USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Catégorie : Profilométrie | Texture et grain

 

Analyse de surface grenaillée

ANALYSE DE SURFACE GRAPPEE

UTILISATION DU PROFILOMÈTRE 3D SANS CONTACT

Préparé par

CRAIG LEISING

INTRODUCTION

Le grenaillage est un processus dans lequel un substrat est bombardé avec des billes sphériques de métal, de verre ou de céramique - communément appelées "grenaille" - à une force destinée à induire une plasticité sur la surface. L'analyse des caractéristiques avant et après le grenaillage fournit des informations cruciales pour améliorer la compréhension et le contrôle du processus. La rugosité de la surface et la zone de couverture des fossettes laissées par le tir sont des aspects particulièrement intéressants.

Importance du profilomètre 3D sans contact pour l'analyse de surface grenaillée

Contrairement aux profilomètres à contact traditionnels, traditionnellement utilisés pour l'analyse des surfaces grenaillées, la mesure 3D sans contact fournit une image 3D complète pour offrir une compréhension plus complète de la zone de couverture et de la topographie de la surface. Sans fonctionnalités 3D, une inspection s’appuiera uniquement sur des informations 2D, insuffisantes pour caractériser une surface. Comprendre la topographie, la zone de couverture et la rugosité en 3D constitue la meilleure approche pour contrôler ou améliorer le processus de grenaillage. NANOVEA Profilomètres 3D sans contact utilise la technologie Chromatic Light avec une capacité unique à mesurer les angles abrupts trouvés sur les surfaces usinées et martelées. De plus, lorsque d'autres techniques ne parviennent pas à fournir des données fiables en raison du contact de la sonde, de la variation de la surface, de l'angle ou de la réflectivité, les profilomètres NANOVEA réussissent.

OBJECTIF DE MESURE

Dans cette application, le profilomètre sans contact NANOVEA ST400 est utilisé pour mesurer la matière première et deux surfaces martelées différemment pour un examen comparatif. Il existe une liste interminable de paramètres de surface qui peuvent être calculés automatiquement après le scan de surface 3D. Ici, nous examinerons la surface 3D et sélectionnerons les zones d'intérêt pour une analyse plus approfondie, y compris la quantification et l'étude de la rugosité, des fossettes et de la surface.

NANOVEA

ST400

L'ÉCHANTILLON

RÉSULTATS

SURFACE EN ACIER

ISO 25178 PARAMÈTRES DE RUGOSITÉ 3D

SA 0,399 μm Rugosité moyenne
Sq 0,516 μm Rugosité RMS
Sz 5,686 μm Pic à vallée maximum
Sp 2,976 μm Hauteur maximale du pic
Sv 2,711 μm Profondeur maximale de la fosse
UGS 3.9344 Kurtosis
Ssk -0.0113 Skewness
Sal 0,0028 millimètres Longueur d'auto-corrélation
Str 0.0613 Rapport d'aspect des textures
Sdar 26,539 mm² Superficie
Svk 0,589 μm Profondeur réduite de la vallée
 

RÉSULTATS

SURFACE MARTELÉE 1

SURFACE COUVERTE
98.105%

ISO 25178 PARAMÈTRES DE RUGOSITÉ 3D

Sa 4.102 μm Rugosité moyenne
Sq 5,153 μm Rugosité RMS
Sz 44,975 μm Pic à vallée maximum
Sp 24,332 μm Hauteur maximale du pic
Sv 20,644 μm Profondeur maximale de la fosse
UGS 3.0187 Kurtosis
Ssk 0.0625 Skewness
Sal 0,0976 mm Longueur d'auto-corrélation
Str 0.9278 Rapport d'aspect des textures
Sdar 29,451 mm² Superficie
Svk 5,008 μm Profondeur réduite de la vallée

RÉSULTATS

SURFACE MARTELÉE 2

SURFACE COUVERTE 97.366%

ISO 25178 PARAMÈTRES DE RUGOSITÉ 3D

Sa 4.330 μm Rugosité moyenne
Sq 5,455 μm Rugosité RMS
Sz 54,013 μm Pic à vallée maximum
Sp 25,908 μm Hauteur maximale du pic
Sv 28.105 μm Profondeur maximale de la fosse
UGS 3.0642 Kurtosis
Ssk 0.1108 Skewness
Sal 0,1034 mm Longueur d'auto-corrélation
Str 0.9733 Rapport d'aspect des textures
Sdar 29,623 mm² Superficie
Svk 5,167 μm Profondeur réduite de la vallée

CONCLUSION

Dans cette application d'analyse de surface grenaillée, nous avons démontré comment le profileur 3D sans contact NANOVEA ST400 caractérise précisément à la fois la topographie et les détails nanométriques d'une surface grenaillée. Il est évident que la Surface 1 et la Surface 2 ont un impact significatif sur tous les paramètres rapportés ici par rapport à la matière première. Un simple examen visuel des images révèle les différences entre les surfaces. Ceci est encore confirmé en observant la zone de couverture et les paramètres énumérés. Par rapport à la surface 2, la surface 1 présente une rugosité moyenne inférieure (Sa), des bosses moins profondes (Sv) et une surface réduite (Sdar), mais une zone de couverture légèrement supérieure.

À partir de ces mesures de surface 3D, les zones d'intérêt peuvent être facilement identifiées et soumises à une gamme complète de mesures, y compris la rugosité, la finition, la texture, la forme, la topographie, la planéité, le gauchissement, la planéité, le volume, la hauteur de marche et autres. Une coupe 2D peut être rapidement choisie pour une analyse détaillée. Ces informations permettent une étude complète des surfaces grenaillées, en utilisant une gamme complète de ressources de mesure de surface. Des domaines d'intérêt spécifiques pourraient être examinés plus en détail avec un module AFM intégré. Les profilomètres 3D NANOVEA offrent des vitesses allant jusqu'à 200 mm/s. Ils peuvent être personnalisés en termes de taille, de vitesse, de capacités de numérisation et peuvent même être conformes aux normes de salle blanche de classe 1. Des options telles que le convoyeur d'indexation et l'intégration pour une utilisation en ligne ou en ligne sont également disponibles.

