARU

W niniejszym badaniu przeprowadzono dynamiczną analizę mechaniczną (DMA) czterech korków przy użyciu testera mechanicznego NANOVEA PB1000 w trybie nanoindentacji. Jakość korków została oznaczona jako: 1 - Flor, 2 - First, 3 - Colmated, 4 - Synthetic rubber. Testy wgłębień DMA przeprowadzono zarówno w kierunku osiowym, jak i promieniowym dla każdego korka. Analizując reakcję mechaniczną korków, chcieliśmy uzyskać wgląd w ich dynamiczne zachowanie i ocenić ich wydajność w różnych orientacjach.

NANOVEA

PB1000

PARAMETRY BADANIA

MAX FORCE75 mN
PRĘDKOŚĆ ZAŁADUNKU150 mN/min
PRĘDKOŚĆ ROZŁADUNKU150 mN/min
AMPLITUDE5 mN
CZĘSTOTLIWOŚĆ1 Hz
CREEP60 s

typ wgłębnika

Piłka

51200 Stal

Średnica 3 mm

WYNIKI

W poniższych tabelach i wykresach porównano moduł Younga, moduł magazynowania, moduł stratności i tan delta dla każdej próbki i orientacji.

Moduł Younga: Stabilność; wysokie wartości wskazują na stabilność, niskie wartości wskazują na elastyczność.

Moduł przechowywania: Odpowiedź elastyczna; energia zmagazynowana w materiale.

Moduł strat: Reakcja lepka; utrata energii z powodu ciepła.

Tan (δ): Tłumienie; wysokie wartości wskazują na większe tłumienie.

ORIENTACJA OSIOWA

ZatyczkaMODUŁ YOUNGAMODUŁ PRZECHOWYWANIAMODUŁ STRATYTAN
#(MPa)(MPa)(MPa)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



ORIENTACJA PROMIENIOWA

ZatyczkaMODUŁ YOUNGAMODUŁ PRZECHOWYWANIAMODUŁ STRATYTAN
#(MPa)(MPa)(MPa)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

MODUŁ YOUNGA

MODUŁ PRZECHOWYWANIA

MODUŁ STRATY

TAN DELTA

Pomiędzy korkami moduł Younga nie różni się zbytnio, gdy testowany jest w kierunku osiowym. Tylko korki #2 i #3 wykazały wyraźną różnicę w module Younga między kierunkiem promieniowym i osiowym. W rezultacie moduł magazynowania i moduł stratności będą również wyższe w kierunku promieniowym niż w kierunku osiowym. Korek #4 wykazuje podobną charakterystykę do korków z naturalnego korka, z wyjątkiem modułu strat. Jest to dość interesujące, ponieważ oznacza to, że korki naturalne mają większą lepkość niż materiał z gumy syntetycznej.

PODSUMOWANIE

NANOVEA Tester mechaniczny w trybie Nano Scratch Tester umożliwia symulację wielu rzeczywistych uszkodzeń powłok malarskich i twardych. Przykładając rosnące obciążenia w kontrolowany i ściśle monitorowany sposób, przyrząd pozwala określić, przy jakich obciążeniach występują awarie. Można to następnie wykorzystać jako sposób na określenie ilościowych wartości odporności na zarysowania. Wiadomo, że badana powłoka, pozbawiona warunków atmosferycznych, wykazuje pierwsze pęknięcie przy sile około 22 mN. Przy wartościach bliższych 5 mN jasne jest, że siedmioletnie okrążenie spowodowało degradację farby.

Kompensacja oryginalnego profilu pozwala uzyskać skorygowaną głębokość podczas zarysowania, a także zmierzyć głębokość resztkową po zarysowaniu. Daje to dodatkowe informacje na temat plastycznego i elastycznego zachowania powłoki pod rosnącym obciążeniem. Zarówno pęknięcia, jak i informacje o odkształceniach mogą być bardzo przydatne przy ulepszaniu twardej powłoki. Bardzo małe odchylenia standardowe pokazują również powtarzalność techniki urządzenia, co może pomóc producentom poprawić jakość ich twardej powłoki/farby i zbadać wpływ warunków atmosferycznych.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Nano Scratch & Mar Testowanie farby na metalowym podłożu

Nano Scratch & Mar Testing

farby na metalowym podłożu

Przygotowane przez

SUSANA CABELLO

WPROWADZENIE

Farba z twardą powłoką lub bez jest jedną z najczęściej używanych powłok. Widzimy je na samochodach, ścianach, urządzeniach i praktycznie wszystkim, co wymaga jakiejś powłoki ochronnej lub po prostu w celach estetycznych. Farby przeznaczone do ochrony podłoża często zawierają substancje chemiczne, które zapobiegają zapaleniu się farby lub po prostu zapobiegają utracie koloru lub pękaniu. Często farby używane do celów estetycznych są dostępne w różnych kolorach, ale niekoniecznie muszą być przeznaczone do ochrony podłoża lub długiej żywotności.

Niemniej jednak każda farba ulega z czasem pewnym wpływom atmosferycznym. Warunki atmosferyczne na farbie mogą często zmieniać jej właściwości w stosunku do zamierzonych przez producentów. Może szybciej odpryskiwać, łuszczyć się pod wpływem ciepła, tracić kolor lub pękać. Różne zmiany właściwości farby w czasie są powodem, dla którego producenci oferują tak szeroki wybór. Farby są dostosowane do różnych wymagań poszczególnych klientów.

ZNACZENIE TESTÓW NANOZARYSOWAŃ DLA KONTROLI JAKOŚCI

Głównym zmartwieniem producentów farb jest odporność ich produktów na pękanie. Gdy farba zaczyna pękać, nie chroni podłoża, na które została nałożona, a tym samym nie zadowala klienta. Na przykład, jeśli gałąź uderzy w bok samochodu i natychmiast po tym, jak farba zacznie odpryskiwać, producenci farby stracą biznes z powodu niskiej jakości farby. Jakość farby jest bardzo ważna, ponieważ jeśli metal pod farbą zostanie odsłonięty, może zacząć rdzewieć lub korodować z powodu nowej ekspozycji.

 

Takie powody mają zastosowanie do kilku innych dziedzin, takich jak artykuły gospodarstwa domowego i biurowe oraz elektronika, zabawki, narzędzia badawcze i inne. Chociaż farba może być odporna na pękanie, gdy po raz pierwszy nakłada się ją na powłoki metalowe, jej właściwości mogą ulec zmianie w miarę upływu czasu, gdy na próbce wystąpią pewne warunki atmosferyczne. Dlatego bardzo ważne jest, aby próbki farby były testowane w stanie zwietrzałym. Chociaż pękanie pod dużym obciążeniem może być nieuniknione, producent musi przewidzieć, jak słabe mogą być zmiany w czasie i jak głębokie muszą być rysy, aby zapewnić swoim konsumentom najlepsze możliwe produkty.

CEL POMIARU

Musimy symulować proces zarysowania w kontrolowany i monitorowany sposób, aby obserwować efekty zachowania próbki. W tym zastosowaniu tester mechaniczny NANOVEA PB1000 w trybie testowania nanozarysowań jest używany do pomiaru obciążenia wymaganego do spowodowania uszkodzenia około 7-letniej próbki farby o grubości 30-50 μm na metalowym podłożu.

Do zarysowania powłoki użyto trzpienia pomiarowego z końcówką diamentową o średnicy 2 μm przy progresywnym obciążeniu w zakresie od 0,015 mN do 20,00 mN. Wykonaliśmy skanowanie farby przed i po obciążeniu 0,2 mN w celu określenia wartości rzeczywistej głębokości zarysowania. Rzeczywista głębokość analizuje odkształcenie plastyczne i sprężyste próbki podczas testowania; podczas gdy skanowanie po analizuje tylko odkształcenie plastyczne zadrapania. Punkt, w którym powłoka ulega uszkodzeniu w wyniku pęknięcia, jest przyjmowany jako punkt uszkodzenia. Użyliśmy ASTMD7187 jako przewodnika do określenia naszych parametrów testowych.

 

Możemy stwierdzić, że użycie zwietrzałej próbki, a zatem testowanie próbki farby w jej słabszym stadium, dało nam niższe punkty awarii.

 

Na tej próbce przeprowadzono pięć testów w celu

określić dokładne obciążenia krytyczne.

NANOVEA

PB1000

PARAMETRY BADANIA

następujący ASTM D7027

Powierzchnia wzorca chropowatości została zeskanowana za pomocą urządzenia NANOVEA ST400 wyposażonego w szybki czujnik, który generuje jasną linię 192 punktów, jak pokazano na RYSUNKU 1. Te 192 punkty skanują powierzchnię próbki w tym samym czasie, co prowadzi do znacznego zwiększenia prędkości skanowania.

TYP OBCIĄŻENIA Postępowe
OBCIĄŻENIE POCZĄTKOWE 0,015 mN
OBCIĄŻENIE KOŃCOWE 20 mN
PRĘDKOŚĆ ZAŁADUNKU 20 mN/min
DŁUGOŚĆ SKRATKI 1,6 mm
PRĘDKOŚĆ SKRATANIA, dx/dt 1,601 mm/min
ŁADOWANIE PRZED SKANOWANIEM 0,2 mN
ŁADOWANIE PO SKANOWANIU 0,2 mN
Wgłębnik stożkowy 90° Stożek o promieniu końcówki 2 µm

typ wgłębnika

Stożkowa

Stożek diamentowy 90

Promień końcówki 2 µm

Wgłębnik stożkowy Diamentowy stożek 90° Promień końcówki 2 µm

WYNIKI

W tej sekcji przedstawiono dane zebrane na temat awarii podczas testu zarysowania. W pierwszej części opisano awarie zaobserwowane podczas zarysowania i zdefiniowano zgłoszone obciążenia krytyczne. Kolejna część zawiera tabelę podsumowującą obciążenia krytyczne dla wszystkich próbek oraz reprezentację graficzną. Ostatnia część przedstawia szczegółowe wyniki dla każdej próbki: obciążenia krytyczne dla każdej rysy, mikrografy każdego uszkodzenia i wykres testu.

