USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Contrôle de la rugosité de surface des comprimés pharmaceutiques

Comprimés pharmaceutiques

Contrôle de la rugosité à l'aide de profilomètres 3d

Auteur :

Jocelyn Esparza

Introduction

Les comprimés pharmaceutiques sont la posologie médicale la plus utilisée de nos jours. Chaque comprimé est composé d'une combinaison de substances actives (les produits chimiques qui produisent l'effet pharmacologique) et de substances inactives (désintégrant, liant, lubrifiant, diluant - généralement sous forme de poudre). Les substances actives et inactives sont ensuite comprimées ou moulées en un solide. Ensuite, selon les spécifications du fabricant, les comprimés sont enrobés ou non enrobés.

Pour être efficaces, les enrobages des comprimés doivent suivre les contours fins des logos ou des caractères en relief sur les comprimés, ils doivent être suffisamment stables et solides pour survivre à la manipulation du comprimé, et ils ne doivent pas faire coller les comprimés entre eux pendant le processus d'enrobage. Les comprimés actuels sont généralement dotés d'un enrobage à base de polysaccharides et de polymères qui comprennent des substances comme des pigments et des plastifiants. Les deux types les plus courants d'enrobage des comprimés sont l'enrobage par film et l'enrobage par sucre. Par rapport à l'enrobage au sucre, l'enrobage par film est moins volumineux, plus durable et moins long à préparer et à appliquer. Cependant, les pelliculages ont plus de difficultés à masquer l'apparence des comprimés.

L'enrobage des comprimés est essentiel pour protéger les comprimés de l'humidité, masquer le goût des ingrédients et les rendre plus faciles à avaler. Plus important encore, l'enrobage du comprimé contrôle l'emplacement et la vitesse de libération du médicament.

OBJECTIF DE MESURE

Dans cette application, nous utilisons le Profileur optique NANOVEA et le logiciel Mountains avancé pour mesurer et quantifier la topographie de diverses pilules pressées de marque (1 enrobée et 2 non enrobées) afin de comparer leur rugosité de surface.

On suppose que l'Advil (enduit) aura la rugosité de surface la plus faible en raison du revêtement protecteur dont il est doté.

NANOVEA

HS2000

Conditions d'essai

Trois lots de comprimés pressés de produits pharmaceutiques de marque ont été scannés avec le Nanovea HS2000.
en utilisant un capteur linéaire à haute vitesse pour mesurer divers paramètres de rugosité de surface conformément à la norme ISO 25178.

Zone de balayage

2 x 2 mm

Résolution du balayage latéral

5 x 5 μm

Durée du balayage

4 secondes

Échantillons

Résultats et discussion

Après avoir scanné les comprimés, une étude de la rugosité de surface a été réalisée avec le logiciel d'analyse avancé Mountains pour calculer la moyenne de surface, la moyenne quadratique et la hauteur maximale de chaque comprimé.

Les valeurs calculées confirment l'hypothèse selon laquelle Advil a une rugosité de surface plus faible en raison de l'enrobage protecteur qui recouvre ses ingrédients. Le Tylenol présente la rugosité de surface la plus élevée parmi les trois comprimés mesurés.

Une carte des hauteurs en 2D et 3D de la topographie de la surface de chaque tablette a été produite, montrant les distributions des hauteurs mesurées. Une tablette sur cinq a été sélectionnée pour représenter les cartes de hauteur de chaque marque. Ces cartes de hauteur constituent un excellent outil pour la détection visuelle des caractéristiques de surface périphériques telles que les creux ou les pics.

Conclusion

Dans cette étude, nous avons analysé et comparé la rugosité de surface de trois pilules pharmaceutiques pressées de marques connues : Advil, Tylenol et Excedrin. Advil s'est avéré avoir la rugosité de surface moyenne la plus faible. Cela peut être attribué à la présence de l'enrobage orange qui recouvre le médicament. En revanche, Excedrin et Tylenol n'ont pas d'enrobage, mais leur rugosité de surface diffère quand même l'une de l'autre. Le Tylenol s'est avéré avoir la rugosité de surface moyenne la plus élevée de tous les comprimés étudiés.