Un merci spécial à M. Hayden du FMI pour avoir fourni l'échantillon présenté dans cette note. Finissage industriel des métaux inc. | indmetfin.com

Morphologie de la surface de la peinture

MORPHOLOGIE DE LA SURFACE DE PEINTURE

SUIVI AUTOMATISÉ DE L'ÉVOLUTION EN TEMPS RÉEL
UTILISATION DU PROFILOMÈTRE 3D NANOVEA

Préparé par

DUANJIE LI, PhD

INTRODUCTION

Les propriétés protectrices et décoratives de la peinture jouent un rôle important dans une variété d'industries, y compris l'automobile, la marine, l'armée et la construction. Pour obtenir les propriétés souhaitées, telles que la résistance à la corrosion, la protection contre les UV et la résistance à l'abrasion, les formules et les architectures de peinture sont soigneusement analysées, modifiées et optimisées.

IMPORTANCE DU PROFILOMÈTRE 3D SANS CONTACT POUR L'ANALYSE DE LA MORPHOLOGIE DE LA SURFACE DE LA PEINTURE SÉCHANTE

La peinture est généralement appliquée sous forme liquide et subit un processus de séchage, qui implique l'évaporation des solvants et la transformation de la peinture liquide en un film solide. Au cours du processus de séchage, la surface de la peinture change progressivement de forme et de texture. Différentes finitions et textures de surface peuvent être développées en utilisant des additifs pour modifier la tension de surface et les propriétés d'écoulement de la peinture. Cependant, dans le cas d'une recette de peinture mal formulée ou d'un traitement de surface inapproprié, des défaillances indésirables de la surface de peinture peuvent se produire.

Une surveillance précise in situ de la morphologie de la surface de la peinture pendant la période de séchage peut fournir un aperçu direct du mécanisme de séchage. De plus, l’évolution en temps réel des morphologies de surface constitue une information très utile dans diverses applications, comme l’impression 3D. La NANOVÉA Profilomètres 3D sans contact mesurer la morphologie de la surface de la peinture des matériaux sans toucher l'échantillon, en évitant toute altération de forme qui pourrait être provoquée par des technologies de contact telles qu'un stylet coulissant.

OBJECTIF DE MESURE

Dans cette application, le profilomètre sans contact NANOVEA ST500, équipé d'un capteur optique de ligne à grande vitesse, est utilisé pour surveiller la morphologie de la surface de la peinture pendant sa période de séchage d'une heure. Nous présentons la capacité du profilomètre sans contact NANOVEA à fournir une mesure de profil 3D automatisée en temps réel des matériaux avec un changement de forme continu.

NANOVEA

ST500

RÉSULTATS ET DISCUSSION

La peinture a été appliquée sur la surface d'une tôle, suivie immédiatement de mesures automatisées de l'évolution morphologique de la peinture en séchage in situ à l'aide du profilomètre sans contact NANOVEA ST500 équipé d'un capteur de ligne à grande vitesse. Une macro avait été programmée pour mesurer et enregistrer automatiquement la morphologie de la surface 3D à des intervalles de temps spécifiques : 0, 5, 10, 20, 30, 40, 50 et 60 min. Cette procédure d'analyse automatisée permet aux utilisateurs d'effectuer automatiquement des tâches d'analyse en exécutant des procédures définies dans l'ordre, ce qui réduit considérablement les efforts, le temps et les éventuelles erreurs de l'utilisateur par rapport aux tests manuels ou aux analyses répétées. Cette automatisation s'avère extrêmement utile pour les mesures à long terme impliquant plusieurs balayages à différents intervalles de temps.

Le capteur de ligne optique génère une ligne lumineuse composée de 192 points, comme illustré à la FIGURE 1. Ces 192 points lumineux balayent simultanément la surface de l'échantillon, ce qui augmente considérablement la vitesse de balayage. Cela garantit que chaque scan 3D est terminé rapidement pour éviter des changements de surface substantiels lors de chaque scan individuel.

FIGURE 1: Capteur de ligne optique balayant la surface de la peinture en cours de séchage.

La vue en fausses couleurs, la vue 3D et le profil 2D de la topographie de la peinture de séchage à des moments représentatifs sont illustrés sur la FIGURE 2, la FIGURE 3 et la FIGURE 4, respectivement. La fausse couleur dans les images facilite la détection de caractéristiques qui ne sont pas facilement discernables. Différentes couleurs représentent les variations de hauteur sur différentes zones de la surface de l'échantillon. La vue 3D offre aux utilisateurs un outil idéal pour observer la surface de la peinture sous différents angles. Au cours des 30 premières minutes du test, les fausses couleurs sur la surface de la peinture passent progressivement de tons plus chauds à des tons plus froids, indiquant une diminution progressive de la hauteur au fil du temps au cours de cette période. Ce processus ralentit, comme le montre le léger changement de couleur lors de la comparaison de la peinture à 30 et 60 minutes.

La hauteur moyenne de l'échantillon et les valeurs de rugosité Sa en fonction du temps de séchage de la peinture sont tracées à la FIGURE 5. L'analyse complète de la rugosité de la peinture après 0, 30 et 60 min de temps de séchage est répertoriée dans le TABLEAU 1. On peut observer que la hauteur moyenne de la surface de la peinture diminue rapidement de 471 à 329 µm au cours des 30 premières minutes de temps de séchage. La texture de surface se développe en même temps que le solvant se vaporise, conduisant à une augmentation de la valeur de rugosité Sa de 7,19 à 22,6 µm. Le processus de séchage de la peinture ralentit par la suite, entraînant une diminution progressive de la hauteur de l'échantillon et de la valeur Sa à 317 µm et 19,6 µm, respectivement, à 60 min.

Cette étude met en évidence les capacités du profilomètre 3D sans contact NANOVEA à surveiller les changements de surface 3D de la peinture en cours de séchage en temps réel, fournissant des informations précieuses sur le processus de séchage de la peinture. En mesurant la morphologie de la surface sans toucher l'échantillon, le profilomètre évite d'introduire des altérations de forme dans la peinture non séchée, ce qui peut se produire avec des technologies de contact comme le stylet coulissant. Cette approche sans contact garantit une analyse précise et fiable de la morphologie de la surface de séchage de la peinture.

FIGURE 2 : Évolution de la morphologie de la surface de séchage de la peinture à différents moments.

FIGURE 3 : Vue 3D de l'évolution de la surface de la peinture à différents temps de séchage.

FIGURE 4 : Profil 2D sur l'échantillon de peinture après différents temps de séchage.

FIGURE 5 : Évolution de la hauteur moyenne de l'échantillon et de la valeur de rugosité Sa en fonction du temps de séchage de la peinture.