ZAOBSERWOWANE AWARIE I DEFINICJA OBCIĄŻEŃ KRYTYCZNYCH

KRYTYCZNA AWARIA:

SZKODA POCZĄTKOWA

Jest to pierwszy punkt, w którym uszkodzenie jest obserwowane wzdłuż ścieżki zarysowania.

nano zarysowanie uszkodzenie krytyczne uszkodzenie początkowe

KRYTYCZNA AWARIA:

CAŁKOWITE USZKODZENIE

W tym momencie uszkodzenia są bardziej znaczące, gdzie farba odpryskuje i pęka wzdłuż śladu zarysowania.

nano zarysowanie krytyczne uszkodzenie całkowite uszkodzenie

SZCZEGÓŁOWE WYNIKI

* Wartości uszkodzeń w punkcie pęknięcia podłoża.

KRYTYCZNE OBCIĄŻENIA
SCRATCH USZKODZENIE WSTĘPNE [mN] USZKODZENIE CAŁKOWITE [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
ŚREDNIA 3.988 4.900
STD DEV 0.143 0.054
Mikrograf pełnego zarysowania z testu nano zarysowania (powiększenie 1000x).

RYSUNEK 2: Mikrografia pełnej rysy (powiększenie 1000x).

Mikrograf początkowego uszkodzenia z testu nano-zarysowania (powiększenie 1000x)

RYSUNEK 3: Mikrograf początkowego uszkodzenia (powiększenie 1000x).

Mikrograf całkowitego uszkodzenia z testu nano-zarysowania (powiększenie 1000x).

RYSUNEK 4: Mikrograf całkowitego uszkodzenia (powiększenie 1000x).

Liniowy test nanodrapania - siła tarcia i współczynnik tarcia

RYSUNEK 5: Siła tarcia i współczynnik tarcia.

Liniowy profil powierzchni Nano Scratch

RYSUNEK 6: Profil powierzchni.

Liniowy test nanodrapania Prawdziwa głębokość i głębokość resztkowa

RYSUNEK 7: Głębokość rzeczywista i głębokość resztkowa.

PODSUMOWANIE

NANOVEA Tester mechaniczny w Nano Scratch Tester umożliwia symulację wielu rzeczywistych uszkodzeń powłok malarskich i twardych powłok. Stosując rosnące obciążenia w kontrolowany i ściśle monitorowany sposób, urządzenie pozwala określić, przy jakim obciążeniu występują awarie. Można to następnie wykorzystać jako sposób na określenie ilościowych wartości odporności na zarysowania. Wiadomo, że testowana powłoka, bez czynników atmosferycznych, ma pierwsze pęknięcie przy około 22 mN. Przy wartościach zbliżonych do 5 mN jasne jest, że 7-letnie docieranie spowodowało degradację farby.

Kompensacja oryginalnego profilu pozwala uzyskać skorygowaną głębokość podczas zarysowania i zmierzyć głębokość resztkową po zarysowaniu. Daje to dodatkowe informacje na temat plastycznego i elastycznego zachowania powłoki pod rosnącym obciążeniem. Zarówno pęknięcia, jak i informacje o odkształceniach mogą być bardzo przydatne przy ulepszaniu twardej powłoki. Bardzo małe odchylenia standardowe pokazują również powtarzalność techniki instrumentu, co może pomóc producentom poprawić jakość ich twardej powłoki/farby i zbadać wpływ warunków atmosferycznych.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Twardość na zarysowania w wysokiej temperaturze przy użyciu tribometru

WYSOKA TEMPERATURA ODPORNOŚĆ NA ZARYSOWANIA

PRZY UŻYCIU TRYBOMETRU

Przygotowane przez

DUANJIE, PhD

WPROWADZENIE

Twardość mierzy odporność materiałów na odkształcenia trwałe lub plastyczne. Opracowany przez niemieckiego mineraloga Friedricha Mohsa w 1820 roku, test twardości zarysowania określa twardość materiału na zarysowania i ścieranie spowodowane tarciem o ostry przedmiot.1. Skala Mohsa jest indeksem porównawczym, a nie skalą liniową, dlatego opracowano bardziej dokładny i jakościowy pomiar twardości zarysowania, opisany w normie ASTM G171-032. Mierzy średnią szerokość rysy utworzonej przez diamentowy rysik i oblicza liczbę twardości rysy (HSP).

ZNACZENIE POMIARU TWARDOŚCI ZARYSOWANIA W WYSOKICH TEMPERATURACH

Materiały są wybierane na podstawie wymagań użytkowych. W przypadku zastosowań związanych ze znacznymi zmianami temperatury i gradientami termicznymi, kluczowe jest zbadanie właściwości mechanicznych materiałów w wysokich temperaturach, aby mieć pełną świadomość ograniczeń mechanicznych. Materiały, zwłaszcza polimery, zwykle miękną w wysokich temperaturach. Wiele uszkodzeń mechanicznych jest spowodowanych odkształceniem pełzającym i zmęczeniem termicznym zachodzącym tylko w podwyższonych temperaturach. Dlatego też, aby zapewnić właściwy dobór materiałów do zastosowań w wysokich temperaturach, konieczne jest opracowanie wiarygodnej techniki pomiaru twardości w wysokich temperaturach.

CEL POMIARU

W tym badaniu trybometr NANOVEA T50 mierzy twardość zarysowania próbki teflonu w różnych temperaturach od temperatury pokojowej do 300°C. Możliwość wykonywania pomiarów twardości zarysowania w wysokiej temperaturze sprawia, że NANOVEA Tribometr wszechstronny system do tribologicznej i mechanicznej oceny materiałów do zastosowań wysokotemperaturowych.

NANOVEA

T50

WARUNKI BADANIA

Tribometr NANOVEA T50 Free Weight Standard został użyty do wykonania testów twardości zarysowania próbki teflonu w temperaturach od pokojowej (RT) do 300°C. Temperatura topnienia teflonu wynosi 326,8°C. Zastosowano stożkowy trzpień diamentowy o kącie wierzchołkowym 120° i promieniu końcówki 200 µm. Próbka teflonowa została zamocowana na obrotowym stoliku z próbkami w odległości 10 mm od środka stolika. Próbkę wygrzewano w piecu i badano w temperaturach RT, 50°C, 100°C, 150°C, 200°C, 250°C i 300°C.

PARAMETRY BADANIA

pomiaru twardości zarysowania w wysokiej temperaturze

NORMALNA SIŁA 2 N
PRĘDKOŚĆ PRZESUWANIA 1 mm/s
ODLEGŁOŚĆ PRZESUWU 8mm na temp.
ATMOSFERY Air
TEMPERATURA RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

WYNIKI I DYSKUSJA

Profile śladu zarysowania próbki teflonowej w różnych temperaturach pokazano na RYSUNKU 1 w celu porównania twardości zarysowania w różnych podwyższonych temperaturach. Spiętrzenie materiału na krawędziach ścieżki zarysowania tworzy się, gdy trzpień porusza się ze stałym obciążeniem 2 N i zagłębia się w próbkę teflonową, wypychając i deformując materiał w ścieżce zarysowania na boki.

Ślady zarysowań były badane pod mikroskopem optycznym, jak pokazano na RYSUNKU 2. Zmierzone szerokości śladów zarysowania i obliczone liczby twardości zarysowania (HSP) są podsumowane i porównane na RYSUNKU 3. Szerokość śladu zarysowania zmierzona przez mikroskop jest zgodna z tą zmierzoną przy użyciu NANOVEA Profiler - próbka teflonowa wykazuje większą szerokość zarysowania w wyższych temperaturach. Szerokość śladu zarysowania wzrasta z 281 do 539 µm w miarę wzrostu temperatury z RT do 300oC, co skutkuje zmniejszeniem HSP z 65 do 18 MPa.

Twardość zarysowania w podwyższonej temperaturze może być mierzona z wysoką precyzją i powtarzalnością przy użyciu Tribometru NANOVEA T50. Stanowi to alternatywne rozwiązanie w stosunku do innych pomiarów twardości i czyni Tribometry NANOVEA bardziej kompletnym systemem do kompleksowej oceny tribo-mechanicznej w wysokich temperaturach.

RYSUNEK 1: Profile śladów zarysowania po badaniach twardości zarysowania w różnych temperaturach.

RYSUNEK 2: Ślady zarysowań pod mikroskopem po pomiarach w różnych temperaturach.

RYSUNEK 3: Ewolucja szerokości śladu zarysowania i twardości zarysowania w zależności od temperatury.

PODSUMOWANIE

W niniejszej pracy zaprezentowano sposób pomiaru twardości zarysowania przez trybometr NANOVEA w podwyższonej temperaturze zgodnie z normą ASTM G171-03. Badanie twardości zarysowania przy stałym obciążeniu stanowi alternatywne, proste rozwiązanie umożliwiające porównanie twardości materiałów przy użyciu tribometru. Możliwość wykonania pomiarów twardości zarysowania w podwyższonej temperaturze czyni Tribometr NANOVEA idealnym narzędziem do oceny właściwości tribo-mechanicznych materiałów w wysokiej temperaturze.

