USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Pharmazeutische Tabletten Oberflächenrauhigkeitsprüfung

Pharmazeutische Tabletten

Prüfung der Rauheit mit 3d-Profilometern

Autor:

Jocelyn Esparza

Einführung

Pharmazeutische Tabletten sind heute die am häufigsten verwendeten medizinischen Darreichungsformen. Jede Tablette besteht aus einer Kombination von Wirkstoffen (den chemischen Stoffen, die eine pharmakologische Wirkung haben) und inaktiven Stoffen (Sprengstoff, Bindemittel, Gleitmittel, Verdünnungsmittel - meist in Form von Pulver). Die aktiven und inaktiven Substanzen werden dann komprimiert oder zu einem Feststoff geformt. Anschließend werden die Tabletten je nach Herstellerangaben entweder überzogen oder nicht überzogen.

Um wirksam zu sein, müssen Tablettenüberzüge den feinen Konturen der eingeprägten Logos oder Schriftzeichen auf den Tabletten folgen, sie müssen stabil und robust genug sein, um die Handhabung der Tablette zu überstehen, und sie dürfen nicht dazu führen, dass die Tabletten während des Beschichtungsprozesses aneinander kleben. Derzeitige Tabletten haben in der Regel einen Überzug auf Polysaccharid- und Polymerbasis, der Stoffe wie Pigmente und Weichmacher enthält. Die beiden gängigsten Arten von Tablettenüberzügen sind Filmüberzüge und Zuckerüberzüge. Im Vergleich zu Zuckerüberzügen sind Filmüberzüge weniger sperrig, haltbarer und weniger zeitaufwändig in der Herstellung und Anwendung. Allerdings ist es für Filmüberzüge schwieriger, das Aussehen der Tabletten zu verbergen.

Tablettenüberzüge sind wichtig für den Schutz vor Feuchtigkeit, die Maskierung des Geschmacks der Inhaltsstoffe und die Erleichterung des Schluckens der Tabletten. Noch wichtiger ist, dass der Tablettenüberzug den Ort und die Geschwindigkeit der Freisetzung des Arzneimittels steuert.

MESSZIEL

In dieser Anwendung verwenden wir die NANOVEA Optischer Profiler und fortschrittlicher Mountains-Software zur Messung und Quantifizierung der Topografie verschiedener gepresster Markenpillen (1 beschichtete und 2 unbeschichtete), um deren Oberflächenrauheit zu vergleichen.

Es wird davon ausgegangen, dass Advil (beschichtet) aufgrund der Schutzschicht die geringste Oberflächenrauhigkeit aufweist.

NANOVEA

HS2000

Testbedingungen

Drei Chargen gepresster pharmazeutischer Markentabletten wurden mit dem Nanovea HS2000 gescannt.
mit Hochgeschwindigkeits-Zeilensensor zur Messung verschiedener Oberflächenrauheitsparameter nach ISO 25178.

Scanbereich

2 x 2 mm

Auflösung des seitlichen Scans

5 x 5 μm

Scan-Zeit

4 Sekunden

Proben

Ergebnisse und Diskussion

Nach dem Scannen der Tabletten wurde eine Untersuchung der Oberflächenrauheit mit der fortschrittlichen Mountains-Analysesoftware durchgeführt, um den Oberflächendurchschnitt, den quadratischen Mittelwert und die maximale Höhe jeder Tablette zu berechnen.

Die berechneten Werte stützen die Annahme, dass Advil aufgrund des Schutzüberzugs, der die Inhaltsstoffe umschließt, eine geringere Oberflächenrauheit aufweist. Tylenol weist von allen drei gemessenen Tabletten die höchste Oberflächenrauhigkeit auf.

Es wurde eine 2D- und 3D-Höhenkarte der Oberflächentopografie jeder Tablette erstellt, die die gemessenen Höhenverteilungen zeigt. Von den fünf Tabletten wurde eine ausgewählt, um die Höhenkarten für jede Marke darzustellen. Diese Höhenkarten sind ein hervorragendes Werkzeug für die visuelle Erkennung von abstehenden Oberflächenmerkmalen wie Vertiefungen oder Erhebungen.