ISO 25178

Temps de séchage (min) 0 5 10 20 30 40 50 60
Carré (µm) 7.91 9.4 10.8 20.9 22.6 20.6 19.9 19.6
UGS 26.3 19.8 14.6 11.9 10.5 9.87 9.83 9.82
Sp (µm) 97.4 105 108 116 125 118 114 112
Sv (µm) 127 70.2 116 164 168 138 130 128
Sz (µm) 224 175 224 280 294 256 244 241
Sa (µm) 4.4 5.44 6.42 12.2 13.3 12.2 11.9 11.8

Carré – Hauteur racine carrée moyenne | UGS – Kurtosis | Sp- Hauteur maximale du pic | Sv- Hauteur maximale de la fosse | Sz- Hauteur maximale | Sv- Hauteur moyenne arithmétique

TABLEAU 1 : Rugosité de la peinture à différents temps de séchage.

CONCLUSION

Dans cette application, nous avons présenté les capacités du profilomètre 3D sans contact NANOVEA ST500 pour surveiller l'évolution de la morphologie de la surface de la peinture pendant le processus de séchage. Le capteur de ligne optique à grande vitesse, générant une ligne avec 192 points lumineux qui balayent simultanément la surface de l'échantillon, a rendu l'étude rapide tout en garantissant une précision inégalée.

La fonction macro du logiciel d'acquisition permet de programmer des mesures automatisées de la morphologie de surface 3D in situ, ce qui la rend particulièrement utile pour les mesures à long terme impliquant plusieurs balayages à des intervalles de temps cibles spécifiques. Cela réduit considérablement le temps, les efforts et le potentiel d'erreurs de l'utilisateur. Les changements progressifs de la morphologie de la surface sont surveillés en continu et enregistrés en temps réel au fur et à mesure que la peinture sèche, fournissant des informations précieuses sur le mécanisme de séchage de la peinture.

Les données présentées ici ne représentent qu'une fraction des calculs disponibles dans le logiciel d'analyse. Les profilomètres NANOVEA sont capables de mesurer pratiquement n'importe quelle surface, qu'elle soit transparente, sombre, réfléchissante ou opaque.

 

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Analyse de la fractographie à l'aide de la profilométrie 3D

ANALYSE FRACTOGRAPHIQUE

EN UTILISANT LA PROFILOMÉTRIE 3D

Préparé par

CRAIG LEISING

INTRODUCTION

La fractographie est l'étude des caractéristiques des surfaces fracturées et a toujours été étudiée au microscope ou au MEB. En fonction de la taille de la caractéristique, un microscope (caractéristiques macro) ou SEM (caractéristiques nano et micro) sont sélectionnés pour l'analyse de la surface. Les deux permettant finalement d’identifier le type de mécanisme de fracture. Bien qu'efficace, le microscope présente des limites évidentes et le SEM, dans la plupart des cas, autres que l'analyse au niveau atomique, n'est pas pratique pour la mesure de la surface de fracture et manque de capacité d'utilisation plus large. Grâce aux progrès de la technologie de mesure optique, le NANOVEA Profilomètre 3D sans contact est désormais considéré comme l'instrument de choix, avec sa capacité à fournir des mesures de surface 2D et 3D à l'échelle nanométrique.

IMPORTANCE DU PROFILOMÈTRE 3D SANS CONTACT POUR L'INSPECTION DES FRACTURES

Contrairement au MEB, un profilomètre 3D sans contact peut mesurer presque toutes les surfaces, toutes les tailles d'échantillons, avec une préparation minimale de l'échantillon, tout en offrant des dimensions verticales/horizontales supérieures à celles d'un MEB. Avec un profileur, les caractéristiques allant du nanomètre au macroscope sont capturées en une seule mesure, sans influence de la réflectivité de l'échantillon. Mesurez facilement tous les matériaux : transparents, opaques, spéculaires, diffusifs, polis, rugueux, etc. Le profilomètre 3D sans contact offre des possibilités étendues et conviviales pour maximiser les études de fracture de surface à une fraction du coût d'un MEB.

OBJECTIF DE MESURE

Dans cette application, le NANOVEA ST400 est utilisé pour mesurer la surface fracturée d'un échantillon d'acier. Dans cette étude, nous présentons une zone 3D, une extraction de profil 2D et une carte directionnelle de la surface.

NANOVEA

ST400

RÉSULTATS

SURFACE SUPÉRIEURE

Direction de la texture de la surface 3D

Isotropie51.26%
Première direction123.2º
Deuxième direction116.3º
Troisième direction0.1725º

La surface, le volume, la rugosité et bien d'autres éléments peuvent être calculés automatiquement à partir de cette extraction.

Extraction du profil 2D

RÉSULTATS

SURFACE LATÉRALE

Direction de la texture de la surface 3D

Isotropie15.55%
Première direction0.1617º
Deuxième direction110.5º
Troisième direction171.5º

La surface, le volume, la rugosité et bien d'autres éléments peuvent être calculés automatiquement à partir de cette extraction.

Extraction du profil 2D

CONCLUSION

Dans cette application, nous avons montré comment le profilomètre 3D sans contact NANOVEA ST400 peut caractériser avec précision la topographie complète (nano, micro et macro caractéristiques) d'une surface fracturée. À partir de la zone 3D, la surface peut être clairement identifiée et des sous-zones ou des profils/coupes transversales peuvent être rapidement extraits et analysés avec une liste infinie de calculs de surface. Les caractéristiques de surface sub-nanométriques peuvent être analysées plus en détail grâce à un module AFM intégré.

En outre, NANOVEA a ajouté une version portable à sa gamme de profilomètres, ce qui est particulièrement important pour les études sur le terrain lorsque la surface d'une fracture est inamovible. Avec cette large liste de capacités de mesure de surface, l'analyse de la surface des fractures n'a jamais été aussi facile et pratique avec un seul instrument.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Topographie de la surface de la fibre de verre à l'aide de la profilométrie 3D

TOPOGRAPHIE DE LA SURFACE DE LA FIBRE DE VERRE

EN UTILISANT LA PROFILOMÉTRIE 3D

Préparé par

CRAIG LEISING

INTRODUCTION

La fibre de verre est un matériau fabriqué à partir de fibres de verre extrêmement fines. Elle est utilisée comme agent de renforcement pour de nombreux produits polymères ; le matériau composite qui en résulte, connu sous le nom de polymère renforcé par des fibres (FRP) ou de plastique renforcé par du verre (GRP), est appelé "fibre de verre" dans l'usage courant.