Tribometr NANOVEA oferuje również precyzyjne i powtarzalne badania zużycia i tarcia z wykorzystaniem trybów obrotowych i liniowych zgodnych z normami ISO i ASTM, z opcjonalnymi modułami do badań zużycia w wysokich temperaturach, smarowania i tribo-korozji dostępnymi w jednym, wstępnie zintegrowanym systemie. Opcjonalny profiler bezdotykowy 3D jest dostępny do wysokorozdzielczego obrazowania 3D śladów zużycia, jako dodatek do innych pomiarów powierzchni, takich jak chropowatość.

1 Wredenberg, Fredrik; PL Larsson (2009). "Badanie zarysowania metali i polimerów: Experiments and numerics". Wear 266 (1-2): 76
2 ASTM G171-03 (2009), "Standardowa metoda badania twardości materiałów na zarysowania przy użyciu diamentowego rysika".

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Ocena zarysowania i zużycia powłok przemysłowych

POWŁOKA PRZEMYSŁOWA

OCENA ZARYSOWANIA I ZUŻYCIA PRZY UŻYCIU TRYBOMETRU

Przygotowane przez

DUANJIE LI, PhD & ANDREA HERRMANN

WPROWADZENIE

Farba akrylowa uretanowa jest rodzajem szybkoschnącej powłoki ochronnej szeroko stosowanej w różnych zastosowaniach przemysłowych, takich jak farba podłogowa, farba samochodowa i inne. Stosowana jako farba podłogowa może służyć w miejscach o dużym natężeniu ruchu pieszych i gumowych kółek, takich jak chodniki, krawężniki i parkingi.

ZNACZENIE BADANIA ZARYSOWANIA I ZUŻYCIA DLA KONTROLI JAKOŚCI

Tradycyjnie, zgodnie z normą ASTM D4060, do oceny odporności na ścieranie akrylowo-uretanowych farb podłogowych przeprowadzane są próby ścierania Tabera. Jednakże, jak wspomniano w normie, "W przypadku niektórych materiałów, próby ścierania z użyciem ściernicy Tabera mogą podlegać zmianom wynikającym ze zmian właściwości ściernych ściernicy podczas badania "1 . Ponadto, w testach ścieralności Tabera, odporność na ścieranie jest obliczana jako utrata wagi przy określonej liczbie cykli ścierania. Jednak akrylowe uretanowe farby podłogowe mają zalecaną grubość suchej powłoki 37,5-50 μm2.

Agresywny proces ścierania przez Taber Abraser może szybko zużyć powłokę akrylowo-uretanową i spowodować utratę masy do podłoża, co prowadzi do znacznych błędów w obliczeniach utraty masy farby. Implant cząstek ściernych w farbie podczas testu ścierania również przyczynia się do błędów. Dlatego dobrze kontrolowany, wymierny i wiarygodny pomiar ma kluczowe znaczenie dla zapewnienia powtarzalnej oceny zużycia farby. Ponadto test zdrapki umożliwia użytkownikom wykrywanie przedwczesnych uszkodzeń kleju/kleju w rzeczywistych zastosowaniach.

CEL POMIARU

W tym badaniu pokazujemy, że NANOVEA Tribometry oraz Testery mechaniczne są idealne do oceny i kontroli jakości powłok przemysłowych.

Proces zużycia akrylowych uretanowych farb podłogowych z różnymi warstwami wierzchnimi jest symulowany w sposób kontrolowany i monitorowany przy użyciu Tribometru NANOVEA. Testy mikro zarysowań są stosowane do pomiaru obciążenia wymaganego do spowodowania uszkodzenia spoistości lub przyczepności farby.

NANOVEA T100

Kompaktowy Tribometr Pneumatyczny

NANOVEA PB1000

Tester mechaniczny z dużą platformą

PROCEDURA TESTOWA

W niniejszym badaniu oceniono cztery dostępne na rynku akrylowe powłoki podłogowe na bazie wody, które mają ten sam podkład (basecoat) i różne powłoki wierzchnie o tej samej formule z niewielką zmianą w mieszankach dodatków w celu zwiększenia trwałości. Te cztery powłoki są oznaczone jako Próbki A, B, C i D.

TEST ZUŻYCIA

Trybometr NANOVEA został zastosowany do oceny zachowania tribologicznego, np. współczynnika tarcia, COF i odporności na zużycie. Na badane farby nałożono końcówkę kulistą SS440 (średnica 6 mm, klasa 100). COF rejestrowano na miejscu. Szybkość zużycia K obliczono za pomocą wzoru K=V/(F×s)=A/(F×n), gdzie V to objętość zużycia, F to normalne obciążenie, s to droga poślizgu, A to pole przekroju poprzecznego toru zużycia, n jest liczbą obrotów. W badaniu NANOVEA oceniono chropowatość powierzchni i profile śladów zużycia Profilometr optyczny, a morfologię śladów zużycia zbadano za pomocą mikroskopu optycznego.

PARAMETRY BADANIA ZUŻYCIA

NORMALNA SIŁA

20 N

PRĘDKOŚĆ

15 m/min

CZAS TRWANIA BADANIA

100, 150, 300 i 800 cykli

TEST NA ZADRAŻNIENIA

Za pomocą testera mechanicznego NANOVEA wyposażonego w trzpień diamentowy Rockwell C (promień 200 μm) przeprowadzono testy zarysowania próbek farby przy obciążeniu progresywnym z wykorzystaniem trybu Micro Scratch Tester. Zastosowano dwa obciążenia końcowe: 5 N obciążenie końcowe do badania delaminacji farby od podkładu oraz 35 N do badania delaminacji podkładu od podłoży metalowych. W celu zapewnienia powtarzalności wyników, na każdej próbce powtórzono trzy próby w tych samych warunkach badawczych.

Panoramiczne obrazy całych długości zarysowań były generowane automatycznie, a ich krytyczne miejsca uszkodzenia były skorelowane z zastosowanymi obciążeniami przez oprogramowanie systemu. Ta funkcja oprogramowania ułatwia użytkownikom przeprowadzenie analizy na śladach zarysowań w dowolnym momencie, zamiast konieczności określania obciążenia krytycznego pod mikroskopem bezpośrednio po przeprowadzeniu testów zarysowania.

PARAMETRY BADANIA ZARYSOWANIA

TYP OBCIĄŻENIAPostępowe
OBCIĄŻENIE POCZĄTKOWE0,01 mN
OBCIĄŻENIE KOŃCOWE5 N / 35 N
PRĘDKOŚĆ ZAŁADUNKU10 / 70 N/min
DŁUGOŚĆ SKRATKI3 mm
PRĘDKOŚĆ SKRATOWANIA, dx/dt6,0 mm/min
GEOMETRIA WGŁĘBNIKAStożek 120º
MATERIAŁ DO INDENTERÓW (końcówka)Diament
PROMIEŃ KOŃCÓWKI WGŁĘBNIKA200 μm

WYNIKI BADAŃ ZUŻYCIA

Na każdej próbce przeprowadzono cztery testy zużycia pin-on-disk przy różnej liczbie obrotów (100, 150, 300 i 800 cykli) w celu monitorowania ewolucji zużycia. Morfologia powierzchni próbek została zmierzona za pomocą urządzenia NANOVEA 3D Non-Contact Profiler w celu określenia chropowatości powierzchni przed przeprowadzeniem testów zużycia. Wszystkie próbki miały porównywalną chropowatość powierzchni około 1 μm, jak pokazano na RYS. 1. COF był rejestrowany in situ podczas testów zużycia, jak pokazano na RYSUNKU 2. RYSUNEK 4 przedstawia ewolucję śladów zużycia po 100, 150, 300 i 800 cyklach, a RYSUNEK 3 podsumował średnią szybkość zużycia różnych próbek na różnych etapach procesu zużycia.

 

W porównaniu z wartością COF wynoszącą ~0,07 dla pozostałych trzech próbek, próbka A wykazuje znacznie wyższy współczynnik COF wynoszący ~0,15 na początku, który stopniowo wzrasta i staje się stabilny na poziomie ~0,3 po 300 cyklach zużycia. Tak wysoki COF przyspiesza proces zużycia i powoduje powstanie znacznej ilości odłamków lakieru, jak pokazano na RYS. 4 - warstwa wierzchnia próbki A zaczęła być usuwana w ciągu pierwszych 100 obrotów. Jak pokazano na RYSUNKU 3, próbka A wykazuje najwyższy wskaźnik zużycia ~5 μm2/N w pierwszych 300 cyklach, który nieznacznie spada do ~3,5 μm2/N ze względu na lepszą odporność na zużycie metalowego podłoża. Warstwa wierzchnia próbki C zaczyna się psuć po 150 cyklach zużycia, jak pokazano na RYSUNKU 4, na co wskazuje również wzrost COF na RYSUNKU 2.

 

Dla porównania, próbka B i próbka D wykazują ulepszone właściwości tribologiczne. Próbka B utrzymuje niski współczynnik COF przez cały czas trwania testu - współczynnik COF nieznacznie wzrasta z ~0,05 do ~0,1. Taki efekt smarowania znacznie zwiększa jej odporność na zużycie - po 800 cyklach zużycia warstwa wierzchnia nadal zapewnia doskonałą ochronę podkładu znajdującego się pod nią. Najniższy średni współczynnik zużycia wynoszący tylko ~0,77 μm2/N został zmierzony dla próbki B po 800 cyklach. Warstwa wierzchnia próbki D zaczyna się rozwarstwiać po 375 cyklach, co odzwierciedla gwałtowny wzrost COF na RYS. 2. Średnia szybkość zużycia próbki D wynosi ~1,1 μm2/N przy 800 cyklach.