Utilisation de la NANOVEA HS2000 avec capteur de ligne à haute vitesse, nous avons pu mesurer 5 comprimés en moins d'une minute. Cela peut s'avérer utile pour les tests de contrôle de la qualité de centaines de comprimés dans une production actuelle.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Microparticules : Résistance à la compression et micro indentation

MICROPARTICULES

RÉSISTANCE À LA COMPRESSION ET MICRO INDENTATION
EN TESTANT LES SELS

Auteur :
Jorge Ramirez

Révisé par :
Jocelyn Esparza

INTRODUCTION

La résistance à la compression est devenue vitale pour la mesure du contrôle de la qualité dans le développement et l'amélioration des microparticules et des microéléments (piliers et sphères) nouveaux et existants que l'on voit aujourd'hui. Les microparticules ont des formes et des tailles variées et peuvent être développées à partir de céramiques, de verre, de polymères et de métaux. Elles sont utilisées, entre autres, pour l'administration de médicaments, l'amélioration de la saveur des aliments et les formulations de béton. Le contrôle des propriétés mécaniques des microparticules ou des microéléments est essentiel à leur succès et nécessite la capacité de caractériser quantitativement leur intégrité mécanique.  

IMPORTANCE DE LA PROFONDEUR PAR RAPPORT À LA RÉSISTANCE À LA COMPRESSION DE LA CHARGE

Les instruments de mesure de la compression standard ne sont pas capables de supporter de faibles charges et ne fournissent pas de données adéquates. données de profondeur pour les microparticules. En utilisant Nano ou Microindentation, la résistance à la compression des nano ou microparticules (molles ou dures) peut être mesurée avec précision et précision.  

OBJECTIF DE MESURE

Dans cette note d'application, nous mesurons  la résistance à la compression du sel avec le site Testeur mécanique NANOVEA en mode micro indentation.

NANOVEA

CB500

CONDITIONS DE TEST

force maximale

30 N

taux de charge

60 N/min

taux de déchargement

60 N/min

type de pénétrateur

Poinçon plat

Acier | 1mm de diamètre

Courbes de charge en fonction de la profondeur

Résultats et discussion

Hauteur, force de rupture et résistance pour la particule 1 et la particule 2.

La rupture des particules a été déterminée comme étant le point où la pente initiale de la courbe force/profondeur commence à diminuer sensiblement, ce qui montre que le matériau a atteint un point de rupture et n'est plus capable de résister aux forces de compression appliquées. Une fois la limite d'élasticité dépassée, la profondeur de l'indentation commence à augmenter de manière exponentielle pendant toute la durée de la période de chargement. Ces comportements peuvent être observés dans Courbes de charge en fonction de la profondeur pour les deux échantillons.

CONCLUSION

En conclusion, nous avons montré comment le NANOVEA Testeur Méchanique en mode micro indentation est un excellent outil pour tester la résistance à la compression des microparticules. Bien que les particules testées soient faites du même matériau, on soupçonne que les différents points de rupture mesurés dans cette étude sont probablement dus à des microfissures préexistantes dans les particules et à des tailles de particules différentes. Il est à noter que pour les matériaux fragiles, des capteurs d'émission acoustique sont disponibles pour mesurer le début de la propagation des fissures pendant un essai.


Le site
NANOVEA Testeur Méchanique offre des résolutions de déplacement en profondeur jusqu'au niveau sub-nanométrique,
ce qui en fait un excellent outil pour l'étude des microparticules ou des caractéristiques très fragiles. Pour les matériaux mous et fragiles
des matériaux, des charges allant jusqu'à 0,1 mN sont possibles avec notre module de nano-indentation.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Roulements à billes : étude de résistance à l'usure à haute force



INTRODUCTION

Un roulement à billes utilise des billes pour réduire le frottement de rotation et supporter les charges radiales et axiales. Les billes qui roulent entre les chemins de roulement produisent un coefficient de frottement (COF) bien inférieur à celui de deux surfaces planes glissant l'une contre l'autre. Les roulements à billes sont souvent exposés à des niveaux élevés de contraintes de contact, à l'usure et à des conditions environnementales extrêmes telles que des températures élevées. Par conséquent, la résistance à l'usure des billes sous des charges élevées et des conditions environnementales extrêmes est essentielle pour prolonger la durée de vie du roulement à billes et réduire les coûts et les délais de réparation et de remplacement.
Les roulements à billes peuvent être trouvés dans presque toutes les applications impliquant des pièces mobiles. Ils sont couramment utilisés dans les industries du transport telles que l'aérospatiale et l'automobile, ainsi que dans l'industrie du jouet qui fabrique des articles tels que des fidget spinner et des planches à roulettes.