IMPORTANCE DE L'INSPECTION MÉTROLOGIQUE DES SURFACES POUR LE CONTRÔLE DE LA QUALITÉ

Bien qu'il existe de nombreuses utilisations du renforcement en fibre de verre, dans la plupart des applications, il est crucial qu'elles soient aussi solides que possible. Les composites en fibre de verre présentent l'un des rapports résistance/poids les plus élevés du marché et, dans certains cas, ils sont plus résistants que l'acier. Outre la résistance élevée, il est également important d'avoir la plus petite surface exposée possible. Les grandes surfaces en fibre de verre peuvent rendre la structure plus vulnérable aux attaques chimiques et éventuellement à l'expansion du matériau. Par conséquent, l'inspection de la surface est essentielle au contrôle de la qualité de la production.

OBJECTIF DE MESURE

Dans cette application, le NANOVEA ST400 est utilisé pour mesurer la rugosité et la planéité de la surface d'un composite en fibre de verre. En quantifiant ces caractéristiques de surface, il est possible de créer ou d'optimiser un matériau composite en fibre de verre plus solide et plus durable.

NANOVEA

ST400

PARAMÈTRES DE MESURE

PROBE 1 mm
TAUX D'ACQUISITION300 Hz
MOYENNE1
SURFACE MESURÉE5 mm x 2 mm
TAILLE DE L'ÉTAPE5 µm x 5 µm
MODE DE BALAYAGEVitesse constante

PROBE SPECIFICATIONS

MESURE GAMME1 mm
RÉSOLUTION Z 25 nm
Z ACCURACY200 nm
RÉSOLUTION LATÉRALE 2 μm

RÉSULTATS

VUE EN FAUSSE COULEUR

Planéité de la surface 3D

Rugosité de surface 3D

Sa15,716 μmMoyenne arithmétique de la hauteur
Sq19,905 μmHauteur moyenne quadratique
Sp116,74 μmHauteur maximale du pic
Sv136,09 μmHauteur maximale de la fosse
Sz252,83 μmHauteur maximale
Ssk0.556Skewness
Ssu3.654Kurtosis

CONCLUSION

Comme le montrent les résultats, le NANOVEA ST400 Optical Profileur a pu mesurer avec précision la rugosité et la planéité de la surface composite en fibre de verre. Les données peuvent être mesurées sur plusieurs lots de composites de fibres et/ou sur une période de temps donnée pour fournir des informations cruciales sur les différents processus de fabrication de la fibre de verre et sur leur réaction au fil du temps. Ainsi, le ST400 constitue une option viable pour renforcer le processus de contrôle qualité des matériaux composites en fibre de verre.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Usure et frottement des courroies polymères à l'aide d'un tribomètre

COURROIES EN POLYMÈRE

USURE ET FRICTION à l'aide d'un TRIBOMETRE

Préparé par

DUANJIE LI, PhD

INTRODUCTION

La transmission par courroie transmet la puissance et suit le mouvement relatif entre deux ou plusieurs arbres rotatifs. En tant que solution simple et peu coûteuse avec un entretien minimal, les transmissions par courroie sont largement utilisées dans une variété d'applications, telles que les scies à ruban, les scieries, les batteuses, les souffleurs de silo et les convoyeurs. Les transmissions par courroie peuvent protéger les machines contre les surcharges, ainsi qu'amortir et isoler les vibrations.

IMPORTANCE DE L'ÉVALUATION DE L'USURE POUR LES TRANSMISSIONS PAR COURROIE

Le frottement et l'usure sont inévitables pour les courroies d'une machine entraînée par courroie. Un frottement suffisant assure une transmission efficace de la puissance sans glissement, mais un frottement excessif peut entraîner une usure rapide de la courroie. Différents types d'usure tels que la fatigue, l'abrasion et le frottement se produisent pendant le fonctionnement de la transmission par courroie. Afin de prolonger la durée de vie de la courroie et de réduire le coût et le temps de réparation et de remplacement de la courroie, une évaluation fiable des performances d'usure des courroies est souhaitable pour améliorer la durée de vie des courroies, l'efficacité de la production et les performances des applications. La mesure précise du coefficient de friction et du taux d'usure de la courroie facilite la R&D et le contrôle de la qualité de la production de courroies.

OBJECTIF DE MESURE

Dans cette étude, nous avons simulé et comparé les comportements d'usure de courroies présentant différentes textures de surface afin de mettre en évidence la capacité de l NANOVEA Le tribomètre T2000 permet de simuler le processus d'usure de la courroie de manière contrôlée et surveillée.

NANOVEA

T2000

PROCÉDURES DE TEST

Le coefficient de frottement (COF) et la résistance à l'usure de deux courroies présentant des rugosités et des textures de surface différentes ont été évalués par l'analyse de l'indice de frottement. NANOVEA Charge élevée Tribomètre utilisant le module d'usure à mouvement alternatif linéaire. Une bille en acier 440 (diamètre 10 mm) a été utilisée comme contre-matériau. La rugosité de la surface et la trace d'usure ont été examinées à l'aide d'un Profilomètre 3D sans contact. Le taux d'usure, Ka été évaluée à l'aide de la formule K=Vl(Fxs)V est le volume usé, F est la charge normale et s est la distance de glissement.

 

Veuillez noter qu'une contrepartie lisse en acier 440 a été utilisée comme exemple dans cette étude. Tout matériau solide de forme et de finition de surface différentes peut être appliqué à l'aide de montages personnalisés pour simuler la situation d'application réelle.

RÉSULTATS ET DISCUSSION

La bande texturée et la bande lisse ont une rugosité de surface Ra de 33,5 et 8,7 um, respectivement, d'après les profils de surface analysés pris avec une NANOVEA Profileur optique 3D sans contact. Le COF et le taux d'usure des deux courroies testées ont été mesurés à 10 N et 100 N, respectivement, afin de comparer le comportement d'usure des courroies à différentes charges.

FIGURE 1 montre l'évolution du COF des courroies pendant les essais d'usure. Les courroies avec différentes textures présentent des comportements d'usure sensiblement différents. Il est intéressant de noter qu'après la période de rodage au cours de laquelle le COF augmente progressivement, la courroie texturée atteint un COF inférieur de ~0,5 dans les deux tests réalisés avec des charges de 10 N et 100 N. En comparaison, la courroie lisse testée sous une charge de 10 N présente un COF nettement plus élevé de ~1,4 lorsque le COF se stabilise et se maintient au-dessus de cette valeur pour le reste du test. La courroie lisse testée sous une charge de 100 N a été rapidement usée par la bille d'acier 440 et a formé une grande trace d'usure. L'essai a donc été arrêté à 220 tours.

FIGURE 1: Evolution du COF des courroies à différentes charges.