 

W porównaniu do konwencjonalnych pomiarów ścieralności Tabera, Tribometr NANOVEA zapewnia dobrze kontrolowane, kwantyfikowalne i wiarygodne oceny zużycia, które zapewniają powtarzalną ocenę i kontrolę jakości komercyjnych farb podłogowych/automatycznych. Co więcej, zdolność do pomiarów in situ COF pozwala użytkownikom skorelować różne etapy procesu zużycia z ewolucją COF, co jest krytyczne dla poprawy fundamentalnego zrozumienia mechanizmu zużycia i charakterystyki trybologicznej różnych powłok lakierniczych.

RYSUNEK 1: Morfologia 3D i chropowatość próbek farby.

RYSUNEK 2: COF podczas testów pin-on-disk.

RYSUNEK 3: Ewolucja szybkości zużycia różnych farb.

RYSUNEK 4: Ewolucja śladów zużycia podczas testów pin-on-disk.

WYNIKI TESTU ZARYSOWANIA

RYSUNEK 5 przedstawia wykres siły normalnej, siły tarcia i głębokości rzeczywistej w funkcji długości zarysowania dla próbki A jako przykładu. Opcjonalny moduł emisji akustycznej może być zainstalowany, aby zapewnić więcej informacji. W miarę liniowego wzrostu obciążenia normalnego, końcówka wgłębnika stopniowo zagłębia się w badaną próbkę, co odzwierciedla stopniowy wzrost głębokości rzeczywistej. Zmiana nachylenia krzywych siły tarcia i głębokości rzeczywistej może być wykorzystana jako jedna z przesłanek świadczących o tym, że zaczynają się pojawiać uszkodzenia powłoki.

RYSUNEK 5: Siła normalna, siła tarcia i głębokość rzeczywista jako funkcja długości zarysowania dla próby zarysowania próbki A przy maksymalnym obciążeniu 5 N.

RYSUNEK 6 i RYSUNEK 7 pokazują pełne zarysowania wszystkich czterech badanych próbek farby przy maksymalnym obciążeniu odpowiednio 5 N i 35 N. Próbka D wymagała większego obciążenia 50 N do rozwarstwienia podkładu. Testy zarysowania przy obciążeniu końcowym 5 N (RYSUNEK 6) oceniają uszkodzenie kohezyjne/adhezyjne farby nawierzchniowej, natomiast testy przy obciążeniu 35 N (RYSUNEK 7) oceniają delaminację podkładu. Strzałki na mikrografach wskazują punkt, w którym powłoka wierzchnia lub podkład zaczynają się całkowicie odrywać od podkładu lub podłoża. Obciążenie w tym punkcie, tzw. obciążenie krytyczne, Lc, służy do porównania właściwości kohezyjnych lub adhezyjnych farby, co zestawiono w tabeli 1.

 

Widać, że próbka farby D ma najlepszą przyczepność międzyfazową - wykazując najwyższe wartości Lc 4,04 N przy rozwarstwieniu farby i 36,61 N przy rozwarstwieniu podkładu. Próbka B wykazuje drugą najlepszą odporność na zarysowania. Z analizy zarysowań wynika, że optymalizacja formuły farby jest krytyczna dla zachowania mechanicznego, a dokładniej odporności na zarysowania i właściwości adhezyjnych akrylowych farb podłogowych.

Tabela 1: Podsumowanie obciążeń krytycznych.

RYSUNEK 6: Mikrografy pełnej rysy przy maksymalnym obciążeniu 5 N.

RYSUNEK 7: Mikrografy pełnej rysy przy maksymalnym obciążeniu 35 N.

PODSUMOWANIE

W porównaniu z konwencjonalnymi pomiarami ścieralności Tabera, Tester Mechaniczny NANOVEA oraz Tribometr są doskonałymi narzędziami do oceny i kontroli jakości komercyjnych powłok podłogowych i samochodowych. Tester mechaniczny NANOVEA w trybie zarysowania może wykryć problemy z przyczepnością/spójnością w systemie powłokowym. Tribometr NANOVEA zapewnia dobrze kontrolowaną, kwantyfikowalną i powtarzalną analizę tribologiczną odporności na ścieranie i współczynnika tarcia farb.

 

Na podstawie kompleksowej analizy tribologicznej i mechanicznej wodorozcieńczalnych akrylowych powłok podłogowych testowanych w tym badaniu, wykazaliśmy, że próbka B posiada najniższy współczynnik COF i wskaźnik zużycia oraz drugą najlepszą odporność na zarysowania, podczas gdy próbka D wykazuje najlepszą odporność na zarysowania i drugą najlepszą odporność na zużycie. Ocena ta pozwala nam ocenić i wybrać najlepszego kandydata, który będzie odpowiadał potrzebom w różnych środowiskach zastosowania.

 

Moduły Nano i Micro testera mechanicznego NANOVEA zawierają tryby testowania wgniecenia, zarysowania i zużycia zgodne z normami ISO i ASTM, zapewniając najszerszy zakres badań dostępnych do oceny farby w jednym module. Tribometr NANOVEA oferuje precyzyjne i powtarzalne badania zużycia i tarcia z wykorzystaniem trybów obrotowych i liniowych zgodnych z normami ISO i ASTM, z opcjonalnymi modułami do badań zużycia w wysokiej temperaturze, smarowania i tribo-korozji dostępnymi w jednym, wstępnie zintegrowanym systemie. Niezrównana oferta NANOVEA jest idealnym rozwiązaniem do wyznaczania pełnego zakresu właściwości mechanicznych/tribologicznych cienkich lub grubych, miękkich lub twardych powłok, filmów i podłoży, w tym twardości, modułu Younga, odporności na pękanie, przyczepności, odporności na zużycie i wielu innych. Opcjonalnie dostępne są bezkontaktowe profilery optyczne NANOVEA do obrazowania w wysokiej rozdzielczości 3D rys i śladów zużycia, jako uzupełnienie innych pomiarów powierzchni, takich jak chropowatość.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Pomiar twardości zarysowania przy użyciu testera mechanicznego

POMIAR TWARDOŚCI ZARYSOWANIA

PRZY UŻYCIU TESTERA MECHANICZNEGO

Przygotowane przez

DUANJIE LI, PhD

WPROWADZENIE

Ogólnie rzecz biorąc, testy twardości mierzą odporność materiałów na odkształcenia trwałe lub plastyczne. Istnieją trzy rodzaje pomiarów twardości: twardość zarysowania, twardość wgłębna i twardość odbicia. Test twardości zarysowania mierzy odporność materiału na zarysowanie i ścieranie w wyniku tarcia o ostry przedmiot1. Została ona opracowana przez niemieckiego mineraloga Friedricha Mohsa w 1820 roku i nadal jest powszechnie stosowana do oceny właściwości fizycznych minerałów2. Ta metoda badawcza ma również zastosowanie do metali, ceramiki, polimerów i powierzchni powlekanych.

Podczas pomiaru twardości zarysowania, trzpień diamentowy o określonej geometrii zarysowuje powierzchnię materiału wzdłuż liniowej ścieżki pod wpływem stałej siły normalnej ze stałą prędkością. Średnia szerokość rysy jest mierzona i używana do obliczenia liczby twardości zarysowania (HSP). Technika ta zapewnia proste rozwiązanie do skalowania twardości różnych materiałów.

CEL POMIARU

W badaniach zastosowano tester mechaniczny NANOVEA PB1000 do pomiaru twardości zarysowania różnych metali zgodnie z normą ASTM G171-03.

Jednocześnie badanie to prezentuje możliwości NANOVEA Tester mechaniczny w wykonywaniu pomiarów twardości zarysowania z dużą precyzją i powtarzalnością.

NANOVEA

PB1000

WARUNKI BADANIA

Tester mechaniczny NANOVEA PB1000 przeprowadził testy twardości zarysowania na trzech polerowanych metalach (Cu110, Al6061 i SS304). Zastosowano stożkowy trzpień diamentowy o kącie wierzchołkowym 120° i promieniu końcówki 200 µm. Każda próbka została zarysowana trzykrotnie z tymi samymi parametrami testowymi, aby zapewnić powtarzalność wyników. Parametry testu podsumowano poniżej. Skanowanie profilu przy niskim obciążeniu normalnym wynoszącym 10 mN przeprowadzono przed i po zadrapaniu. test zdrapki do pomiaru zmiany profilu powierzchni rysy.

PARAMETRY BADANIA

NORMALNA SIŁA

10 N

TEMPERATURA

24°C (RT)

PRĘDKOŚĆ PRZESUWANIA

20 mm/min

ODLEGŁOŚĆ PRZESUWU

10 mm

ATMOSFERY

Air

WYNIKI I DYSKUSJA

Obrazy śladów zarysowań trzech metali (Cu110, Al6061 i SS304) po przeprowadzonych badaniach przedstawiono na RYSUNKU 1 w celu porównania twardości zarysowań różnych materiałów. Funkcja mapowania oprogramowania NANOVEA Mechanical została wykorzystana do stworzenia trzech równoległych zarysowań testowanych w tych samych warunkach w zautomatyzowanym protokole. Zmierzona szerokość śladu zarysowania i obliczona liczba twardości zarysowania (HSP) zostały podsumowane i porównane w TABELI 1. Metale wykazują różne szerokości śladów zużycia, wynoszące 174, 220 i 89 µm odpowiednio dla Al6061, Cu110 i SS304, co skutkuje obliczoną liczbą HSP wynoszącą 0,84, 0,52 i 3,2 GPa.

Oprócz twardości zarysowania obliczonej na podstawie szerokości śladu zarysowania, podczas badania twardości zarysowania rejestrowano in situ ewolucję współczynnika tarcia (COF), głębokości rzeczywistej i emisji akustycznej. Głębokość rzeczywista to różnica pomiędzy głębokością penetracji trzpienia podczas testu zarysowania a profilem powierzchni zmierzonym podczas skanowania wstępnego. Przykładowe wartości COF, prawdziwej głębokości i emisji akustycznej dla Cu110 przedstawiono na RYSUNKU 2. Takie informacje zapewniają wgląd w uszkodzenia mechaniczne zachodzące podczas zarysowania, umożliwiając użytkownikom wykrywanie wad mechanicznych i dalsze badanie zachowania zarysowania badanego materiału.