Schlussfolgerung

In dieser Studie haben wir die Oberflächenrauheit von drei gepressten pharmazeutischen Markentabletten analysiert und verglichen: Advil, Tylenol und Excedrin. Advil wies die geringste durchschnittliche Oberflächenrauheit auf. Dies ist auf die orangefarbene Beschichtung zurückzuführen, die das Medikament umgibt. Bei Excedrin und Tylenol hingegen fehlt die Beschichtung, dennoch unterscheiden sich die Oberflächenrauhigkeiten voneinander. Tylenol wies von allen untersuchten Tabletten die höchste durchschnittliche Oberflächenrauigkeit auf.

Die Verwendung des NANOVEA HS2000 mit Hochgeschwindigkeits-Zeilensensor konnten wir 5 Tabletten in weniger als 1 Minute messen. Dies kann sich bei der Qualitätskontrolle von Hunderten von Tabletten in der heutigen Produktion als nützlich erweisen.

UND NUN ZU IHRER BEWERBUNG

Mikropartikel: Druckfestigkeit und Mikroeindrückung

MIKROPARTIKEL

DRUCKFESTIGKEIT UND MIKROEINDRÜCKE
DURCH DIE PRÜFUNG VON SALZEN

Autor:
Jorge Ramirez

Überarbeitet von:
Jocelyn Esparza

EINFÜHRUNG

Die Druckfestigkeit ist für die Qualitätskontrolle bei der Entwicklung und Verbesserung neuer und bestehender Mikropartikel und Mikromerkmale (Säulen und Kugeln) von entscheidender Bedeutung. Mikropartikel haben verschiedene Formen und Größen und können aus Keramik, Glas, Polymeren und Metallen entwickelt werden. Sie werden u. a. für die Verabreichung von Arzneimitteln, die Verbesserung des Lebensmittelgeschmacks und die Formulierung von Beton verwendet. Die Kontrolle der mechanischen Eigenschaften von Mikropartikeln oder Mikromerkmalen ist entscheidend für ihren Erfolg und erfordert die Fähigkeit, ihre mechanische Integrität quantitativ zu charakterisieren.  

BEDEUTUNG DER TIEFE GEGENÜBER DER DRUCKFESTIGKEIT DER LAST

Standard-Druckmessgeräte sind nicht für niedrige Belastungen geeignet und liefern keine ausreichenden Tiefenangaben für Mikropartikel. Durch die Verwendung von Nano- oder Mikroindentationkann die Druckfestigkeit von Nano- oder Mikropartikeln (weich oder hart) genau und präzise gemessen werden.  

MESSZIEL

In diesem Anwendungshinweis messen wir  die Druckfestigkeit von Salz mit die NANOVEA Mechanischer Tester im Modus Mikroeindruck.

NANOVEA

CB500

TESTBEDINGUNGEN

maximale Kraft

30 N

Laderate

60 N/min

Entladegeschwindigkeit

60 N/min

Eindringkörpertyp

Flache Stanze

Stahl | 1mm Durchmesser

Last-Tiefen-Kurven

Ergebnisse und Diskussion

Höhe, Bruchkraft und Festigkeit für Partikel 1 und Partikel 2

Das Versagen der Partikel wurde als der Punkt bestimmt, an dem die anfängliche Steigung der Kraft-Tiefen-Kurve merklich zu sinken begann, was darauf hinweist, dass das Material einen Fließpunkt erreicht hat und den aufgebrachten Druckkräften nicht mehr standhalten kann. Sobald die Fließgrenze überschritten ist, beginnt die Eindringtiefe für die Dauer der Belastungsperiode exponentiell zuzunehmen. Diese Verhaltensweisen sind zu erkennen in Last-Tiefen-Kurven für beide Proben.

SCHLUSSFOLGERUNG

Abschließend haben wir gezeigt, wie die NANOVEA Mechanischer Tester ist ein hervorragendes Werkzeug für die Prüfung der Druckfestigkeit von Mikropartikeln. Obwohl die geprüften Partikel aus demselben Material bestehen, wird vermutet, dass die in dieser Studie gemessenen unterschiedlichen Versagenspunkte wahrscheinlich auf bereits vorhandene Mikrorisse in den Partikeln und unterschiedliche Partikelgrößen zurückzuführen sind. Es sei darauf hingewiesen, dass für spröde Materialien akustische Emissionssensoren zur Verfügung stehen, um den Beginn der Rissausbreitung während einer Prüfung zu messen.