La FIGURE 2 compare les images des traces d'usure en 3D après les essais à 100 N. Le profilomètre sans contact NANOVEA 3D offre un outil pour analyser la morphologie détaillée des traces d'usure, ce qui permet de mieux comprendre le mécanisme d'usure.

TABLEAU 1 : Résultat de l'analyse des traces d'usure.

FIGURE 2 :  Vue 3D des deux courroies
après les essais à 100 N.

Le profil de la trace d'usure en 3D permet de déterminer directement et précisément le volume de la trace d'usure calculé par le logiciel d'analyse avancée, comme le montre le TABLEAU 1. Lors d'un essai d'usure de 220 tours, la courroie lisse présente une trace d'usure beaucoup plus grande et plus profonde avec un volume de 75,7 mm3, contre un volume d'usure de 14,0 mm3 pour la courroie texturée après un essai d'usure de 600 tours. Le frottement nettement plus élevé de la courroie lisse contre la bille d'acier entraîne un taux d'usure 15 fois supérieur à celui de la courroie texturée.

 

Une telle différence de COF entre la courroie texturée et la courroie lisse est probablement liée à la taille de la zone de contact entre la courroie et la bille d'acier, ce qui entraîne également des performances d'usure différentes. La FIGURE 3 montre les traces d'usure des deux courroies au microscope optique. L'examen des traces d'usure est en accord avec l'observation de l'évolution du COF : La courroie texturée, qui maintient un faible COF de ~0,5, ne présente aucun signe d'usure après le test d'usure sous une charge de 10 N. La courroie lisse présente une petite trace d'usure à 10 N. Les tests d'usure effectués à 100 N créent des traces d'usure beaucoup plus grandes sur les courroies texturées et lisses, et le taux d'usure sera calculé à l'aide de profils 3D, comme nous le verrons dans le paragraphe suivant.

FIGURE 3 :  Traces d'usure au microscope optique.

CONCLUSION

Dans cette étude, nous avons démontré la capacité du tribomètre NANOVEA T2000 à évaluer le coefficient de friction et le taux d'usure des courroies d'une manière bien contrôlée et quantitative. La texture de la surface joue un rôle essentiel dans la résistance au frottement et à l'usure des courroies pendant leur durée de vie. La courroie texturée présente un coefficient de frottement stable de ~0,5 et possède une longue durée de vie, ce qui permet de réduire le temps et les coûts de réparation ou de remplacement des outils. En comparaison, le frottement excessif de la courroie lisse contre la bille d'acier use rapidement la courroie. En outre, la charge exercée sur la courroie est un facteur essentiel de sa durée de vie. La surcharge crée une friction très élevée, ce qui entraîne une usure accélérée de la courroie.

Le tribomètre NANOVEA T2000 offre des essais d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribocorrosion disponibles dans un système pré-intégré. NANOVEA's est une solution idéale pour déterminer la gamme complète des propriétés tribologiques des revêtements, films et substrats minces ou épais, mous ou durs.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Microstructure des fossiles par profilométrie 3D

MICROSTRUCTURE FOSSILE

EN UTILISANT LA PROFILOMÉTRIE 3D

Préparé par

DUANJIE LI, PhD

INTRODUCTION

Les fossiles sont les restes préservés de traces de plantes, d'animaux et d'autres organismes enfouis dans les sédiments sous d'anciennes mers, lacs et rivières. Les tissus mous du corps se décomposent généralement après la mort, mais les coquilles dures, les os et les dents se fossilisent. Les caractéristiques de surface de la microstructure sont souvent préservées lors du remplacement minéral des coquilles et des os d'origine, ce qui donne un aperçu de l'évolution du temps et du mécanisme de formation des fossiles.

IMPORTANCE D'UN PROFILOMÈTRE 3D SANS CONTACT POUR L'EXAMEN DES FOSSILES

Les profils 3D du fossile nous permettent d’observer les caractéristiques détaillées de la surface de l’échantillon fossile sous un angle plus rapproché. La haute résolution et la précision du profilomètre NANOVEA peuvent ne pas être perceptibles à l'œil nu. Le logiciel d'analyse du profilomètre propose une large gamme d'études applicables à ces surfaces uniques. Contrairement à d'autres techniques telles que les palpeurs, le NANOVEA Profilomètre 3D sans contact mesure les caractéristiques de la surface sans toucher l’échantillon. Cela permet de préserver les véritables caractéristiques de la surface de certains échantillons fossiles délicats. De plus, le profilomètre portable modèle Jr25 permet des mesures 3D sur les sites fossilifères, ce qui facilite considérablement l'analyse et la protection des fossiles après excavation.

OBJECTIF DE MESURE

Dans cette étude, le profilomètre NANOVEA Jr25 est utilisé pour mesurer la surface de deux échantillons de fossiles représentatifs. La surface entière de chaque fossile a été scannée et analysée afin de caractériser ses caractéristiques de surface, notamment la rugosité, le contour et la direction de la texture.

NANOVEA

Jr25

FOSSILE DE BRACHIOPODE

Le premier échantillon de fossile présenté dans ce rapport est un fossile de brachiopode, qui provient d'un animal marin possédant des "valves" (coquilles) dures sur ses surfaces supérieure et inférieure. Ils sont apparus à la période cambrienne, il y a plus de 550 millions d'années.

La vue 3D du scan est présentée dans la FIGURE 1 et la vue en fausses couleurs est présentée dans la FIGURE 2. 

FIGURE 1: Vue 3D de l'échantillon de fossiles de brachiopodes.

FIGURE 2 : Vue en fausses couleurs de l'échantillon de fossiles de brachiopodes.

La forme globale a ensuite été retirée de la surface afin d'étudier la morphologie et le contour de la surface locale du fossile de brachiopode, comme le montre la FIGURE 3. Une texture particulière de rainure divergente peut maintenant être observée sur l'échantillon de fossile de Brachiopode.

FIGURE 3 : Vue des fausses couleurs et vue des lignes de contour après la suppression du formulaire.

Un profil de ligne est extrait de la zone texturée pour montrer une vue en coupe de la surface du fossile dans la FIGURE 4. L'étude de la hauteur des pas mesure les dimensions précises des caractéristiques de la surface. Les rainures ont une largeur moyenne de ~0,38 mm et une profondeur de ~0,25 mm.

FIGURE 4 : Études du profil des lignes et de la hauteur des marches de la surface texturée.

FOSSILE DE TIGE DE CRINOÏDE

Le deuxième échantillon de fossile est un fossile de tige de crinoïde. Les crinoïdes sont apparus dans les mers du Cambrien moyen, environ 300 millions d'années avant les dinosaures. 