Testy twardości zarysowania mogą być zakończone w ciągu kilku minut z wysoką precyzją i powtarzalnością. W porównaniu do konwencjonalnych procedur wgłębnych, test twardości zarysowania w tym badaniu zapewnia alternatywne rozwiązanie dla pomiarów twardości, co jest przydatne w kontroli jakości i rozwoju nowych materiałów.

Al6061

Cu110

SS304

RYSUNEK 1: Obraz mikroskopowy śladów zarysowania po badaniu (powiększenie 100x).

 Szerokość śladu zarysowania (μm)HSp (GPa)
Al6061174±110.84
Cu110220±10.52
SS30489±53.20

TABELA 1: Zestawienie szerokości śladu zarysowania i numeru twardości zarysowania.

RYSUNEK 2: Ewolucja współczynnika tarcia, głębokości rzeczywistej i emisji akustycznej podczas badania twardości zarysowania na Cu110.

PODSUMOWANIE

W niniejszej pracy zaprezentowano możliwości urządzenia NANOVEA Mechanical Tester w zakresie prowadzenia badań twardości zarysowania zgodnie z wymaganiami normy ASTM G171-03. Poza badaniem przyczepności powłoki i odporności na zarysowanie, próba zarysowania przy stałym obciążeniu stanowi alternatywne, proste rozwiązanie umożliwiające porównanie twardości materiałów. W przeciwieństwie do konwencjonalnych urządzeń do badania twardości zarysowania, Mechaniczne Testery NANOVEA oferują opcjonalne moduły do monitorowania ewolucji współczynnika tarcia, emisji akustycznej oraz głębokości rzeczywistej w warunkach in situ.

Moduły Nano i Micro Testera Mechanicznego NANOVEA zawierają tryby pracy zgodne z normami ISO i ASTM - wgłębnik, zarysowanie i ścieranie, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres badań dostępny w jednym systemie. Niezrównany zakres badań NANOVEA stanowi idealne rozwiązanie do wyznaczania pełnego zakresu właściwości mechanicznych cienkich lub grubych, miękkich lub twardych powłok, filmów i podłoży, w tym twardości, modułu Younga, odporności na pękanie, przyczepności, odporności na ścieranie i wielu innych.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Test na zarysowanie powłoki z azotku tytanu

BADANIE ZARYSOWANIA POWŁOKI Z AZOTKU TYTANU

INSPEKCJA KONTROLI JAKOŚCI

Przygotowane przez

DUANJIE LI, PhD

WPROWADZENIE

Połączenie wysokiej twardości, doskonałej odporności na zużycie, odporności na korozję i obojętności sprawia, że azotek tytanu (TiN) jest idealną powłoką ochronną dla elementów metalowych w różnych branżach. Na przykład, zachowanie krawędzi i odporność na korozję powłoki TiN może znacznie zwiększyć wydajność pracy i wydłużyć żywotność narzędzi maszynowych, takich jak żyletki, noże do metalu, formy wtryskowe i piły. Jego wysoka twardość, obojętność i nietoksyczność sprawiają, że TiN jest doskonałym kandydatem do zastosowań w urządzeniach medycznych, w tym implantach i instrumentach chirurgicznych.

WAŻNOŚĆ TESTOWANIA POWŁOKI TiN POD KĄTEM ZADRAśNIENIA

Naprężenia szczątkowe w ochronnych powłokach PVD/CVD odgrywają krytyczną rolę w wydajności i mechanicznej integralności powlekanego elementu. Naprężenia szczątkowe pochodzą z kilku głównych źródeł, w tym naprężeń wzrostowych, gradientów termicznych, ograniczeń geometrycznych i naprężeń eksploatacyjnych¹. Niedopasowanie rozszerzalności cieplnej pomiędzy powłoką a podłożem powstałe podczas osadzania powłoki w podwyższonej temperaturze prowadzi do dużych termicznych naprężeń resztkowych. Ponadto, narzędzia z powłoką TiN są często używane w warunkach bardzo dużych naprężeń skupionych, np. wiertła i łożyska. Krytyczne znaczenie ma opracowanie niezawodnego procesu kontroli jakości w celu ilościowej kontroli wytrzymałości kohezyjnej i adhezyjnej ochronnych powłok funkcjonalnych.

[1] V. Teixeira, Vacuum 64 (2002) 393-399.

CEL POMIARU

W tym badaniu wykazaliśmy, że NANOVEA Testery mechaniczne w trybie zarysowania idealnie nadają się do oceny wytrzymałości kohezyjnej/adhezyjnej powłok ochronnych TiN w sposób kontrolowany i ilościowy.

NANOVEA

PB1000

WARUNKI BADANIA

Do wykonania powłoki wykorzystano tester mechaniczny NANOVEA PB1000. testy zarysowań na trzech powłokach TiN przy użyciu tych samych parametrów testowych, jak podsumowano poniżej:

TRYB ŁADOWANIA: Progresywny liniowy

OBCIĄŻENIE POCZĄTKOWE

0.02 N

OBCIĄŻENIE KOŃCOWE

10 N

PRĘDKOŚĆ ZAŁADUNKU

20 N/min

DŁUGOŚĆ SKRATKI

5 mm

TYP INDENTER

Sphero-Conical

Diament, promień 20 μm

WYNIKI I DYSKUSJA

RYSUNEK 1 przedstawia zarejestrowaną ewolucję głębokości penetracji, współczynnika tarcia (COF) oraz emisji akustycznej podczas badania. Pełne ślady mikro zarysowań na próbkach TiN pokazano na RYSUNKU 2. Zachowanie się powłoki przy różnych obciążeniach krytycznych pokazano na RYSUNKU 3, gdzie obciążenie krytyczne Lc1 jest zdefiniowane jako obciążenie, przy którym pojawia się pierwszy ślad pęknięcia kohezyjnego w śladzie zarysowania, Lc2 jest obciążeniem, po którym następują powtarzające się uszkodzenia spallacyjne, a Lc3 jest obciążeniem, przy którym powłoka zostaje całkowicie usunięta z podłoża. Wartości obciążenia krytycznego (Lc) dla powłok TiN zestawiono na RYS. 4.

Ewolucja głębokości penetracji, COF i emisji akustycznej zapewnia wgląd w mechanizm zniszczenia powłoki na różnych etapach, które w tym badaniu reprezentowane są przez obciążenia krytyczne. Można zauważyć, że próbka A i próbka B wykazują porównywalne zachowanie podczas testu zarysowania. Trzpień stopniowo zagłębia się w próbkę na głębokość ~0,06 mm, a COF stopniowo wzrasta do ~0,3 w miarę liniowego wzrostu obciążenia normalnego na początku próby zarysowania powłoki. Po osiągnięciu Lc1 wynoszącego ~3,3 N pojawiają się pierwsze oznaki awarii odpryskowej. Jest to również odzwierciedlone w pierwszych dużych skokach na wykresie głębokości penetracji, COF i emisji akustycznej. Wraz ze wzrostem obciążenia do wartości Lc2 równej ~3,8 N następują dalsze fluktuacje głębokości penetracji, COF i emisji akustycznej. Można zaobserwować ciągłe uszkodzenia odpryskowe obecne po obu stronach ścieżki zarysowania. Przy Lc3, powłoka całkowicie rozwarstwia się od metalowego podłoża pod wpływem dużego nacisku wywieranego przez trzpień, pozostawiając podłoże odsłonięte i niechronione.

Dla porównania, próbka C wykazuje niższe obciążenia krytyczne na różnych etapach badania zarysowania powłoki, co jest również odzwierciedlone w ewolucji głębokości penetracji, współczynnika tarcia (COF) i emisji akustycznej podczas badania zarysowania powłoki. Próbka C posiada międzywarstwę adhezyjną o niższej twardości i wyższym naprężeniu na styku górnej powłoki TiN i metalowego podłoża w porównaniu z próbką A i próbką B.

Badanie to pokazuje, jak ważne jest właściwe podparcie podłoża i architektura powłoki dla jakości systemu powłokowego. Mocniejsza międzywarstwa może lepiej opierać się deformacji pod wpływem dużego obciążenia zewnętrznego i naprężeń koncentracyjnych, a tym samym zwiększać wytrzymałość kohezyjną i adhezyjną systemu powłoka/podłoże.

RYSUNEK 1: Ewolucja głębokości penetracji, COF i emisji akustycznej próbek TiN.

RYSUNEK 2: Pełny ślad zarysowania powłok TiN po testach.

RYSUNEK 3: Uszkodzenia powłok TiN przy różnych obciążeniach krytycznych, Lc.

RYSUNEK 4: Zestawienie wartości obciążenia krytycznego (Lc) dla powłok TiN.

PODSUMOWANIE

W tym badaniu pokazaliśmy, że NANOVEA PB1000 Mechanical Tester wykonuje wiarygodne i dokładne testy zarysowania na próbkach pokrytych TiN w sposób kontrolowany i ściśle monitorowany. Pomiary zarysowań pozwalają użytkownikom szybko zidentyfikować krytyczne obciążenie, przy którym występują typowe uszkodzenia powłok kohezyjnych i adhezyjnych. Nasze urządzenia są doskonałymi narzędziami kontroli jakości, które mogą ilościowo zbadać i porównać wewnętrzną jakość powłoki i integralność międzyfazową systemu powłoka/podłoże. Powłoka z odpowiednią warstwą pośrednią może wytrzymać duże odkształcenia pod wpływem dużego obciążenia zewnętrznego i naprężeń koncentracyjnych, a także zwiększyć wytrzymałość kohezyjną i adhezyjną systemu powłoka/podłoże.