Die
NANOVEA Mechanischer Tester bietet Tiefenverschiebungsauflösungen bis in den Subnanometerbereich,
Das macht es zu einem großartigen Werkzeug für die Untersuchung von sehr zerbrechlichen Mikropartikeln oder Merkmalen. Für weiche und zerbrechliche
Materialien, Belastungen bis zu 0,1 mN sind mit unserem Nano-Eindringmodul möglich

UND NUN ZU IHRER BEWERBUNG

Kugellager: Studie zur Verschleißfestigkeit bei hoher Krafteinwirkung



EINFÜHRUNG

Ein Kugellager verwendet Kugeln, um die Rotationsreibung zu reduzieren und radiale und axiale Belastungen zu unterstützen. Die rollenden Kugeln zwischen den Lagerringen erzeugen einen viel niedrigeren Reibungskoeffizienten (COF) im Vergleich zu zwei gegeneinander gleitenden flachen Oberflächen. Kugellager sind häufig hohen Kontaktspannungen, Verschleiß und extremen Umweltbedingungen wie hohen Temperaturen ausgesetzt. Daher ist die Verschleißfestigkeit der Kugeln unter hohen Belastungen und extremen Umgebungsbedingungen von entscheidender Bedeutung für die Verlängerung der Lebensdauer des Kugellagers, um Kosten und Zeit für Reparaturen und Austausch zu reduzieren.
Kugellager sind in fast allen Anwendungen zu finden, in denen bewegliche Teile beteiligt sind. Sie werden häufig in der Transportindustrie wie der Luft- und Raumfahrt und im Automobilbereich sowie in der Spielzeugindustrie eingesetzt, die Artikel wie Fidget Spinner und Skateboards herstellt.

BEWERTUNG DES KUGELLAGERVERSCHLEISSES BEI HOHEN BELASTUNGEN

Kugellager können aus einer umfangreichen Liste von Materialien hergestellt werden. Zu den häufig verwendeten Materialien gehören Metalle wie Edelstahl und Chromstahl oder Keramiken wie Wolframkarbid (WC) und Siliziumnitrid (Si3n4). Um sicherzustellen, dass die hergestellten Kugellager die erforderliche Verschleißfestigkeit aufweisen, die für die jeweiligen Einsatzbedingungen ideal ist, sind zuverlässige tribologische Untersuchungen unter hohen Belastungen erforderlich. Tribologische Tests helfen dabei, das Verschleißverhalten verschiedener Kugellager auf kontrollierte und überwachte Weise zu quantifizieren und gegenüberzustellen, um den besten Kandidaten für die Zielanwendung auszuwählen.

MESSZIEL

In dieser Studie stellen wir einen Nanovea vor Tribometer als ideales Hilfsmittel zum Vergleich der Verschleißfestigkeit verschiedener Kugellager unter hoher Belastung.

Abbildung 1: Aufbau des Lagertests.

PRÜFVERFAHREN

Der Reibungskoeffizient COF und die Verschleißfestigkeit der Kugellager aus verschiedenen Materialien wurden mit einem Nanovea-Tribometer bewertet. Als Gegenmaterial wurde Schleifpapier der Körnung P100 verwendet. Die Verschleißspuren der Kugellager wurden mittels a untersucht Nanovea 3D Non-Contact Profiler nach Abschluss der Verschleißtests. Die Testparameter sind in Tabelle 1 zusammengefasst. Die Verschleißrate, Kwurde anhand der folgenden Formel bewertet K=V/(F×s), wobei V ist das abgenutzte Volumen, F ist die Normalbelastung und s ist die Gleitstrecke. Ballabnutzungsnarben wurden bewertet von a Nanovea 3D-Berührungsloser Profiler zur Gewährleistung einer präzisen Messung des Verschleißvolumens.
Die automatisierte motorisierte radiale Positionierungsfunktion ermöglicht es dem Tribometer, den Radius der Verschleißspur während der Dauer eines Tests zu verringern. Dieser Testmodus wird Spiraltest genannt und stellt sicher, dass das Kugellager immer auf einer neuen Oberfläche des Schleifpapiers gleitet (Abbildung 2). Es verbessert die Wiederholbarkeit der Verschleißfestigkeitsprüfung der Kugel erheblich. Der fortschrittliche 20-Bit-Encoder für die interne Geschwindigkeitssteuerung und der 16-Bit-Encoder für die externe Positionssteuerung liefern präzise Echtzeit-Geschwindigkeits- und Positionsinformationen und ermöglichen eine kontinuierliche Anpassung der Drehzahl, um eine konstante lineare Gleitgeschwindigkeit am Kontakt zu erreichen.
Bitte beachten Sie, dass in dieser Studie Schleifpapier der Körnung P100 verwendet wurde, um das Verschleißverhalten zwischen verschiedenen Kugelmaterialien zu vereinfachen, und dass es durch jede andere Materialoberfläche ersetzt werden kann. Jedes feste Material kann ersetzt werden, um die Leistung einer Vielzahl von Materialkupplungen unter tatsächlichen Anwendungsbedingungen, beispielsweise in Flüssigkeiten oder Schmiermitteln, zu simulieren.