 

La vue 3D du scan est illustrée à la FIGURE 5 et la vue en fausses couleurs est illustrée à la FIGURE 6. 

FIGURE 5 : Vue 3D de l'échantillon de fossiles de crinoïdes.

L'isotropie et la rugosité de la texture de surface du fossile de tige de Crinoïde sont analysées dans la FIGURE 7. 

 Ce fossile présente une direction de texture préférentielle dans l'angle proche de 90°, ce qui conduit à une isotropie de texture de 69%.

FIGURE 6 : Vue en fausses couleurs de la Tige de crinoïde échantillon.

 

FIGURE 7 : Isotropie de la texture de surface et rugosité du fossile de la tige du Crinoïde.

Le profil 2D le long de la direction axiale du fossile de la tige du Crinoïde est présenté dans la FIGURE 8. 

La taille des pics de la texture de surface est assez uniforme.

FIGURE 8 : Analyse du profil 2D du fossile de la tige du Crinoïde.

CONCLUSION

Dans cette application, nous avons étudié de manière exhaustive les caractéristiques de surface 3D d'un fossile de tige de brachiopode et de crinoïde à l'aide du profilomètre portable sans contact NANOVEA Jr25. Nous montrons que l'instrument peut caractériser avec précision la morphologie 3D des échantillons fossiles. Les caractéristiques de surface et la texture intéressantes des échantillons sont ensuite analysées plus en détail. L'échantillon de Brachiopode possède une texture de rainure divergente, tandis que le fossile de tige de Crinoïde montre une isotropie de texture préférentielle. Les scans de surface 3D détaillés et précis s'avèrent être des outils idéaux pour les paléontologues et les géologues pour étudier l'évolution des vies et la formation des fossiles.

Les données présentées ici ne représentent qu'une partie des calculs disponibles dans le logiciel d'analyse. Les profilomètres NANOVEA mesurent pratiquement n'importe quelle surface dans des domaines tels que les semi-conducteurs, la microélectronique, l'énergie solaire, les fibres optiques, l'automobile, l'aérospatiale, la métallurgie, l'usinage, les revêtements, la pharmacie, le biomédical, l'environnement et bien d'autres encore.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Finition de la surface du cuir traité à l'aide de la profilométrie 3D

CUIR TRAITÉ

FINITION DE SURFACE PAR PROFILOMÉTRIE 3D

Préparé par

CRAIG LEISING

INTRODUCTION

Une fois le processus de tannage d'une peau de cuir terminé, la surface du cuir peut subir plusieurs processus de finition pour obtenir une variété d'aspects et de touchers. Ces procédés mécaniques peuvent inclure l'étirage, le polissage, le ponçage, le gaufrage, le revêtement, etc. Selon l'utilisation finale du cuir, certains peuvent nécessiter un traitement plus précis, contrôlé et répétable.

IMPORTANCE DE L'INSPECTION PAR PROFILOMÉTRIE POUR LA RECHERCHE ET LE DÉVELOPPEMENT ET LE CONTRÔLE DE LA QUALITÉ

En raison des variations importantes et du manque de fiabilité des méthodes d'inspection visuelle, les outils capables de quantifier avec précision les caractéristiques à l'échelle micro et nanométrique peuvent améliorer les processus de finition du cuir. La compréhension de l'état de surface du cuir dans un sens quantifiable peut conduire à une meilleure sélection des traitements de surface en fonction des données afin d'obtenir des résultats de finition optimaux. NANOVEA 3D sans contact Profilomètres Les profilomètres NANOVEA utilisent la technologie confocale chromatique pour mesurer les surfaces finies en cuir et offrent la répétabilité et la précision les plus élevées du marché. Là où d'autres techniques ne parviennent pas à fournir des données fiables, en raison du contact de la sonde, de la variation de la surface, de l'angle, de l'absorption ou de la réflectivité, les profilomètres NANOVEA y parviennent.

OBJECTIF DE MESURE

Dans cette application, le NANOVEA ST400 est utilisé pour mesurer et comparer l'état de surface de deux échantillons de cuir différents mais traités de près. Plusieurs paramètres de surface sont automatiquement calculés à partir du profil de surface.

Nous nous concentrerons ici sur la rugosité de la surface, la profondeur des alvéoles, le pas des alvéoles et le diamètre des alvéoles pour une évaluation comparative.

NANOVEA

ST400

RÉSULTATS : ÉCHANTILLON 1

ISO 25178

PARAMÈTRES DE HAUTEUR

D'AUTRES PARAMÈTRES 3D

RÉSULTATS : ÉCHANTILLON 2

ISO 25178

PARAMÈTRES DE HAUTEUR

D'AUTRES PARAMÈTRES 3D

COMPARAISON EN PROFONDEUR

Distribution des profondeurs pour chaque échantillon.
Un grand nombre de fossettes profondes ont été observées en
ÉCHANTILLON 1.

COMPARATIF DE HAUTEUR

Pas entre les alvéoles sur ÉCHANTILLON 1 est légèrement plus petite
que
ÉCHANTILLON 2mais les deux ont une distribution similaire

 DIAMÈTRE MOYEN COMPARATIF

Distributions similaires du diamètre moyen des fossettes,
avec
ÉCHANTILLON 1 montrant des diamètres moyens légèrement plus petits en moyenne.

CONCLUSION

Dans cette application, nous avons montré comment le profilomètre 3D NANOVEA ST400 peut caractériser avec précision la finition de surface du cuir traité. Dans cette étude, la possibilité de mesurer la rugosité de la surface, la profondeur des alvéoles, le pas des alvéoles et le diamètre des alvéoles nous a permis de quantifier les différences entre la finition et la qualité des deux échantillons qui peuvent ne pas être évidentes par inspection visuelle.

Dans l'ensemble, il n'y a pas de différence visible dans l'apparence des scans 3D entre l'ÉCHANTILLON 1 et l'ÉCHANTILLON 2. Cependant, dans l'analyse statistique, on observe une distinction claire entre les deux échantillons. L'échantillon 1 contient une plus grande quantité de fossettes avec des diamètres plus petits, des profondeurs plus grandes et un pas plus petit entre les fossettes par rapport à l'échantillon 2.