ÉVALUATION DE L'USURE DES ROULEMENTS À BILLES À DES CHARGES ÉLEVÉES

Les roulements à billes peuvent être fabriqués à partir d’une longue liste de matériaux. Les matériaux couramment utilisés vont des métaux comme l'acier inoxydable et l'acier chromé ou des céramiques comme le carbure de tungstène (WC) et le nitrure de silicium (Si3n4). Pour garantir que les roulements à billes fabriqués possèdent la résistance à l'usure requise, idéale pour les conditions d'application données, des évaluations tribologiques fiables sous des charges élevées sont nécessaires. Les tests tribologiques aident à quantifier et à comparer les comportements à l'usure de différents roulements à billes de manière contrôlée et surveillée afin de sélectionner le meilleur candidat pour l'application ciblée.

OBJECTIF DE MESURE

Dans cette étude, nous présentons un Nanovea Tribomètre comme l'outil idéal pour comparer la résistance à l'usure de différents roulements à billes sous des charges élevées.

Figure 1 : Configuration du test de roulement.

PROCÉDURE DE TEST

Le coefficient de frottement, COF, et la résistance à l'usure des roulements à billes fabriqués dans différents matériaux ont été évalués par un tribomètre Nanovea. Du papier de verre grain P100 a été utilisé comme matériau de comptoir. Les traces d'usure des roulements à billes ont été examinées à l'aide d'un Nanovea Profileur 3D sans contact après la fin des tests d'usure. Les paramètres de test sont résumés dans le tableau 1. Le taux d'usure, Ka été évaluée à l'aide de la formule K=V/(F×s)V est le volume usé, F est la charge normale et s est la distance de glissement. Les cicatrices d'usure des billes ont été évaluées par un Nanovea Profileur 3D sans contact pour garantir une mesure précise du volume d'usure.
La fonction de positionnement radial motorisé automatisée permet au tribomètre de diminuer le rayon de la piste d'usure pendant la durée d'un test. Ce mode de test est appelé test en spirale et garantit que le roulement à billes glisse toujours sur une nouvelle surface du papier de verre (Figure 2). Il améliore considérablement la répétabilité du test de résistance à l’usure du ballon. L'encodeur avancé 20 bits pour le contrôle de vitesse interne et l'encodeur 16 bits pour le contrôle de position externe fournissent des informations précises sur la vitesse et la position en temps réel, permettant un ajustement continu de la vitesse de rotation pour obtenir une vitesse de glissement linéaire constante au niveau du contact.
Veuillez noter que le papier de verre P100 Grit a été utilisé pour simplifier le comportement à l'usure entre les différents matériaux de billes dans cette étude et peut être remplacé par n'importe quelle autre surface de matériau. N'importe quel matériau solide peut être remplacé pour simuler les performances d'une large gamme de raccords de matériaux dans des conditions d'application réelles, comme dans un liquide ou un lubrifiant.

Figure 2 : Illustration des passes en spirale du roulement à billes sur le papier de verre.
Tableau 1 : Paramètres d'essai des mesures d'usure.

 

RÉSULTATS ET DISCUSSION

Le taux d'usure est un facteur essentiel pour déterminer la durée de vie du roulement à billes, tandis qu'un faible COF est souhaitable pour améliorer les performances et l'efficacité du roulement. La figure 3 compare l'évolution du COF pour différents roulements à billes par rapport au papier de verre lors des tests. La bille en acier Cr présente un COF accru de ~0,4 lors du test d'usure, contre ~0,32 et ~0,28 pour les roulements à billes SS440 et Al2O3. En revanche, la boule WC présente un COF constant de ~0,2 tout au long du test d'usure. Une variation observable du COF peut être observée tout au long de chaque test, attribuée aux vibrations provoquées par le mouvement de glissement des roulements à billes contre la surface rugueuse du papier de verre.

 

Figure 3 : Evolution du COF lors des tests d'usure.

