USA/GLOBALE: +1-949-461-9292
EUROPA: +39-011-3052-794
CONTATTACI

Test di usura del pistone

TEST DI USURA DEI PISTONIUTILIZZANDO IL TRIBOMETRO NANOVEA

Test di usura del pistone con il tribometro NANOVEA in condizioni di lubrificazione.

Preparato da

FRANK LIU

Che cos'è il test di usura dei pistoni?

I test di usura dei pistoni valutano l'attrito, la lubrificazione e la durata dei materiali tra le camicie dei pistoni e le canne dei cilindri in condizioni controllate di laboratorio. Utilizzando un tribometro, Gli ingegneri possono replicare il movimento alternativo reale e misurare con precisione il coefficiente di attrito, il tasso di usura e la topografia superficiale 3D. Questi risultati forniscono indicazioni fondamentali sul comportamento tribologico di rivestimenti, lubrificanti e leghe utilizzati nei pistoni dei motori, contribuendo a ottimizzare le prestazioni, l'efficienza dei consumi e l'affidabilità a lungo termine.

Schema dell'interfaccia di lubrificazione della canna del pistone e del cilindro durante il test di usura

 Schema del sistema dei cilindri di potenza e delle interfacce gonna del pistone-lubrificante-camicia del cilindro.

💡 Volete quantificare il tasso di usura e l'attrito dei vostri campioni? Richiedete un test tribologico personalizzato per la vostra applicazione.

Perché le prove di usura dei pistoni sono importanti nello sviluppo dei motori

L'olio motore è un lubrificante ben progettato per la sua applicazione. Oltre all'olio di base, per migliorarne le prestazioni vengono aggiunti additivi come detergenti, disperdenti, miglioratori di viscosità (VI), agenti antiusura/antiattrito e inibitori della corrosione. Questi additivi influenzano il comportamento dell'olio in diverse condizioni operative. Il comportamento dell'olio influisce sulle interfacce P-L-C e determina se si verifica un'usura significativa da contatto metallo-metallo o se si verifica una lubrificazione idrodinamica (usura minima).

È difficile comprendere le interfacce P-L-C senza isolare l'area dalle variabili esterne. È più pratico simulare l'evento con condizioni rappresentative della sua applicazione reale. Il NANOVEA Il Tribometro è l'ideale per questo scopo. Dotato di sensori di forza multipli, di un sensore di profondità, di un modulo di lubrificazione goccia a goccia e di uno stadio lineare alternativo, il tribometro NANOVEA T2000 è in grado di simulare da vicino gli eventi che si verificano all'interno di un blocco motore e di ottenere dati preziosi per comprendere meglio le interfacce P-L-C.

nanovea tribometro per l'usura del pistone e la configurazione del modulo di prova dell'attrito

Modulo liquido sul tribometro NANOVEA T2000

Il modulo goccia a goccia è fondamentale per questo studio. Poiché i pistoni possono muoversi a una velocità molto elevata (superiore a 3.000 giri/min), è difficile creare un sottile film di lubrificante immergendo il campione. Per ovviare a questo problema, il modulo goccia a goccia è in grado di applicare in modo costante una quantità di lubrificante sulla superficie della gonna del pistone.

L'applicazione di un lubrificante fresco elimina anche il rischio che i contaminanti dell'usura possano influenzare le proprietà del lubrificante.

Come simulano i tribometri
Usura reale della camicia del pistone

In questa relazione verranno studiate le interfacce gonna del pistone-lubrificante-camicia del cilindro. Le interfacce saranno riprodotte conducendo una prova di reciprocità lineare. test di usura con modulo di lubrificazione goccia a goccia.

Il lubrificante sarà applicato a temperatura ambiente e in condizioni di riscaldamento per confrontare le condizioni di avviamento a freddo e di funzionamento ottimale. Il COF e il tasso di usura saranno osservati per capire meglio come si comportano le interfacce nelle applicazioni reali.