Veuillez noter que des études supplémentaires sont disponibles. Des domaines d'intérêt particuliers auraient pu être analysés plus en profondeur avec un module AFM ou microscope intégré. Les vitesses du profilomètre 3D NANOVEA s'échelonnent de 20 mm/s à 1 m/s pour le laboratoire ou la recherche, afin de répondre aux besoins d'inspection à grande vitesse ; il peut être construit avec des dimensions, des vitesses et des capacités de balayage personnalisées, une conformité aux normes des salles blanches de classe 1, un convoyeur d'indexation ou pour une intégration en ligne ou en direct.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Topographie de surfaces organiques à l'aide d'un profilomètre 3D portable

TOPOGRAPHIE DE LA SURFACE ORGANIQUE

UTILISATION D'UN PROFILOMÈTRE 3D PORTABLE

Préparé par

CRAIG LEISING

INTRODUCTION

La nature est devenue une source d'inspiration essentielle pour le développement de structures de surface améliorées. La compréhension des structures de surface que l'on trouve dans la nature a conduit à des études d'adhésion basées sur des pattes de gecko, à des études de résistance basées sur le changement de texture d'un concombre de mer et à des études de répulsion basées sur des feuilles, parmi beaucoup d'autres. Ces surfaces ont un certain nombre d'applications potentielles, du biomédical à l'automobile en passant par l'habillement. Pour que toutes ces percées en matière de surface soient couronnées de succès, des techniques de fabrication doivent être développées afin que les caractéristiques de la surface puissent être imitées et reproduites. C'est ce processus qui nécessitera une identification et un contrôle.

IMPORTANCE DU PROFILEUR OPTIQUE PORTABLE 3D SANS CONTACT POUR LES SURFACES ORGANIQUES

Utilisant la technologie Chromatic Light, le NANOVEA Jr25 Portable Profileur optique a une capacité supérieure pour mesurer presque tous les matériaux. Cela inclut les angles uniques et abrupts, les surfaces réfléchissantes et absorbantes que l’on retrouve dans le large éventail de caractéristiques de surface de la nature. Les mesures 3D sans contact fournissent une image 3D complète pour donner une compréhension plus complète des caractéristiques de la surface. Sans capacités 3D, l'identification des surfaces naturelles reposerait uniquement sur des informations 2D ou sur l'imagerie microscopique, qui ne fournissent pas suffisamment d'informations pour imiter correctement la surface étudiée. Comprendre la gamme complète des caractéristiques de la surface, notamment la texture, la forme et les dimensions, entre autres, sera essentiel à une fabrication réussie.

La possibilité d'obtenir facilement des résultats de qualité laboratoire sur le terrain ouvre la porte à de nouvelles possibilités de recherche.

OBJECTIF DE MESURE

Dans cette application, le NANOVEA Jr25 est utilisé pour mesurer la surface d'une feuille. Il existe une liste infinie de paramètres de surface qui peuvent être calculés automatiquement après le balayage de surface 3D.

Ici, nous allons examiner la surface 3D et sélectionner
des domaines d'intérêt à analyser plus en profondeur, notamment
quantifier et étudier la rugosité de la surface, les canaux et la topographie

NANOVEA

JR25

CONDITIONS DE TEST

PROFONDEUR DE L'ARC

Densité moyenne des sillons : 16,471 cm/cm2
Profondeur moyenne des sillons : 97.428 μm
Profondeur maximale : 359,769 μm

CONCLUSION

Dans cette application, nous avons montré comment le NANOVEA Le profileur optique 3D sans contact Jr25 portable peut caractériser avec précision la topographie et les détails à l'échelle nanométrique de la surface d'une feuille sur le terrain. À partir de ces mesures de surface 3D, les zones d'intérêt peuvent être rapidement identifiées et ensuite analysées avec une liste d'études sans fin (Dimension, rugosité, texture de finition, forme, topographie, planéité, déformation, planéité, surface volumique, hauteur de marche. et autres). Une section transversale 2D peut être facilement choisie pour analyser des détails supplémentaires. Grâce à ces informations, les surfaces organiques peuvent être largement étudiées avec un ensemble complet de moyens de mesure de surface. Des domaines d'intérêt particuliers auraient pu être analysés plus en détail avec le module AFM intégré sur des modèles de table.

NANOVEA propose également des profilomètres portables à grande vitesse pour la recherche sur le terrain et une large gamme de systèmes de laboratoire, ainsi que des services de laboratoire.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Profilomètre de rugosité du papier de verre

Papier de verre : Analyse de la rugosité et du diamètre des particules

Papier de verre : Analyse de la rugosité et du diamètre des particules

En savoir plus

SANDPAPER

Analyse de la rugosité et du diamètre des particules

Préparé par

FRANK LIU

INTRODUCTION

Le papier de verre est un produit courant, disponible dans le commerce, utilisé comme abrasif. L'utilisation la plus courante du papier de verre consiste à enlever des revêtements ou à polir une surface grâce à ses propriétés abrasives. Ces propriétés abrasives sont classées en grains, chacun d'entre eux étant lié au degré de lissage ou de polissage de la surface.
La finition de la surface sera plus ou moins rugueuse. Pour obtenir les propriétés abrasives souhaitées, les fabricants de papier de verre doivent s'assurer que les particules abrasives ont une taille spécifique et présentent peu de déviations. Pour quantifier la qualité du papier de verre, le système 3D Non-Contact Profilomètre peut être utilisé pour obtenir le paramètre de hauteur moyenne arithmétique (Sa) et le diamètre moyen des particules d'une zone d'échantillonnage.

IMPORTANCE DU PROFILEUR OPTIQUE SANS CONTACT 3D PROFILEUR POUR PAPIER DE VERRE

Lors de l'utilisation de papier de verre, l'interaction entre les particules abrasives et la surface à poncer doit être uniforme pour obtenir des finitions de surface cohérentes. Pour quantifier cela, la surface du papier de verre peut être observée à l'aide du profileur optique 3D sans contact de NANOVEA afin de voir les déviations dans la taille, la hauteur et l'espacement des particules.

OBJECTIF DE MESURE

Dans cette étude, cinq grains de papier de verre différents (120,
180, 320, 800 et 2000) sont scannées avec le logiciel
Profileur optique sans contact NANOVEA ST400 3D.
Le Sa est extrait du scan et la particule
La taille est calculée en effectuant une analyse des motifs pour
trouver leur diamètre équivalent

NANOVEA

ST400

RÉSULTATS ET DISCUSSION

La rugosité de surface (Sa) et la taille des particules du papier de verre diminuent à mesure que le grain augmente, comme prévu. La Sa est comprise entre 42,37 μm et 3,639 μm. La taille des particules varie de 127 ± 48,7 à 21,27 ± 8,35. Les particules plus grandes et les variations de hauteur élevées créent une action abrasive plus forte sur les surfaces, contrairement aux particules plus petites avec une faible variation de hauteur.
Veuillez noter que toutes les définitions des paramètres de hauteur donnés sont énumérées à la page.A.1.