Abbildung 2: Darstellung der Spiraldurchgänge für das Kugellager auf dem Schleifpapier.
Tabelle 1: Prüfparameter der Verschleißmessungen.

 

ERGEBNISSE & DISKUSSION

Die Verschleißrate ist ein entscheidender Faktor für die Lebensdauer des Kugellagers, während ein niedriger COF wünschenswert ist, um die Leistung und Effizienz des Lagers zu verbessern. Abbildung 3 vergleicht die Entwicklung des COF für verschiedene Kugellager im Vergleich zum Sandpapier während der Tests. Die Cr-Stahlkugel weist während des Verschleißtests einen erhöhten COF von ~0,4 auf, verglichen mit ~0,32 und ~0,28 für SS440- und Al2O3-Kugellager. Andererseits weist die WC-Kugel während des gesamten Verschleißtests einen konstanten COF von ~0,2 auf. Während jedes Tests sind beobachtbare COF-Schwankungen zu beobachten, die auf Vibrationen zurückzuführen sind, die durch die Gleitbewegung der Kugellager auf der rauen Sandpapieroberfläche verursacht werden.

 

Abbildung 3: Entwicklung des COF während der Verschleißtests.

Abbildung 4 und Abbildung 5 vergleichen die Verschleißspuren der Kugellager, nachdem sie mit einem optischen Mikroskop bzw. einem berührungslosen optischen Profilmessgerät von Nanovea gemessen wurden, und Tabelle 2 fasst die Ergebnisse der Verschleißspuranalyse zusammen. Der Nanovea 3D-Profiler ermittelt präzise das Verschleißvolumen der Kugellager und ermöglicht so die Berechnung und den Vergleich der Verschleißraten verschiedener Kugellager. Es ist zu beobachten, dass die Cr-Stahl- und SS440-Kugeln nach den Verschleißtests im Vergleich zu den Keramikkugeln, also Al2O3 und WC, viel größere abgeflachte Verschleißnarben aufweisen. Die Kugeln aus Cr-Stahl und SS440 weisen vergleichbare Verschleißraten von 3,7×10-3 bzw. 3,2×10-3 m3/N·m auf. Im Vergleich dazu zeigt die Al2O3-Kugel eine erhöhte Verschleißfestigkeit mit einer Verschleißrate von 7,2×10-4 m3/N·m. Die WC-Kugel weist im flachen Verschleißbahnbereich kaum kleinere Kratzer auf, was zu einer deutlich reduzierten Verschleißrate von 3,3×10-6 mm3/N·m führt.

Abbildung 4: Verschleißnarben der Kugellager nach den Tests.

Abbildung 5: 3D-Morphologie der Verschleißnarben an den Kugellagern.

Tabelle 2: Verschleißnarbenanalyse der Kugellager.

Abbildung 6 zeigt Mikroskopbilder der Verschleißspuren, die durch die vier Kugellager auf dem Schleifpapier entstehen. Es ist offensichtlich, dass die WC-Kugel die stärkste Verschleißspur erzeugte (fast alle Sandpartikel auf ihrem Weg entfernte) und die beste Verschleißfestigkeit besitzt. Im Vergleich dazu hinterließen die Kugeln aus Cr-Stahl und SS440 eine große Menge Metallabrieb auf der Verschleißspur des Schleifpapiers.
Diese Beobachtungen verdeutlichen erneut die Bedeutung des Nutzens eines Spiraltests. Es stellt sicher, dass das Kugellager immer auf einer neuen Oberfläche des Schleifpapiers gleitet, was die Wiederholbarkeit einer Verschleißfestigkeitsprüfung deutlich verbessert.

Abbildung 6: Verschleißspuren auf dem Schleifpapier an verschiedenen Kugellagern.