Les figures 4 et 5 comparent les cicatrices d'usure des roulements à billes après qu'elles ont été mesurées respectivement par un microscope optique et un profileur optique sans contact Nanovea, et le tableau 2 résume les résultats de l'analyse des traces d'usure. Le profileur Nanovea 3D détermine avec précision le volume d'usure des roulements à billes, permettant de calculer et de comparer les taux d'usure de différents roulements à billes. On peut observer que les billes en acier Cr et SS440 présentent des cicatrices d'usure aplaties beaucoup plus grandes que les billes en céramique, c'est-à-dire Al2O3 et WC après les tests d'usure. Les billes en acier Cr et SS440 ont des taux d'usure comparables de 3,7 × 10-3 et 3,2 × 10-3 m3/N m, respectivement. En comparaison, la bille Al2O3 présente une résistance à l’usure améliorée avec un taux d’usure de 7,2×10-4 m3/N·m. La boule WC présente à peine des rayures mineures sur la zone de piste d'usure peu profonde, ce qui entraîne un taux d'usure considérablement réduit de 3,3 × 10-6 mm3/N·m.

Figure 4 : Cicatrices d'usure des roulements à billes après les tests.

Figure 5 : Morphologie 3D des cicatrices d'usure sur les roulements à billes.

Tableau 2 : Analyse des cicatrices d'usure des roulements à billes.

La figure 6 montre des images au microscope des traces d'usure produites sur le papier de verre par les quatre roulements à billes. Il est évident que la boule WC produit la trace d'usure la plus sévère (éliminant presque toutes les particules de sable sur son passage) et possède la meilleure résistance à l'usure. En comparaison, les billes en acier Cr et SS440 ont laissé une grande quantité de débris métalliques sur la trace d'usure du papier de verre.
Ces observations démontrent en outre l’importance du bénéfice d’un test en spirale. Il garantit que le roulement à billes glisse toujours sur une nouvelle surface du papier de verre, ce qui améliore considérablement la répétabilité d'un test de résistance à l'usure.

Figure 6 : Usure des traces sur le papier de verre contre différents roulements à billes.

CONCLUSION

La résistance à l'usure des roulements à billes sous haute pression joue un rôle essentiel dans leurs performances en service. Les roulements à billes en céramique possèdent une résistance à l'usure considérablement améliorée dans des conditions de contraintes élevées et réduisent le temps et les coûts liés à la réparation ou au remplacement des roulements. Dans cette étude, le roulement à billes WC présente une résistance à l'usure nettement supérieure à celle des roulements en acier, ce qui en fait un candidat idéal pour les applications de roulements soumises à une usure importante.
Un tribomètre Nanovea est conçu avec des capacités de couple élevées pour des charges allant jusqu'à 2 000 N et un moteur précis et contrôlé pour des vitesses de rotation de 0,01 à 15 000 tr/min. Il propose des tests d'usure et de frottement reproductibles en utilisant les modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules d'usure et de lubrification à haute température en option disponibles dans un système pré-intégré. Cette gamme inégalée permet aux utilisateurs de simuler différents environnements de travail sévères des roulements à billes, notamment des contraintes élevées, l'usure et des températures élevées, etc. Elle constitue également un outil idéal pour évaluer quantitativement les comportements tribologiques de matériaux supérieurs résistants à l'usure sous des charges élevées.
Un profileur 3D sans contact Nanovea fournit des mesures précises du volume d'usure et agit comme un outil pour analyser la morphologie détaillée des traces d'usure, fournissant ainsi des informations supplémentaires sur la compréhension fondamentale des mécanismes d'usure.

Préparé par
Duanjie Li, Ph.D., Jonathan Thomas et Pierre Leroux

Vis dentaires-mesure-dimensionnelle-avec-profilomètre-3d

Outils dentaires : Analyse dimensionnelle et de la rugosité de surface



INTRODUCTION

 

Des dimensions précises et une rugosité de surface optimale sont essentielles au fonctionnement des vis dentaires. De nombreuses dimensions de vis dentaires nécessitent une grande précision, comme les rayons, les angles, les distances et les hauteurs de marche. Comprendre la rugosité de la surface locale est également très important pour tout outil médical ou pièce insérée à l’intérieur du corps humain afin de minimiser la friction de glissement.