TABLEAU 1 : Comparaison entre les grains de papier de verre et les paramètres de hauteur.

TABLEAU 2 : Comparaison entre les grains de papier de verre et le diamètre des particules.

VUE 2D ET 3D DU PAPIER DE VERRE 

Vous trouverez ci-dessous les vues en fausses couleurs et en 3D des échantillons de papier de verre.
Un filtre gaussien de 0,8 mm a été utilisé pour supprimer la forme ou l'ondulation.

ANALYSE DES MOTIFS

Pour trouver avec précision les particules à la surface, le seuil de l'échelle de hauteur a été redéfini pour ne montrer que la couche supérieure du papier de verre. Une analyse des motifs a ensuite été effectuée pour détecter les pics.

CONCLUSION

Le profileur optique 3D sans contact de NANOVEA a été utilisé pour inspecter les propriétés de surface de différents grains de papier de verre en raison de sa capacité à scanner avec précision des surfaces présentant des micro et nano-éléments.

Les paramètres de hauteur de surface et les diamètres équivalents des particules ont été obtenus pour chacun des échantillons de papier de verre en utilisant un logiciel avancé pour analyser les scans 3D. Il a été observé qu'à mesure que la taille des grains augmente, la rugosité de surface (Sa) et la taille des particules diminuent comme prévu.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Profilométrie pour la mesure des limites des surfaces en polystyrène expansé

Mesure des limites de la surface

Mesure des limites d'une surface à l'aide de la profilométrie 3D

En savoir plus

MESURE DES LIMITES DE LA SURFACE

EN UTILISANT LA PROFILOMÉTRIE 3D

Préparé par

Craig Leising

INTRODUCTION

Dans les études où l'interface des caractéristiques de surface, des motifs, des formes, etc., est évaluée pour l'orientation, il sera utile d'identifier rapidement les zones d'intérêt sur l'ensemble du profil de mesure. En segmentant une surface en zones significatives, l'utilisateur peut rapidement évaluer les limites, les pics, les creux, les zones, les volumes et bien d'autres encore pour comprendre leur rôle fonctionnel dans l'ensemble du profil de la surface étudiée. Par exemple, comme pour l'imagerie du joint de grain des métaux, l'importance de l'analyse est l'interface de nombreuses structures et leur orientation globale. La compréhension de chaque zone d'intérêt permet d'identifier les défauts ou les anomalies de la zone globale. Bien que l'imagerie du joint de grain soit généralement étudiée à une distance dépassant la capacité du profilomètre et qu'il s'agisse uniquement d'une analyse d'image 2D, elle constitue une référence utile pour illustrer le concept de ce qui sera présenté ici à plus grande échelle, ainsi que les avantages de la mesure de surface 3D.

IMPORTANCE DU PROFILOMÈTRE 3D SANS CONTACT POUR L'ÉTUDE DE LA SÉPARATION DES SURFACES

Contrairement à d'autres techniques telles que les sondes tactiles ou l'interférométrie, Profilomètre 3D sans contact, utilisant le chromatisme axial, peut mesurer presque toutes les surfaces, la taille des échantillons peut varier considérablement en raison de la mise en scène ouverte et aucune préparation d'échantillon n'est nécessaire. La plage nano à macro est obtenue lors de la mesure du profil de surface sans influence de la réflectivité ou de l'absorption de l'échantillon, a une capacité avancée de mesurer des angles de surface élevés et il n'y a aucune manipulation logicielle des résultats. Mesurez facilement n'importe quel matériau : transparent, opaque, spéculaire, diffusif, poli, rugueux, etc. La technique du profilomètre sans contact offre une capacité idéale, large et conviviale pour maximiser les études de surface lorsqu'une analyse des limites de surface sera nécessaire ; ainsi que les avantages des capacités combinées 2D et 3D.

OBJECTIF DE MESURE

Dans cette application, le profilomètre Nanovea ST400 est utilisé pour mesurer la surface du polystyrène. Les limites ont été établies en combinant un fichier d'intensité réfléchie et la topographie, qui sont acquis simultanément à l'aide du NANOVEA ST400. Ces données ont ensuite été utilisées pour calculer les différentes informations de forme et de taille de chaque " grain " de polystyrène.

NANOVEA

ST400

RÉSULTATS ET DISCUSSION : Mesure des limites de la surface 2D

Image de topographie (en bas à gauche) masquée par l'image d'intensité réfléchie (en bas à droite) pour définir clairement les limites des grains. Tous les grains de moins de 565µm de diamètre ont été ignorés en appliquant le filtre.

Nombre total de grains : 167
Surface totale projetée occupée par les grains : 166.917 mm² (64.5962 %)
Superficie totale projetée occupée par les frontières : (35,4038 %)
Densité des grains : 0,646285 grains / mm2

Surface = 0,999500 mm² +/- 0,491846 mm².
Périmètre = 9114.15 µm +/- 4570.38 µm
Diamètre équivalent = 1098,61 µm +/- 256,235 µm
Diamètre moyen = 945.373 µm +/- 248.344 µm
Diamètre min. = 675.898 µm +/- 246.850 µm
Diamètre maximum = 1312.43 µm +/- 295.258 µm

RÉSULTATS ET DISCUSSION : Mesure des limites de la surface en 3D

En utilisant les données de topographie 3D obtenues, le volume, la hauteur, le pic, le rapport d'aspect et les informations générales sur la forme peuvent être analysés sur chaque grain. Surface 3D totale occupée : 2.525mm3

CONCLUSION

Dans cette application, nous avons montré comment le profilomètre sans contact NANOVEA 3D peut caractériser avec précision la surface du polystyrène. Des informations statistiques peuvent être obtenues sur l'ensemble de la surface d'intérêt ou sur des grains individuels, qu'il s'agisse de pics ou de creux. Dans cet exemple, tous les grains plus grands qu'une taille définie par l'utilisateur ont été utilisés pour montrer la surface, le périmètre, le diamètre et la hauteur. Les caractéristiques présentées ici peuvent être essentielles à la recherche et au contrôle de la qualité des surfaces naturelles et préfabriquées, qu'il s'agisse d'applications bio-médicales, de micro-usinage ou autres. 

MAINTENANT, PARLONS DE VOTRE CANDIDATURE