SCHLUSSFOLGERUNG

Die Verschleißfestigkeit der Kugellager unter hohem Druck spielt eine entscheidende Rolle für ihre Betriebsleistung. Die Keramikkugellager verfügen über eine deutlich verbesserte Verschleißfestigkeit unter hohen Belastungsbedingungen und reduzieren den Zeit- und Kostenaufwand für die Reparatur oder den Austausch von Lagern. In dieser Studie weist das WC-Kugellager im Vergleich zu Stahllagern eine wesentlich höhere Verschleißfestigkeit auf, was es zu einem idealen Kandidaten für Lageranwendungen macht, bei denen starker Verschleiß auftritt.
Ein Nanovea-Tribometer ist mit einem hohen Drehmoment für Lasten bis zu 2000 N und einem präzisen und kontrollierten Motor für Drehzahlen von 0,01 bis 15.000 U/min ausgestattet. Es bietet wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi, wobei optionale Hochtemperatur-Verschleiß- und Schmiermodule in einem vorintegrierten System verfügbar sind. Dieser unübertroffene Bereich ermöglicht es Benutzern, verschiedene schwere Arbeitsumgebungen der Kugellager zu simulieren, einschließlich hoher Beanspruchung, Verschleiß und hoher Temperatur usw. Es fungiert auch als ideales Werkzeug zur quantitativen Bewertung des tribologischen Verhaltens hochwertiger verschleißfester Materialien unter hohen Belastungen.
Ein berührungsloser 3D-Profiler von Nanovea liefert präzise Verschleißvolumenmessungen und fungiert als Werkzeug zur Analyse der detaillierten Morphologie der Verschleißspuren, was zusätzliche Einblicke in das grundlegende Verständnis der Verschleißmechanismen liefert.

Vorbereitet von
Duanjie Li, PhD, Jonathan Thomas und Pierre Leroux

Dental-Schrauben-Dimensionale-Messung-mit-3d-Profilometer

Zahnärztliche Werkzeuge: Analyse der Dimensionen und der Oberflächenrauhigkeit



EINFÜHRUNG

 

Präzise Abmessungen und optimale Oberflächenrauheit sind für die Funktionalität von Dentalschrauben von entscheidender Bedeutung. Viele Abmessungen von Dentalschrauben erfordern eine hohe Präzision wie Radien, Winkel, Abstände und Stufenhöhen. Das Verständnis der lokalen Oberflächenrauheit ist auch für jedes medizinische Werkzeug oder Teil, das in den menschlichen Körper eingeführt wird, äußerst wichtig, um die Gleitreibung zu minimieren.

 

 

BERÜHRUNGSLOSE PROFILOMETRIE ZUR DIMENSIONALSTUDIE

 

Nanovea Berührungslose 3D-Profiler Verwenden Sie eine auf chromatischem Licht basierende Technologie, um jede Materialoberfläche zu messen: transparent, undurchsichtig, spiegelnd, diffus, poliert oder rau. Im Gegensatz zu einer Touch-Probe-Technik kann die berührungslose Technik innerhalb enger Bereiche messen und verursacht keine intrinsischen Fehler aufgrund von Verformungen, die durch das Drücken der Spitze auf ein weicheres Kunststoffmaterial verursacht werden. Die auf chromatischem Licht basierende Technologie bietet im Vergleich zur Fokusvariationstechnologie auch überlegene Seiten- und Höhengenauigkeiten. Nanovea Profiler können große Flächen ohne Nähte direkt scannen und die Länge eines Teils in wenigen Sekunden profilieren. Aufgrund der Fähigkeit des Profilers, Oberflächen zu messen, ohne dass komplexe Algorithmen die Ergebnisse manipulieren, können Oberflächenmerkmale im Nano- bis Makrobereich und große Oberflächenwinkel gemessen werden.

 

 

MESSZIEL

 

In dieser Anwendung wurde der optische Profiler ST400 von Nanovea verwendet, um eine Zahnschraube entlang von Flach- und Gewindemerkmalen in einer einzigen Messung zu messen. Aus der flachen Fläche wurde die Oberflächenrauheit berechnet und verschiedene Abmessungen der Gewindemerkmale bestimmt.

 

Qualitätskontrolle von Zahnschrauben

Probe einer Zahnschraube, analysiert von NANOVEA Optischer Profiler.

 

Zahnschraubenprobe analysiert.