Moduły Nano i Micro urządzenia NANOVEA Mechanical Tester zawierają tryby pracy zgodne z normami ISO i ASTM - wgłębianie, zarysowanie i ścieranie, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres badań dostępny w jednym systemie. Niezrównana oferta NANOVEA stanowi idealne rozwiązanie do wyznaczania pełnego zakresu właściwości mechanicznych cienkich lub grubych, miękkich lub twardych powłok, filmów i podłoży, w tym twardości, modułu Younga, odporności na pękanie, przyczepności, odporności na ścieranie i wielu innych.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Właściwości mechaniczne hydrożelu

WŁAŚCIWOŚCI MECHANICZNE HYDROŻELU

PRZY UŻYCIU NANOINDENTACJI

Przygotowane przez

DUANJIE LI, PhD & JORGE RAMIREZ

WPROWADZENIE

Hydrożel znany jest ze swojej super chłonności wody, pozwalającej na bliskie podobieństwo elastyczności do naturalnych tkanek. To podobieństwo sprawiło, że hydrożel stał się powszechnym wyborem nie tylko w biomateriałach, ale także w elektronice, ochronie środowiska i zastosowaniach konsumenckich, takich jak soczewki kontaktowe. Każda unikalna aplikacja wymaga specyficznych właściwości mechanicznych hydrożelu.

ZNACZENIE NANOINDENTACJI DLA HYDROŻELU

Hydrożele stanowią wyjątkowe wyzwanie dla badań metodą nanoindentacji, takie jak dobór parametrów badań i przygotowanie próbek. Wiele systemów do badań metodą nanoindentacji posiada poważne ograniczenia, ponieważ nie zostały one zaprojektowane z myślą o zastosowaniu w badaniach hydrożeli. tak miękkich materiałów. Niektóre systemy nanoindentacji wykorzystują zespół cewka/magnes do przyłożenia siły do próbki. Nie ma pomiaru rzeczywistej siły, co prowadzi do niedokładnego i nieliniowego obciążenia podczas badania miękkich materiałów. materiały. Określenie punktu styku jest niezwykle trudne, ponieważ Głębokość jest jedynym parametrem faktycznie mierzonym. Niemal niemożliwe jest zaobserwowanie zmiany nachylenia w Głębokość a czas działka podczas okres, w którym końcówka wgłębnika zbliża się do materiału hydrożelowego.

W celu przezwyciężenia ograniczeń tych systemów, nano moduł NANOVEA Tester mechaniczny mierzy sprzężenie zwrotne siły za pomocą indywidualnego ogniwa obciążnikowego, aby zapewnić wysoką dokładność na wszystkich rodzajach materiałów, miękkich i twardych. Przemieszczenie sterowane piezoelektrycznie jest niezwykle precyzyjne i szybkie. Umożliwia to niezrównany pomiar właściwości lepkosprężystych poprzez wyeliminowanie wielu założeń teoretycznych, które muszą uwzględniać systemy z zespołem cewki/magnesu i bez sprzężenia zwrotnego siły.

CEL POMIARU

W tej aplikacji NANOVEA Tester mechaniczny, w trybie nanoindentacji, służy do badania twardości, modułu sprężystości i pełzania próbki hydrożelowej.

NANOVEA

PB1000

WARUNKI BADANIA

Próbkę hydrożelu umieszczoną na szklanym szkiełku badano techniką nanoindentacji przy użyciu NANOVEA Tester mechaniczny. Dla tego miękkiego materiału zastosowano końcówkę sferyczną o średnicy 3 mm. Obciążenie liniowo wzrastało od 0,06 do 10 mN podczas okresu obciążania. Następnie mierzono pełzanie na podstawie zmiany głębokości wgłębienia przy maksymalnym obciążeniu 10 mN przez 70 sekund.

PRĘDKOŚĆ ZBLIŻANIA SIĘ: 100 μm/min

ŁADUNEK KONTAKTOWY
0,06 mN
OBCIĄŻENIE MAKSYMALNE
10 mN
PRĘDKOŚĆ ZAŁADUNKU

20 mN/min

CREEP
70 s
WYNIKI I DYSKUSJA

Ewolucja obciążenia i głębokości w funkcji czasu została przedstawiona w FUGURA 1. Można zauważyć, że na wykresie dot. Głębokość a czas, bardzo trudno jest określić punkt zmiany nachylenia na początku okresu obciążenia, który zwykle sprawdza się jako wskazówka, gdzie wgłębnik zaczyna stykać się z miękkim materiałem. Jednakże, wykres Obciążenie w zależności od czasu pokazuje osobliwe zachowanie hydrożelu pod wpływem przyłożonego obciążenia. Gdy hydrożel zaczyna stykać się z wgłębnikiem kulistym, z powodu napięcia powierzchniowego hydrożel ciągnie wgłębnik kulisty, co powoduje zmniejszenie jego powierzchni. Takie zachowanie prowadzi do ujemnego zmierzonego obciążenia na początku etapu obciążania. Obciążenie stopniowo wzrasta, gdy wgłębnik zagłębia się w hydrożel, a następnie jest kontrolowane, aby było stałe przy maksymalnym obciążeniu 10 mN przez 70 sekund w celu zbadania zachowania hydrożelu podczas pełzania.

RYSUNEK 1: Ewolucja obciążenia i głębokości w funkcji czasu.

Działka o pow. Głębokość pełzania w funkcji czasu zaznaczono w RYSUNEK 2, oraz Obciążenie a przemieszczenie wykres badania metodą nanoindentacji pokazany jest w RYSUNEK 3. Hydrożel w tej pracy posiada twardość 16,9 KPa i moduł Younga 160,2 KPa, obliczone na podstawie krzywej przemieszczenia obciążenia metodą Olivera-Pharra.

Pełzanie jest ważnym czynnikiem w badaniach właściwości mechanicznych hydrożelu. Sterowanie w ścisłej pętli sprzężenia zwrotnego pomiędzy piezoelementem a ultraczułym ogniwem obciążnikowym zapewnia rzeczywiste stałe obciążenie w czasie pełzania przy maksymalnym obciążeniu. Jak pokazano w RYSUNEK 2, hydrożel ustępuje ~42 μm w wyniku pełzania w ciągu 70 sekund pod maksymalnym obciążeniem 10 mN przyłożonym przez końcówkę kulkową 3 mm.

RYSUNEK 2: Pełzanie przy maksymalnym obciążeniu 10 mN przez 70 sekund.

RYSUNEK 3: Wykres zależności obciążenia od przemieszczenia hydrożelu.

PODSUMOWANIE

W tym badaniu wykazaliśmy, że NANOVEA Tester mechaniczny, w trybie nanoindentacji, zapewnia precyzyjny i powtarzalny pomiar właściwości mechanicznych hydrożelu, w tym twardości, modułu Younga i pełzania. Duża 3 mm końcówka kulkowa zapewnia prawidłowy kontakt z powierzchnią hydrożelu. Wysokoprecyzyjny zmotoryzowany statyw do próbek umożliwia dokładne pozycjonowanie płaskiej powierzchni próbki hydrożelu pod końcówką kulkową. Hydrożel w tym badaniu wykazuje twardość 16,9 KPa i moduł Younga 160,2 KPa. Głębokość pełzania wynosi ~42 μm pod obciążeniem 10 mN przez 70 sekund.

NANOVEA Testery mechaniczne zapewniają niezrównaną wielofunkcyjność modułów Nano i Micro na jednej platformie. Oba moduły zawierają tryb testera zarysowań, testera twardości oraz testera zużycia, oferując najszerszy i najbardziej przyjazny dla użytkownika zakres badań dostępny na jednej platformie.
system.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Właściwości adhezyjne powłoki złotej na podłożu kryształu kwarcowego

Właściwości adhezyjne powłoki złotej

na podłożu kryształu kwarcowego

Przygotowane przez

DUANJIE LI, dr

WPROWADZENIE

Mikrowaga kwarcowa (QCM) jest niezwykle czułym czujnikiem masy, zdolnym do wykonywania precyzyjnych pomiarów małych mas w zakresie nanogramów. QCM mierzy zmiany masy na powierzchni poprzez wykrywanie zmian w częstotliwości rezonansowej kryształu kwarcu z dwoma elektrodami przymocowanymi do każdej strony płytki. Zdolność do pomiaru ekstremalnie małej masy czyni go kluczowym elementem w wielu badaniach i instrumentach przemysłowych do wykrywania i monitorowania zmian masy, adsorpcji, gęstości i korozji, itp.

ZNACZENIE TESTU ZDRAPKI DLA QCM

Jako niezwykle dokładne urządzenie, QCM mierzy zmiany masy z dokładnością do 0,1 nanograma. Wszelkie ubytki masy lub rozwarstwienia elektrod na płytce kwarcowej zostaną wykryte przez kryształ kwarcu i spowodują znaczne błędy pomiarowe. W związku z tym, wewnętrzna jakość powłoki elektrody i integralność międzyfazowa systemu powłoka/podłoże odgrywają zasadniczą rolę w wykonywaniu dokładnych i powtarzalnych pomiarów masy. Test mikro zarysowania jest szeroko stosowanym pomiarem porównawczym do oceny względnej spójności lub właściwości adhezyjnych powłok na podstawie porównania obciążeń krytycznych, przy których pojawiają się uszkodzenia. Jest to doskonałe narzędzie do rzetelnej kontroli jakości QCM.