NANOVEA T2000
Tribometro ad alto carico

Parametri e impostazione del test di usura del pistone

CARICO ............................ 100 N

DURATA DEL TEST ............................ 30 minuti

VELOCITÀ ............................ 2000 giri al minuto

AMPLITUDINE ............................ 10 mm

DISTANZA TOTALE ............................ 1200 m

RIVESTIMENTO DELLA GONNA ............................ Moly-grafite

MATERIALE PERNO ............................ Lega di alluminio 5052

DIAMETRO DEL PIN ............................ 10 mm

LUBRIFICANTE ............................ Olio motore (10W-30)

APPROSSIMATIVA. PORTATA ............................ 60 mL/min

TEMPERATURA ............................ Temperatura ambiente e 90°C

Rilevanza nel mondo reale di
Test di usura del pistone

I test di usura dei pistoni basati sui tribometri forniscono informazioni fondamentali su come le scelte dei materiali e le strategie di lubrificazione influiscono sull'affidabilità reale del motore. Invece di affidarsi a costosi test a motore completo, i laboratori possono valutare rivestimenti, oli e superfici in lega in condizioni realistiche di carico meccanico e temperatura. Il sistema NANOVEA Profilometria 3D e i moduli di tribologia consentono una mappatura precisa della profondità di usura e della stabilità dell'attrito, aiutando i team di ricerca e sviluppo a ottimizzare le prestazioni e a ridurre i cicli di sviluppo.

Risultati e analisi dei test di usura dei pistoni

Confronto tra le cicatrici da usura del pistone in base al test di usura lubrificato al tribometro

In questo esperimento è stato utilizzato l'A5052 come materiale di contrasto. Mentre i blocchi motore sono solitamente realizzati in alluminio fuso come l'A356, l'A5052 ha proprietà meccaniche simili all'A356 per questa prova simulativa [1].

Nelle condizioni di prova, è stata osservata un'usura significativa sulla gonna del pistone a temperatura ambiente rispetto a quella a 90°C. I graffi profondi osservati sui campioni suggeriscono che il contatto tra il materiale statico e la gonna del pistone avviene frequentemente durante il test. L'elevata viscosità a temperatura ambiente potrebbe impedire all'olio di riempire completamente gli spazi vuoti alle interfacce e di creare un contatto metallo-metallo. A temperature più elevate, l'olio si assottiglia e riesce a scorrere tra lo spinotto e il pistone. Di conseguenza, a temperature più elevate si osserva un'usura significativamente minore. La FIGURA 5 mostra che un lato della cicatrice da usura si è consumato molto meno dell'altro. Ciò è probabilmente dovuto alla posizione dell'uscita dell'olio. Lo spessore del film di lubrificante era maggiore su un lato rispetto all'altro, causando un'usura non uniforme.

[1] “Alluminio 5052 vs alluminio 356.0”. MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

Il COF dei test tribologici lineari alternativi può essere suddiviso in un passaggio alto e un passaggio basso. Il passaggio alto si riferisce al campione che si muove in avanti, o in senso positivo, mentre il passaggio basso si riferisce al campione che si muove in senso inverso, o in senso negativo. La COF media per l'olio RT è stata osservata inferiore a 0,1 in entrambe le direzioni. I COF medi tra le passate sono stati di 0,072 e 0,080. Il COF medio dell'olio a 90°C è risultato diverso tra le passate. Sono stati osservati valori medi di COF pari a 0,167 e 0,09. La differenza di COF dimostra ulteriormente che l'olio è riuscito a bagnare correttamente solo un lato del perno. Si è ottenuto un COF elevato quando si è formato un film spesso tra lo spinotto e la gonna del pistone, a causa della lubrificazione idrodinamica. Si osserva un COF più basso nell'altra direzione quando si verifica una lubrificazione mista. Per ulteriori informazioni sulla lubrificazione idrodinamica e sulla lubrificazione mista, visitate la nostra nota applicativa su Curve di Stribeck.
coefficiente di attrito e tasso di usura ottenuti dal test di usura del pistone lubrificato