 

 

PROFILOMÉTRIE SANS CONTACT POUR ÉTUDE DIMENSIONNELLE

 

Nanovea Profileurs 3D sans contact utilisez une technologie basée sur la lumière chromatique pour mesurer n'importe quelle surface matérielle : transparente, opaque, spéculaire, diffusive, polie ou rugueuse. Contrairement à une technique de sonde tactile, la technique sans contact peut mesurer à l'intérieur de zones restreintes et n'ajoutera aucune erreur intrinsèque due à la déformation causée par la pression de la pointe sur un matériau plastique plus souple. La technologie basée sur la lumière chromatique offre également des précisions latérales et en hauteur supérieures à la technologie de variation de mise au point. Les profileurs Nanovea peuvent scanner de grandes surfaces directement sans couture et profiler la longueur d'une pièce en quelques secondes. Les caractéristiques de surface de la gamme nano à macro et les angles de surface élevés peuvent être mesurés grâce à la capacité du profileur à mesurer des surfaces sans qu'aucun algorithme complexe ne manipule les résultats.

 

 

OBJECTIF DE MESURE

 

Dans cette application, le profileur optique Nanovea ST400 a été utilisé pour mesurer une vis dentaire le long des caractéristiques plates et filetées en une seule mesure. La rugosité de la surface a été calculée à partir de la zone plane et diverses dimensions des éléments filetés ont été déterminées.

 

contrôle qualité des vis dentaires

Echantillon de vis dentaire analysé par NANOVEA Profileur optique.

 

Échantillon de vis dentaire analysé.

 

RÉSULTATS

 

Surface 3D

La vue 3D et la vue en fausses couleurs de la vis dentaire montrent une zone plane avec un filetage commençant de chaque côté. Il fournit aux utilisateurs un outil simple pour observer directement la morphologie de la vis sous différents angles. La zone plane a été extraite de l’analyse complète pour mesurer sa rugosité de surface.

 

 

Analyse de surfaces 2D

Les profils de lignes peuvent également être extraits de la surface pour afficher une vue en coupe transversale de la vis. L'analyse des contours et les études de hauteur de marche ont été utilisées pour mesurer des dimensions précises à un certain endroit de la vis.

 

 

CONCLUSION

 

Dans cette application, nous avons présenté la capacité du profileur 3D sans contact Nanovea à calculer avec précision la rugosité de surface locale et à mesurer de grandes caractéristiques dimensionnelles en un seul scan.

Les données montrent une rugosité de surface locale de 0,9637 μm. Le rayon de la vis entre les filetages s'est avéré être de 1,729 mm et les filetages avaient une hauteur moyenne de 0,413 mm. L'angle moyen entre les fils a été déterminé comme étant de 61,3°.

Les données présentées ici ne représentent qu'une partie des calculs disponibles dans le logiciel d'analyse.

 

Préparé par
Duanjie Li, Ph.D., Jonathan Thomas et Pierre Leroux

Céramique : Cartographie rapide par nanoindentation pour la détection des grains

INTRODUCTION

 

Nanoindentation est devenue une technique largement appliquée pour mesurer les comportements mécaniques des matériaux à petite échellei ii. Les courbes charge-déplacement à haute résolution issues d'une mesure de nanoindentation peuvent fournir diverses propriétés physico-mécaniques, notamment la dureté, le module d'Young, le fluage, la ténacité et bien d'autres.

 

 

Importance de l'indentation de cartographie rapide

 

Un goulot d’étranglement important pour une vulgarisation plus poussée de la technique de nanoindentation est la consommation de temps. Une cartographie des propriétés mécaniques par une procédure conventionnelle de nanoindentation peut facilement prendre des heures, ce qui entrave l'application de la technique dans les industries de production de masse, telles que les semi-conducteurs, l'aérospatiale, les MEMS, les produits de consommation tels que les carreaux de céramique et bien d'autres.

Une cartographie rapide peut s'avérer essentielle dans l'industrie de fabrication de carreaux de céramique. Les cartographies de module de Hardness and Young sur un seul carreau de céramique peuvent présenter une distribution de données indiquant l'homogénéité de la surface. Les régions plus molles sur une tuile peuvent être délimitées dans cette cartographie et montrer les emplacements plus sujets aux défaillances dues aux impacts physiques qui se produisent quotidiennement dans la résidence d'une personne. Des cartographies peuvent être réalisées sur différents types de carreaux pour des études comparatives et sur un lot de carreaux similaires pour mesurer la cohérence des carreaux dans un processus de contrôle qualité. La combinaison de configurations de mesures peut être étendue, précise et efficace grâce à la méthode de cartographie rapide.

 

OBJECTIF DE MESURE

 

Dans cette étude, le Nanovea Testeur Méchanique, en mode FastMap, est utilisé pour cartographier les propriétés mécaniques d'un carreau de sol à des vitesses élevées. Nous présentons la capacité du testeur mécanique Nanovea à effectuer deux cartographies de nanoindentation rapides avec une haute précision et reproductibilité.

 

Conditions d'essai

 

Le testeur mécanique Nanovea a été utilisé pour effectuer une série de nanoindentations avec le mode FastMap sur un carrelage à l'aide d'un pénétrateur Berkovich. Les paramètres de test sont résumés ci-dessous pour les deux matrices d'indent créées.

 

Tableau 1 : Résumé des paramètres de test.

 

RÉSULTATS ET DISCUSSION 

 

Figure 1 : Vue 2D et 3D de la cartographie de dureté à 625 empreintes.

 

 

 

Figure 2 : Micrographie d’une matrice à 625 empreintes présentant le grain.

 

 

Une matrice de 625 empreintes a été réalisée sur un écran de 0,20 mm.2 zone avec un gros grain visible présent. Ce grain (figure 2) présentait une dureté moyenne inférieure à la surface globale du carreau. Le logiciel mécanique Nanovea permet à l'utilisateur de voir la carte de distribution de dureté en modes 2D et 3D, illustrée à la figure 1. Grâce au contrôle de position de haute précision de la platine d'échantillonnage, le logiciel permet aux utilisateurs de cibler des zones telles que celles-ci pour une analyse en profondeur. cartographie des propriétés mécaniques.

Figure 3 : Vue 2D et 3D de la cartographie de dureté à 1 600 empreintes.

 

 

Figure 4 : Micrographie d’une matrice de 1 600 retraits.

 

 

Une matrice de 1600 empreintes a également été créée sur le même carreau pour mesurer l'homogénéité de la surface. Là encore l'utilisateur a la possibilité de voir la répartition de la dureté en mode 3D ou 2D (Figure 3) ainsi que l'image au microscope de la surface indentée. Sur la base de la distribution de dureté présentée, on peut conclure que le matériau est poreux en raison de la dispersion uniforme des points de données de dureté élevée et faible.

Comparé aux procédures conventionnelles de nanoindentation, le mode FastMap dans cette étude prend beaucoup moins de temps et est plus rentable. Il permet une cartographie quantitative rapide des propriétés mécaniques, notamment la dureté et le module d'Young, et fournit une solution pour la détection des grains et la cohérence des matériaux, essentielles au contrôle qualité d'une variété de matériaux dans la production de masse.

 

 

CONCLUSION

 

Dans cette étude, nous avons présenté la capacité du testeur mécanique Nanovea à effectuer une cartographie de nanoindentation rapide et précise à l'aide du mode FastMap. Les cartes de propriétés mécaniques sur les carreaux de céramique utilisent le contrôle de position (avec une précision de 0,2 µm) des étages et la sensibilité du module de force pour détecter les grains de surface et mesurer l'homogénéité d'une surface à grande vitesse.

Les paramètres de test utilisés dans cette étude ont été déterminés en fonction de la taille de la matrice et du matériau de l'échantillon. Une variété de paramètres de test peuvent être choisis pour optimiser la durée totale du cycle d'indentation à 3 secondes par indentation (ou 30 secondes pour 10 indentations).

Les modules Nano et Micro du testeur mécanique Nanovea incluent tous des modes de test d'indentation, de rayures et d'usure conformes aux normes ISO et ASTM, offrant ainsi la gamme de tests la plus large et la plus conviviale disponible dans un seul système. La gamme inégalée de Nanovea est une solution idéale pour déterminer toute la gamme des propriétés mécaniques des revêtements, films et substrats fins ou épais, souples ou durs, y compris la dureté, le module d'Young, la ténacité à la rupture, l'adhésion, la résistance à l'usure et bien d'autres.

De plus, un profileur 3D sans contact et un module AFM en option sont disponibles pour l'imagerie 3D haute résolution de l'indentation, des rayures et des traces d'usure, en plus d'autres mesures de surface telles que la rugosité.

 

Auteur : Duanjie Li, PhD Révisé par Pierre Leroux et Jocelyn Esparza