 

ERGEBNISSE

 

3D-Oberfläche

Die 3D-Ansicht und die Falschfarbenansicht der Zahnschraube zeigen einen flachen Bereich mit auf beiden Seiten beginnendem Gewinde. Es bietet Benutzern ein einfaches Werkzeug, um die Morphologie der Schraube aus verschiedenen Winkeln direkt zu beobachten. Der flache Bereich wurde aus dem vollständigen Scan extrahiert, um seine Oberflächenrauheit zu messen.

 

 

2D-Oberflächenanalyse

Außerdem können Linienprofile aus der Oberfläche extrahiert werden, um eine Querschnittsansicht der Schraube zu zeigen. Die Konturanalyse und Stufenhöhenstudien wurden verwendet, um genaue Abmessungen an einer bestimmten Stelle der Schraube zu messen.

 

 

SCHLUSSFOLGERUNG

 

In dieser Anwendung haben wir die Fähigkeit des Nanovea 3D Non-Contact Profiler demonstriert, die lokale Oberflächenrauheit präzise zu berechnen und großdimensionale Merkmale in einem einzigen Scan zu messen.

Die Daten zeigen eine lokale Oberflächenrauheit von 0,9637 μm. Der Radius der Schraube zwischen den Gewindegängen betrug 1,729 mm und die Gewindegänge hatten eine durchschnittliche Höhe von 0,413 mm. Der durchschnittliche Winkel zwischen den Gewindegängen wurde mit 61,3° ermittelt.

Die hier gezeigten Daten stellen nur einen Teil der in der Analysesoftware verfügbaren Berechnungen dar.

 

Vorbereitet von
Duanjie Li, PhD., Jonathan Thomas und Pierre Leroux

Keramiken: Nanoindentation - Schnelles Mapping zur Kornerkennung

EINFÜHRUNG

 

Nanoindentation hat sich zu einer weit verbreiteten Technik zur Messung des mechanischen Verhaltens von Materialien in kleinen Maßstäben entwickelti ii. Die hochauflösenden Last-Verschiebungs-Kurven einer Nanoindentationsmessung können eine Vielzahl physikalisch-mechanischer Eigenschaften liefern, darunter Härte, Elastizitätsmodul, Kriechen, Bruchzähigkeit und viele andere.

 

 

Bedeutung der schnellen Mapping-Einrückung

 

Ein wesentlicher Engpass für die weitere Popularisierung der Nanoindentationstechnik ist der Zeitaufwand. Eine Kartierung mechanischer Eigenschaften durch herkömmliche Nanoindentationsverfahren kann leicht Stunden dauern, was die Anwendung der Technik in Massenproduktionsindustrien wie Halbleiter, Luft- und Raumfahrt, MEMS, Konsumgüter wie Keramikfliesen und vielen anderen behindert.

Eine schnelle Kartierung kann sich in der Industrie zur Herstellung von Keramikfliesen als unerlässlich erweisen. Die Kartierung von Härte und Elastizitätsmodul über eine einzelne Keramikfliese hinweg kann eine Datenverteilung darstellen, die anzeigt, wie homogen die Oberfläche ist. Weichere Bereiche auf einer Kachel können in dieser Kartierung umrissen werden und Orte zeigen, die anfälliger für Ausfälle durch physische Einwirkungen sind, die täglich in der Wohnung einer Person auftreten. Für Vergleichsstudien können Zuordnungen für verschiedene Fliesentypen und für eine Charge ähnlicher Fliesen zur Messung der Fliesenkonsistenz in Qualitätskontrollprozessen erstellt werden. Die Kombination von Messaufbauten kann mit der schnellen Mapping-Methode sowohl umfangreich als auch genau und effizient sein.

 

MESSZIEL

 

In dieser Studie wird die Nanovea Mechanischer Tester, im FastMap-Modus wird verwendet, um die mechanischen Eigenschaften einer Bodenfliese bei hohen Geschwindigkeiten abzubilden. Wir demonstrieren die Leistungsfähigkeit des Nanovea Mechanical Tester bei der Durchführung von zwei schnellen Nanoindentations-Mappings mit hoher Präzision und Reproduzierbarkeit.

 

Testbedingungen

 

Der Nanovea Mechanical Tester wurde verwendet, um eine Reihe von Nanoindentationen im FastMap-Modus auf einer Bodenfliese mit einem Berkovich-Eindringkörper durchzuführen. Nachfolgend sind die Testparameter für die beiden erstellten Eindruckmatrizen zusammengefasst.