Tabella 1: Risultati del test di usura lubrificata sui pistoni.

grafici del coefficiente di attrito per il test di usura del pistone a temperatura ambiente che mostrano i profili grezzi di passaggio alto e basso

FIGURA 1: Grafici COF per il test di usura dell'olio a temperatura ambiente A profilo grezzo B passaggio alto C passaggio basso.

grafici del coefficiente di attrito per il test di usura del pistone a 90 gradi Celsius che mostrano i profili grezzi di passaggio alto e basso

FIGURA 2: Grafici COF per il test dell'olio di usura a 90°C A profilo grezzo B passaggio alto C passaggio basso.

Immagine al microscopio ottico della cicatrice da usura del pistone in un test di usura dell'olio motore a temperatura ambiente

FIGURA 3: Immagine ottica della cicatrice da usura del test di usura dell'olio motore RT.

superficie del pistone che mostra una cicatrice da usura localizzata evidenziata per l'analisi tribologica
analisi del volume e della profondità della cicatrice da usura del pistone in base al test al tribometro

FIGURA 4: Volume di un foro per l'analisi della cicatrice da usura del test di usura dell'olio motore RT.

Scansione con profilometria di superficie 3D della cicatrice da usura del pistone che mostra la profondità e la rugosità dell'usura

FIGURA 5: Scansione profilometrica della cicatrice da usura del test di usura dell'olio motore RT.

Immagine al microscopio ottico della cicatrice da usura del pistone in un test di usura dell'olio motore a 90 gradi

FIGURA 6: Immagine ottica di una cicatrice da usura da un test di usura dell'olio motore a 90°C

Gonna del pistone che mostra la zona di usura analizzata durante il test di usura del pistone al tribometro
Misurazione del volume e della profondità della cicatrice da usura del pistone in un test al tribometro a 90 gradi per olio motore

FIGURA 7: Volume di un foro per l'analisi della cicatrice da usura del test di usura dell'olio motore a 90°C.

Scansione con profilometria di superficie 3D della cicatrice da usura del pistone da un test di usura dell'olio motore a 90 gradi, che mostra la profondità e la consistenza dell'usura

FIGURA 8: Scansione profilometrica della cicatrice da usura del test di usura dell'olio motore a 90°C.

Conclusione: Valutazione dell'usura del motore con i tribometri NANOVEA

Sono stati condotti test di usura lineare alternata lubrificata su un pistone per simulare gli eventi che si verificano in un motore operativo reale. L'interfaccia pistone-lubrificante-camera del cilindro è fondamentale per il funzionamento di un motore. Lo spessore del lubrificante all'interfaccia è responsabile della perdita di energia dovuta all'attrito o all'usura tra la gonna del pistone e la canna del cilindro. Per ottimizzare il motore, lo spessore del film deve essere il più sottile possibile, senza che il mantello del pistone e la canna del cilindro si tocchino. La sfida, tuttavia, consiste nel capire come le variazioni di temperatura, velocità e forza influiranno sulle interfacce P-L-C.

Grazie all'ampia gamma di carichi (fino a 2000 N) e velocità (fino a 15000 giri/min), il tribometro NANOVEA T2000 è in grado di simulare le diverse condizioni possibili in un motore. Possibili studi futuri su questo argomento includono il comportamento delle interfacce P-L-C in condizioni di carico costante, carico oscillante, temperatura del lubrificante, velocità e metodo di applicazione del lubrificante. Questi parametri possono essere facilmente regolati con il tribometro NANOVEA T2000 per fornire una comprensione completa dei meccanismi delle interfacce gonna del pistone-lubrificante-camicia del cilindro.

ℹ️ Siete interessati a testare le pastiglie dei freni? Per saperne di più sul nostro sito dedicato tester per l'attrito dei freni per pastiglie, rivestimenti e ricerca e sviluppo nel settore automobilistico.

Avete una domanda? Gli esperti NANOVEA sono qui per aiutarvi!