CEL POMIARU

W tej aplikacji NANOVEA Tester mechaniczny, w trybie Micro Scratch, służy do oceny siły spójności i przyczepności złotej powłoki na podłożu kwarcowym próbki QCM. Chcielibyśmy zaprezentować możliwości tzw NANOVEA Tester mechaniczny w wykonywaniu testów mikro zarysowań na delikatnej próbce z wysoką precyzją i powtarzalnością.

NANOVEA

PB1000

WARUNKI BADANIA

Na stronie NANOVEA Tester mechaniczny PB1000 został użyty do przeprowadzenia testów mikro zarysowań na próbce QCM przy użyciu parametrów testowych podsumowanych poniżej. Wykonano trzy zarysowania w celu zapewnienia powtarzalności wyników.

TYP LOAD: Postępowe

OBCIĄŻENIE POCZĄTKOWE

0.01 N

OBCIĄŻENIE KOŃCOWE

30 N

ATMOSFERY: Powietrze 24°C

PRĘDKOŚĆ PRZESUWANIA

2 mm/min

ODLEGŁOŚĆ PRZESUWU

2 mm

WYNIKI I DYSKUSJA

Pełny ślad mikro zarysowań na próbce QCM jest pokazany w RYSUNEK 1. Zachowanie się uszkodzeń przy różnych obciążeniach krytycznych przedstawiono na RYSUNKU 2, gdzie obciążenie krytyczne, LC1 definiuje się jako obciążenie, przy którym pojawiają się pierwsze oznaki uszkodzenia kleju w śladzie zarysowania, LC2 jest obciążeniem, po którym następuje powtarzalne uszkodzenie kleju, a LC3 to obciążenie, przy którym powłoka zostaje całkowicie usunięta z podłoża. Można zauważyć, że niewielkie wykruszanie ma miejsce przy LC1 o wartości 11,15 N, co stanowiło pierwszą oznakę uszkodzenia powłoki. 

Ponieważ obciążenie normalne wzrasta podczas badania mikropęknięć, powtarzające się uszkodzenia kleju występują po LC2 o wartości 16,29 N. Gdy LC3 Po osiągnięciu wartości 19,09 N powłoka całkowicie oddziela się od podłoża kwarcowego. Takie obciążenia krytyczne mogą być wykorzystane do ilościowego porównania wytrzymałości kohezyjnej i adhezyjnej powłoki i wyboru najlepszego kandydata do docelowych zastosowań.

RYSUNEK 1: Pełny ślad mikro zarysowań na próbce QCM.

RYSUNEK 2: Ścieżka mikro zarysowań przy różnych obciążeniach krytycznych.

RYSUNEK 3 Przedstawiono ewolucję współczynnika tarcia i głębokości, która może zapewnić lepszy wgląd w progresję uszkodzeń powłoki podczas testu mikro zarysowania.

RYSUNEK 3: Ewolucja COF i Depth podczas testu mikro zarysowania.

PODSUMOWANIE

W tym badaniu wykazaliśmy, że NANOVEA Mechanical Tester wykonuje wiarygodne i dokładne testy mikro zarysowań na próbce QCM. Poprzez zastosowanie liniowo wzrastających obciążeń w sposób kontrolowany i ściśle monitorowany, pomiar zarysowania pozwala użytkownikom zidentyfikować krytyczne obciążenie, przy którym następuje typowe uszkodzenie powłoki kohezyjnej i adhezyjnej. Zapewnia to doskonałe narzędzie do ilościowej oceny i porównania wewnętrznej jakości powłoki i integralności międzyfazowej systemu powłoka/podłoże dla QCM.

Nano, Micro lub Makro moduły NANOVEA Tester mechaniczny zawiera tryby pracy zgodne z normami ISO i ASTM - wgłębianie, zarysowanie i ścieranie, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres badań dostępny w jednym systemie. NANOVEANiezrównana oferta stanowi idealne rozwiązanie do określania pełnego zakresu właściwości mechanicznych cienkich lub grubych, miękkich lub twardych powłok, filmów i substratów, w tym twardości, modułu Younga, odporności na pękanie, przyczepności, odporności na zużycie i wielu innych.

Ponadto, opcjonalny profiler bezdotykowy 3D i moduł AFM są dostępne dla wysokiej rozdzielczości obrazowania 3D wgłębień, zarysowań i śladów zużycia, oprócz innych pomiarów powierzchni, takich jak chropowatość i odkształcenia.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Wiodący na świecie tester mikromechaniczny

OBECNIE WIODĄCY NA ŚWIECIE

BADANIA MIKROMECHANICZNE

Przygotowane przez

PIERRE LEROUX & DUANJIE LI, PhD

WPROWADZENIE

Standardowe mikrotwardościomierze Vickersa posiadają zakres obciążenia użytkowego od 10 do 2000 gramów siły (gf). Standardowe Makrotwardościomierze Vickersa posiadają zakres obciążeń od 1 do 50 Kgf. Urządzenia te są nie tylko bardzo ograniczone w zakresie obciążeń, ale również niedokładne w przypadku chropowatych powierzchni lub niskich obciążeń, kiedy wgniecenia stają się zbyt małe, aby można je było zmierzyć wzrokowo. Ograniczenia te są nierozerwalnie związane ze starszą technologią i w rezultacie oprzyrządowanie do badań wgłębnych staje się standardowym wyborem ze względu na wyższą dokładność i wydajność.

Z Twardość Vickersa jest automatycznie obliczana na podstawie danych z wykresu zależności siły od głębokości i obciążenia, przy najszerszym zakresie obciążeń w pojedynczym module, jaki kiedykolwiek był dostępny (0,3 grama do 2 kg lub 6 gramów do 40 kg). Ponieważ NANOVEA Micro Module mierzy twardość na podstawie krzywych zależności siły od głębokości, może mierzyć każdy rodzaj materiałów, w tym również bardzo elastyczne. Może dostarczyć nie tylko twardości Vickersa, ale również dokładnych danych dotyczących modułu sprężystości i pełzania, a także innych rodzajów testów, takich jak badanie przyczepności do podłoża, zużycia, testów zmęczeniowych, granicy plastyczności i odporności na pękanie, zapewniając pełny zakres danych do kontroli jakości.

OBECNIE ŚWIATOWY LIDER W DZIEDZINIE BADAŃ MIKROMECHANICZNYCH

W niniejszej nocie aplikacyjnej wyjaśniono, w jaki sposób moduł Micro został zaprojektowany, aby zaoferować wiodące na świecie oprzyrządowanie do badań wgłębnych i zarysowań. Szeroki zakres możliwości badawczych modułu Micro jest idealny dla wielu zastosowań. Na przykład, zakres obciążeń umożliwia dokładne pomiary twardości i modułu sprężystości cienkich twardych powłok, a następnie zastosowanie znacznie większych obciążeń do pomiaru przyczepności tych samych powłok.

CEL POMIARU

Pojemność mikromodułu jest przedstawiona za pomocą NANOVEA CB500 Tester mechaniczny przez
Wykonywanie testów wgnieceń i zarysowań z najwyższą precyzją i niezawodnością w szerokim zakresie obciążeń od 0,03 do 200 N.

NANOVEA

CB500

WARUNKI BADANIA

Wykonano serię (3×4, łącznie 12 wgnieceń) mikroindentacji na standardowej próbce stalowej przy użyciu wgłębnika Vickersa. Zmierzono i zarejestrowano obciążenie oraz głębokość wgłębienia dla całego cyklu badania wgłębnego. Wgniecenia wykonywano przy różnych maksymalnych obciążeniach w zakresie od 0,03 N do 200 N (0,0031 do 20,4 kgf), aby zaprezentować możliwości mikromodułu w wykonywaniu dokładnych badań wgnieceń przy różnych obciążeniach. Warto zauważyć, że opcjonalnie dostępna jest również głowica pomiarowa o wartości 20 N, która zapewnia 10-krotnie wyższą rozdzielczość dla badań w dolnym zakresie obciążeń od 0,3 gf do 2 kgf.

Wykonano dwa testy zarysowania przy użyciu Mikro Modułu z liniowo zwiększanym obciążeniem od 0,01 N do 200 N i od 0,01 N do 0,5 N, odpowiednio, przy użyciu stożkowo-sferycznego trzpienia diamentowego o promieniu końcówki 500 μm i 20 μm.

Dwadzieścia Mikroindentacja Testy przeprowadzono na standardowej próbce stalowej przy 4 N, wykazując doskonałą powtarzalność wyników modułu Micro Module, które kontrastują z wydajnością konwencjonalnych twardościomierzy Vickersa.

*mikroindent na próbce stali

PARAMETRY BADANIA

odwzorowania wcięć

MAPPING: 3 PRZEZ 4 INDENTY

WYNIKI I DYSKUSJA

Nowy moduł Micro posiada unikalną kombinację silnika Z, ogniwa obciążeniowego o dużej sile i wysokiej precyzji pojemnościowego czujnika głębokości. Unikalne wykorzystanie niezależnych czujników głębokości i obciążenia zapewnia wysoką dokładność w każdych warunkach.

W konwencjonalnych testach twardości Vickersa stosuje się końcówki wgłębników w kształcie piramidek diamentowych, które tworzą kwadratowe wgłębienia. Poprzez pomiar średniej długości przekątnej, d, można obliczyć twardość Vickersa.

Dla porównania, technika oprzyrządowanego wgłębiania stosowana przez NANOVEAMicro Module bezpośrednio mierzy właściwości mechaniczne na podstawie pomiarów obciążenia i przemieszczenia wgłębnika. Nie jest wymagana wizualna obserwacja wgłębienia. Eliminuje to błędy użytkownika lub komputerowego przetwarzania obrazu przy określaniu wartości d wgłębienia. Kondensatorowy czujnik głębokości o wysokiej dokładności i bardzo niskim poziomie szumów 0,3 nm może dokładnie mierzyć głębokość wgnieceń, które są trudne lub niemożliwe do zmierzenia wizualnie pod mikroskopem za pomocą tradycyjnych twardościomierzy Vickersa.