 

Tabelle 1: Zusammenfassung der Testparameter.

 

ERGEBNISSE & DISKUSSION 

 

Abbildung 1: 2D- und 3D-Ansicht der 625-Eindruck-Härtekartierung.

 

 

 

Abbildung 2: Mikroaufnahme einer Matrix mit 625 Vertiefungen, die die Körnung zeigt.

 

 

Eine 625-Indent-Matrix wurde auf einem 0,20-mm-Gerät durchgeführt2 Bereich mit einer großen sichtbaren Körnung vorhanden. Diese Körnung (Abbildung 2) hatte eine durchschnittliche Härte, die geringer war als die Gesamtoberfläche der Fliese. Mit der Nanovea Mechanical-Software kann der Benutzer die Härteverteilungskarte im 2D- und 3D-Modus anzeigen, die in Abbildung 1 dargestellt ist. Mithilfe der hochpräzisen Positionssteuerung des Probentisches ermöglicht die Software dem Benutzer, Bereiche wie diese in der Tiefe anzuvisieren Kartierung mechanischer Eigenschaften.

Abbildung 3: 2D- und 3D-Ansicht der 1600-Eindruck-Härtekartierung.

 

 

Abbildung 4: Mikroskopaufnahme einer 1600-Einrückungsmatrix.

 

 

Auf derselben Fliese wurde auch eine 1600-Indent-Matrix erstellt, um die Homogenität der Oberfläche zu messen. Auch hier hat der Benutzer die Möglichkeit, die Härteverteilung im 3D- oder 2D-Modus (Abbildung 3) sowie das Mikroskopbild der vertieften Oberfläche zu sehen. Basierend auf der dargestellten Härteverteilung kann aufgrund der gleichmäßigen Streuung der Datenpunkte mit hoher und niedriger Härte geschlossen werden, dass das Material porös ist.

Im Vergleich zu herkömmlichen Nanoindentationsverfahren ist der FastMap-Modus in dieser Studie wesentlich weniger zeitaufwändig und kostengünstiger. Es ermöglicht eine schnelle quantitative Kartierung mechanischer Eigenschaften, einschließlich Härte und Elastizitätsmodul, und bietet eine Lösung zur Kornerkennung und Materialkonsistenz, die für die Qualitätskontrolle einer Vielzahl von Materialien in der Massenproduktion von entscheidender Bedeutung ist.

 

 

SCHLUSSFOLGERUNG

 

In dieser Studie haben wir die Leistungsfähigkeit des Nanovea Mechanical Tester bei der Durchführung einer schnellen und präzisen Nanoindentationskartierung im FastMap-Modus demonstriert. Die Karten der mechanischen Eigenschaften auf der Keramikfliese nutzen die Positionskontrolle (mit einer Genauigkeit von 0,2 µm) der Tische und die Empfindlichkeit des Kraftmoduls, um Oberflächenkörner zu erkennen und die Homogenität einer Oberfläche mit hoher Geschwindigkeit zu messen.

Die in dieser Studie verwendeten Testparameter wurden anhand der Größe der Matrix und des Probenmaterials bestimmt. Es können verschiedene Testparameter ausgewählt werden, um die gesamte Eindringzykluszeit auf 3 Sekunden pro Eindringung (oder 30 Sekunden für alle 10 Eindringungen) zu optimieren.

Die Nano- und Mikromodule des Nanovea Mechanical Tester umfassen alle ISO- und ASTM-konforme Eindring-, Kratz- und Verschleißtestmodi und bieten so das umfassendste und benutzerfreundlichste Testspektrum, das in einem einzigen System verfügbar ist. Das unübertroffene Sortiment von Nanovea ist eine ideale Lösung zur Bestimmung des gesamten Spektrums mechanischer Eigenschaften von dünnen oder dicken, weichen oder harten Beschichtungen, Filmen und Substraten, einschließlich Härte, Elastizitätsmodul, Bruchzähigkeit, Haftung, Verschleißfestigkeit und vielen anderen.

Darüber hinaus sind ein optionaler berührungsloser 3D-Profiler und ein AFM-Modul für die hochauflösende 3D-Bildgebung von Eindrücken, Kratzern und Verschleißspuren zusätzlich zu anderen Oberflächenmessungen wie Rauheit erhältlich.

 

Autor: Duanjie Li, PhD Überarbeitet von Pierre Leroux und Jocelyn Esparza