USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Bewertung von Kratzern und Abnutzungserscheinungen bei industriellen Beschichtungen

INDUSTRIELLE BESCHICHTUNG

BEWERTUNG VON KRATZERN UND VERSCHLEISS MIT EINEM TRIBOMETER

Vorbereitet von

DUANJIE LI, PhD & ANDREA HERRMANN

EINFÜHRUNG

Urethan-Acrylfarbe ist eine schnell trocknende Schutzbeschichtung, die in einer Vielzahl industrieller Anwendungen wie Fußboden- und Autolackierung und anderen eingesetzt wird. Als Bodenfarbe kann sie in Bereichen eingesetzt werden, die stark begangen und befahren werden, z. B. Gehwege, Bordsteine und Parkplätze.

BEDEUTUNG VON KRATZ- UND VERSCHLEISSTESTS FÜR DIE QUALITÄTSKONTROLLE

Traditionell wurden Taber-Abriebtests durchgeführt, um die Verschleißfestigkeit von Acryl-Urethan-Bodenbelägen gemäß der Norm ASTM D4060 zu bewerten. In der Norm heißt es jedoch: "Bei einigen Materialien können Abriebtests mit dem Taber Abraser aufgrund von Änderungen der Abriebeigenschaften des Rades während des Tests Schwankungen unterliegen. "1 Dies kann zu einer schlechten Reproduzierbarkeit der Testergebnisse führen und den Vergleich der von verschiedenen Labors gemeldeten Werte erschweren. Darüber hinaus wird bei den Taber-Abriebtests die Abriebfestigkeit als Gewichtsverlust bei einer bestimmten Anzahl von Abriebzyklen berechnet. Acryl-Urethan-Bodenfarben haben jedoch eine empfohlene Trockenschichtdicke von 37,5-50 μm2.

Der aggressive Abrieb durch den Taber Abraser kann die Acryl-Urethan-Beschichtung schnell abnutzen und zu einem Massenverlust des Substrats führen, was zu erheblichen Fehlern bei der Berechnung des Gewichtsverlusts der Farbe führt. Die Implantation von Schleifpartikeln in den Lack während des Abriebtests trägt ebenfalls zu Fehlern bei. Daher ist eine gut kontrollierte, quantifizierbare und zuverlässige Messung von entscheidender Bedeutung, um eine reproduzierbare Bewertung der Abnutzung des Lacks zu gewährleisten. Darüber hinaus ist die Kratzertest ermöglicht es den Benutzern, vorzeitige Klebstoff-/Kohäsionsfehler in realen Anwendungen zu erkennen.

MESSZIEL

In dieser Studie stellen wir NANOVEA vor Tribometer und Mechanische Prüfgeräte eignen sich ideal zur Bewertung und Qualitätskontrolle von Industriebeschichtungen.

Mit dem NANOVEA Tribometer wird der Abnutzungsprozess von Acryl-Urethan-Fußbodenlacken mit verschiedenen Decklacken kontrolliert und überwacht simuliert. Mit Hilfe von Mikrokratztests wird die Belastung gemessen, die erforderlich ist, um ein kohäsives oder adhäsives Versagen des Lacks zu verursachen.

NANOVEA T100

Das kompakte pneumatische Tribometer

NANOVEA PB1000

Das mechanische Prüfgerät mit großer Plattform

TESTVORGANG

In dieser Studie werden vier handelsübliche Acrylbodenbeschichtungen auf Wasserbasis bewertet, die dieselbe Grundierung (Basecoat) und verschiedene Deckbeschichtungen mit derselben Rezeptur aufweisen, wobei die Additivmischungen zur Verbesserung der Haltbarkeit geringfügig geändert wurden. Diese vier Beschichtungen werden als Muster A, B, C und D bezeichnet.

ABNUTZUNGSTEST

Das NANOVEA Tribometer wurde zur Bewertung des tribologischen Verhaltens, z. B. Reibungskoeffizient, COF und Verschleißfestigkeit, eingesetzt. Auf die getesteten Lacke wurde eine SS440-Kugelspitze (Durchmesser 6 mm, Güteklasse 100) aufgetragen. Der COF wurde vor Ort aufgezeichnet. Die Verschleißrate K wurde mithilfe der Formel K=V/(F×s)=A/(F×n) bewertet, wobei V das verschlissene Volumen, F die normale Belastung, s die Gleitstrecke und A ist die Querschnittsfläche der Verschleißspur und n ist die Anzahl der Umdrehungen. Oberflächenrauheit und Verschleißspurprofile wurden von NANOVEA bewertet Optisches Profilometerund die Morphologie der Verschleißspuren wurde mit einem optischen Mikroskop untersucht.

PARAMETER DER VERSCHLEISSPRÜFUNG

NORMALE KRAFT

20 N

SPEED

15 m/min

TESTDAUER

100, 150, 300 und 800 Zyklen

SCRATCH TEST

Mit dem NANOVEA-Mechanikprüfgerät, das mit einer Rockwell-C-Diamantnadel (Radius 200 μm) ausgestattet ist, wurden die Lackproben im Micro Scratch Tester-Modus unter progressiver Belastung geritzt. Es wurden zwei Endbelastungen verwendet: 5 N Endlast zur Untersuchung der Ablösung der Farbe vom Primer und 35 N zur Untersuchung der Ablösung des Primers von den Metallsubstraten. Um die Reproduzierbarkeit der Ergebnisse zu gewährleisten, wurden an jeder Probe drei Tests unter denselben Bedingungen durchgeführt.

Panoramabilder der gesamten Kratzspuren wurden automatisch erstellt, und die kritischen Bruchstellen wurden von der Systemsoftware mit den aufgebrachten Lasten korreliert. Diese Softwarefunktion erleichtert es den Anwendern, die Kratzspuren jederzeit zu analysieren, anstatt die kritische Last unmittelbar nach den Kratztests unter dem Mikroskop bestimmen zu müssen.

SCRATCH-TEST-PARAMETER

LADUNGSTYPProgressiv
ANFANGSLADUNG0,01 mN
ENDLADUNG5 N / 35 N
LADUNGSVERFAHREN10 / 70 N/min
SCRATCH LENGTH3 mm
KREUZGESCHWINDIGKEIT, dx/dt6,0 mm/min
EINDRINGKÖRPERGEOMETRIE120º Kegel
INDENTER MATERIAL (Spitze)Diamant
RADIUS DER EINDRINGKÖRPERSPITZE200 μm

ERGEBNISSE DER VERSCHLEISSPRÜFUNG

An jeder Probe wurden vier Stift-auf-Scheibe-Verschleißtests mit unterschiedlichen Umdrehungszahlen (100, 150, 300 und 800 Zyklen) durchgeführt, um die Entwicklung des Verschleißes zu beobachten. Die Oberflächenmorphologie der Proben wurde mit einem berührungslosen NANOVEA 3D-Profiler gemessen, um die Oberflächenrauheit vor der Durchführung der Verschleißtests zu quantifizieren. Alle Proben wiesen eine vergleichbare Oberflächenrauhigkeit von etwa 1 μm auf, wie in ABBILDUNG 1 dargestellt. Die COF wurde während der Verschleißtests vor Ort aufgezeichnet, wie in ABBILDUNG 2 dargestellt. ABBILDUNG 4 zeigt die Entwicklung der Verschleißspuren nach 100, 150, 300 und 800 Zyklen, und ABBILDUNG 3 fasst die durchschnittliche Verschleißrate der verschiedenen Proben in den verschiedenen Phasen des Verschleißprozesses zusammen.

 

Im Vergleich zu einem COF-Wert von ~0,07 für die anderen drei Proben weist Probe A zu Beginn einen viel höheren COF-Wert von ~0,15 auf, der allmählich ansteigt und nach 300 Verschleißzyklen bei ~0,3 stabil wird. Ein solch hoher COF beschleunigt den Abnutzungsprozess und erzeugt eine beträchtliche Menge an Lackresten, wie in ABBILDUNG 4 zu sehen ist - die Deckschicht von Probe A wurde bereits bei den ersten 100 Umdrehungen entfernt. Wie in ABBILDUNG 3 dargestellt, weist Probe A die höchste Verschleißrate von ~5 μm2/N in den ersten 300 Zyklen auf, die aufgrund der besseren Verschleißfestigkeit des Metallsubstrats leicht auf ~3,5 μm2/N abnimmt. Die Deckschicht von Probe C beginnt nach 150 Verschleißzyklen zu versagen, wie in ABBILDUNG 4 dargestellt, was auch durch den Anstieg der COF in ABBILDUNG 2 angezeigt wird.

 

Im Vergleich dazu zeigen Probe B und Probe D verbesserte tribologische Eigenschaften. Probe B behält während des gesamten Tests einen niedrigen COF bei - der COF steigt leicht von ~0,05 auf ~0,1 an. Ein solcher Schmiereffekt erhöht die Verschleißfestigkeit erheblich - die Deckschicht bietet auch nach 800 Verschleißzyklen noch einen besseren Schutz als die darunter liegende Grundierung. Die niedrigste durchschnittliche Abnutzungsrate von nur ~0,77 μm2/N wird für Probe B bei 800 Zyklen gemessen. Die Deckschicht von Probe D beginnt sich nach 375 Zyklen abzulösen, wie der abrupte Anstieg der COF in ABBILDUNG 2 zeigt. Die durchschnittliche Verschleißrate von Probe D beträgt ~1,1 μm2/N bei 800 Zyklen.

 

Im Vergleich zu den herkömmlichen Taber-Abriebmessungen liefert das NANOVEA Tribometer gut kontrollierte, quantifizierbare und zuverlässige Verschleißbewertungen, die eine reproduzierbare Bewertung und Qualitätskontrolle von kommerziellen Boden-/Autolacken gewährleisten. Darüber hinaus ermöglicht die Fähigkeit der In-situ-COF-Messungen den Nutzern, die verschiedenen Stadien eines Verschleißprozesses mit der Entwicklung der COF zu korrelieren, was für die Verbesserung des grundlegenden Verständnisses des Verschleißmechanismus und der tribologischen Eigenschaften verschiedener Lackbeschichtungen entscheidend ist.

ABBILDUNG 1: 3D-Morphologie und Rauheit der Lackproben.

ABBILDUNG 2: COF während Pin-on-Disk-Tests.

ABBILDUNG 3: Entwicklung der Verschleißrate verschiedener Lacke.

ABBILDUNG 4: Entwicklung der Verschleißspuren während der Stift-Scheibe-Tests.

SCRATCH-TEST-ERGEBNISSE

ABBILDUNG 5 zeigt das Diagramm der Normalkraft, der Reibungskraft und der wahren Tiefe als Funktion der Kratzerlänge für Probe A als Beispiel. Ein optionales Schallemissionsmodul kann installiert werden, um weitere Informationen zu erhalten. Da die Normalkraft linear ansteigt, sinkt die Eindringspitze allmählich in die geprüfte Probe ein, was sich in der progressiven Zunahme der wahren Tiefe widerspiegelt. Die Veränderung der Steigung der Kurven für die Reibungskraft und die tatsächliche Tiefe kann als eine der Anzeichen für das Auftreten von Beschichtungsfehlern verwendet werden.

ABBILDUNG 5: Normalkraft, Reibungskraft und wahre Tiefe als Funktion der Kratzlänge für Kratztest von Probe A mit einer maximalen Belastung von 5 N.

ABBILDUNG 6 und ABBILDUNG 7 zeigen die vollständigen Kratzer aller vier getesteten Lackproben mit einer maximalen Belastung von 5 N bzw. 35 N. Probe D benötigte eine höhere Belastung von 50 N, um die Grundierung abzulösen. Die Kratztests bei 5 N Endlast (ABBILDUNG 6) bewerten das kohäsive/adhäsive Versagen des Decklacks, während die Kratztests bei 35 N (ABBILDUNG 7) die Delaminierung der Grundierung bewerten. Die Pfeile in den Schliffbildern zeigen den Punkt an, an dem die Deckschicht oder die Grundierung beginnt, sich vollständig von der Grundierung oder dem Substrat zu lösen. Die Belastung an diesem Punkt, die so genannte kritische Last (Critical Load, Lc), wird zum Vergleich der Kohäsions- oder Adhäsionseigenschaften der Farbe verwendet, wie in Tabelle 1 zusammengefasst.

 

Es ist offensichtlich, dass die Lackprobe D die beste Grenzflächenhaftung aufweist - mit den höchsten Lc-Werten von 4,04 N bei der Ablösung des Lacks und 36,61 N bei der Ablösung des Primers. Probe B weist die zweitbeste Kratzfestigkeit auf. Aus der Kratzanalyse geht hervor, dass die Optimierung der Lackrezeptur entscheidend für das mechanische Verhalten, genauer gesagt für die Kratzfestigkeit und die Haftungseigenschaften von Acrylbodenlacken ist.

Tabelle 1: Zusammenfassung der kritischen Belastungen.

ABBILDUNG 6: Mikroskopische Aufnahmen eines vollständigen Kratzers mit einer maximalen Belastung von 5 N.

ABBILDUNG 7: Mikroskopische Aufnahmen eines vollständigen Kratzers mit einer maximalen Belastung von 35 N.

SCHLUSSFOLGERUNG

Im Vergleich zu den herkömmlichen Taber-Abriebmessungen sind der NANOVEA Mechanical Tester und das Tribometer hervorragende Werkzeuge für die Bewertung und Qualitätskontrolle von kommerziellen Boden- und Automobilbeschichtungen. Der NANOVEA Mechanical Tester kann im Scratch-Modus Adhäsions-/Kohäsionsprobleme in einem Beschichtungssystem erkennen. Das NANOVEA Tribometer bietet eine gut kontrollierte, quantifizierbare und wiederholbare tribologische Analyse der Verschleißfestigkeit und des Reibungskoeffizienten der Beschichtungen.

 

Auf der Grundlage der umfassenden tribologischen und mechanischen Analysen der in dieser Studie getesteten wasserbasierten Acrylbodenbeschichtungen zeigen wir, dass Probe B die niedrigste COF- und Verschleißrate und die zweitbeste Kratzfestigkeit aufweist, während Probe D die beste Kratzfestigkeit und die zweitbeste Verschleißfestigkeit zeigt. Diese Bewertung ermöglicht es uns, den besten Kandidaten für die Anforderungen in verschiedenen Anwendungsumgebungen zu bewerten und auszuwählen.

 

Die Nano- und Mikromodule des NANOVEA-Mechanik-Testers beinhalten alle ISO- und ASTM-konforme Eindring-, Kratz- und Verschleißprüfungsmodi und bieten damit das breiteste Prüfspektrum für die Lackbewertung in einem einzigen Modul. Das NANOVEA Tribometer bietet präzise und wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi, wobei optionale Module für Hochtemperaturverschleiß, Schmierung und Tribokorrosion in einem vorintegrierten System erhältlich sind. Die unübertroffene Produktpalette von NANOVEA ist die ideale Lösung für die Bestimmung der gesamten Bandbreite mechanischer/tribologischer Eigenschaften von dünnen oder dicken, weichen oder harten Beschichtungen, Filmen und Substraten, einschließlich Härte, E-Modul, Bruchzähigkeit, Haftung, Verschleißfestigkeit und vielen anderen. Optional sind berührungslose optische NANOVEA-Profiler für die hochauflösende 3D-Darstellung von Kratzern und Verschleißspuren sowie für andere Oberflächenmessungen wie z. B. die Rauheit erhältlich.

UND NUN ZU IHRER BEWERBUNG

Kommentar