Ponadto, technika wspornikowa stosowana przez konkurencję powoduje, że normalne obciążenie na belce wspornikowej jest przenoszone przez sprężynę, a to obciążenie z kolei jest przenoszone na wgłębnik. Taka konstrukcja ma wadę w przypadku przyłożenia dużego obciążenia - belka wspornikowa nie jest w stanie zapewnić wystarczającej sztywności konstrukcyjnej, co prowadzi do odkształcenia belki wspornikowej, a w konsekwencji do niewspółosiowości wgłębnika. Dla porównania, w mikromodule normalne obciążenie jest przenoszone przez silnik Z działający na głowicę pomiarową, a następnie na wgłębnik w celu bezpośredniego przyłożenia obciążenia. Wszystkie elementy są ustawione pionowo w celu uzyskania maksymalnej sztywności, zapewniając powtarzalne i dokładne pomiary wgłębników i zarysowań w pełnym zakresie obciążeń.

Widok z bliska nowego modułu Micro

WGŁĘBIENIE OD 0,03 DO 200 N

Obraz mapy wgnieceń przedstawiono na RYS. 1. Odległość pomiędzy dwoma sąsiednimi wgłębieniami powyżej 10 N wynosi 0,5 mm, natomiast przy mniejszych obciążeniach 0,25 mm. Bardzo precyzyjna kontrola położenia stopnia próbki pozwala użytkownikom na wybór miejsca docelowego do mapowania właściwości mechanicznych. Dzięki doskonałej sztywności mikromodułu, wynikającej z pionowego ustawienia jego elementów, wgłębnik Vickersa zachowuje idealną orientację pionową podczas wnikania w próbkę stali pod obciążeniem do 200 N (400 N opcjonalnie). Dzięki temu przy różnych obciążeniach na powierzchni próbki powstają odciski o symetrycznym, kwadratowym kształcie.

Pojedyncze wgniecenia przy różnych obciążeniach pod mikroskopem są wyświetlane obok dwóch zarysowań, jak pokazano na RYSUNKU 2, aby zaprezentować zdolność nowego mikromodułu do wykonywania testów wgnieceń i zarysowań w szerokim zakresie obciążeń z wysoką precyzją. Jak widać na wykresach zależności obciążenia normalnego od długości zarysowania, obciążenie normalne wzrasta liniowo w miarę jak stożkowo-sferyczny trzpień diamentowy przesuwa się po powierzchni próbki stalowej. Tworzy on gładki, prosty ślad zarysowania o stopniowo zwiększanej szerokości i głębokości.

RYSUNEK 1: Mapa wcięć

Wykonano dwa testy zarysowania przy użyciu Mikro Modułu z liniowo zwiększanym obciążeniem od 0,01 N do 200 N i od 0,01 N do 0,5 N, odpowiednio, przy użyciu stożkowo-sferycznego trzpienia diamentowego o promieniu końcówki 500 μm i 20 μm.

Przeprowadzono dwadzieścia testów mikroindentacji na standardowej próbce stali pod ciśnieniem 4 N, wykazując doskonałą powtarzalność wyników uzyskanych za pomocą modułu Micro, które kontrastują z wynikami uzyskanymi za pomocą konwencjonalnych twardościomierzy Vickersa.

A: WGNIECENIE I ZARYSOWANIE POD MIKROSKOPEM (360X)

B: WGNIECENIE I ZARYSOWANIE POD MIKROSKOPEM (3000X)

RYSUNEK 2: Wykresy zależności obciążenia od przemieszczenia przy różnych maksymalnych obciążeniach.

Krzywe obciążenie-przemieszczenie podczas wgłębiania przy różnych obciążeniach maksymalnych przedstawiono w RYSUNEK 3. Twardość i moduł sprężystości są podsumowane i porównane na RYSUNKU 4. Próbka stali wykazuje stały moduł sprężystości w całym zakresie obciążenia testowego od 0,03 do 200 N (możliwy zakres 0,003 do 400 N), co daje średnią wartość ~211 GPa. Twardość wykazuje względnie stałą wartość ~6,5 GPa mierzoną przy maksymalnym obciążeniu powyżej 100 N. Gdy obciążenie maleje do zakresu od 2 do 10 N, mierzona jest średnia twardość ~9 GPa.

RYSUNEK 3: Wykresy zależności obciążenia od przemieszczenia przy różnych maksymalnych obciążeniach.

RYSUNEK 4: Twardość i moduł Younga próbki stalowej mierzone przy różnych maksymalnych obciążeniach.

WGŁĘBIENIE OD 0,03 DO 200 N

Wykonano dwadzieścia prób mikroindentacji przy maksymalnym obciążeniu 4N. Krzywe obciążenie-przemieszczenie przedstawiono w RYSUNEK 5 a otrzymane twardość Vickersa i moduł Younga są przedstawione w RYSUNEK 6.

RYSUNEK 5: Krzywe obciążenie-przemieszczenie dla badań mikroindentacji przy obciążeniu 4 N.

RYSUNEK 6: Twardość Vickersa i moduł Younga dla 20 mikroindentacji przy 4 N.

Krzywe obciążenie-przemieszczenie wykazują doskonałą powtarzalność nowego mikromodułu. Stalowy wzorzec posiada twardość Vickersa 842±11 HV zmierzoną przez nowy mikromoduł, w porównaniu do 817±18 HV zmierzonej przy użyciu konwencjonalnego twardościomierza Vickersa. Małe odchylenie standardowe pomiaru twardości zapewnia wiarygodną i powtarzalną charakterystykę właściwości mechanicznych w pracach badawczo-rozwojowych i kontroli jakości materiałów zarówno w sektorze przemysłowym jak i w badaniach naukowych.

Ponadto, na podstawie krzywej obciążenie-przemieszczenie obliczono moduł Younga o wartości 208±5 GPa, który nie jest dostępny dla konwencjonalnego twardościomierza Vickersa ze względu na brak pomiaru głębokości podczas wgłębiania. Wraz ze spadkiem obciążenia i zmniejszeniem rozmiaru wgłębienia, moduł NANOVEA Zalety modułu Micro w zakresie powtarzalności w porównaniu do twardościomierzy Vickersa wzrastają do momentu, gdy nie jest już możliwy pomiar wgłębienia poprzez kontrolę wzrokową.

Zaleta pomiaru głębokości w celu obliczenia twardości staje się również oczywista, gdy mamy do czynienia z próbkami szorstkimi lub trudniejszymi do obserwacji pod standardowymi mikroskopami, w które wyposażone są twardościomierze Vickersa.

PODSUMOWANIE

W tym badaniu pokazaliśmy, jak nowy wiodący na świecie NANOVEA Micro Module (zakres 200 N) wykonuje niezrównanie powtarzalne i precyzyjne pomiary wgłębienia i zarysowania w szerokim zakresie obciążeń od 0,03 do 200 N (3 gf do 20,4 kgf). Opcjonalny moduł Micro o niższym zakresie może zapewnić wykonanie badań w zakresie od 0,003 do 20 N (0,3 gf do 2 kgf). Unikalne pionowe ustawienie silnika Z, ogniwa obciążeniowego o dużej sile oraz czujnika głębokości zapewnia maksymalną sztywność konstrukcji podczas pomiarów. Wgłębienia mierzone przy różnych obciążeniach mają symetryczny kwadratowy kształt na powierzchni próbki. Prosty ślad zarysowania o stopniowo zwiększanej szerokości i głębokości powstaje w teście zarysowania przy maksymalnym obciążeniu 200 N.

Nowy Micro Module może być skonfigurowany na podstawie mechanicznej PB1000 (150 x 200 mm) lub CB500 (100 x 50 mm) z motoryką z (zakres 50 mm). W połączeniu z wydajnym systemem kamer (dokładność pozycji 0,2 mikrona) systemy te zapewniają najlepsze na rynku możliwości automatyzacji i mapowania. NANOVEA oferuje również unikalną opatentowaną funkcję (EP No. 30761530), która umożliwia weryfikację i kalibrację wgłębników Vickersa poprzez wykonanie pojedynczego wgłębienia w pełnym zakresie obciążeń. W przeciwieństwie do tego, standardowe testery twardości Vickersa mogą zapewnić kalibrację tylko przy jednym obciążeniu.

Dodatkowo, oprogramowanie NANOVEA umożliwia użytkownikowi wykonanie pomiaru twardości metodą Vickersa z zastosowaniem tradycyjnej metody pomiaru przekątnych wgłębienia (dla norm ASTM E92 i E384). Jak pokazano w niniejszym dokumencie, badania twardości wgłębnej w funkcji obciążenia (ASTM E2546 i ISO 14577) wykonane przy użyciu mikromodułu NANOVEA są precyzyjne i powtarzalne w porównaniu z tradycyjnymi twardościomierzami. Szczególnie w przypadku próbek, które nie mogą być obserwowane/pomiarowane za pomocą mikroskopu.

Podsumowując, wyższa dokładność i powtarzalność konstrukcji mikromodułu z szerokim zakresem obciążeń i testów, wysoką automatyzacją i opcjami mapowania sprawia, że tradycyjne twardościomierze Vickersa stają się przestarzałe. Podobnie jest z testerami zarysowania i mikro zarysowania, które są nadal oferowane, ale zostały zaprojektowane z wadami w latach 80-tych.

Ciągły rozwój i doskonalenie tej technologii sprawia, że NANOVEA jest światowym liderem w dziedzinie badań mikromechanicznych.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI