USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Morphologie der Lackoberfläche

MORPHOLOGIE DER LACKOBERFLÄCHE

AUTOMATISCHE ÜBERWACHUNG DER ENTWICKLUNG IN ECHTZEIT
MIT NANOVEA 3D PROFILOMETER

Vorbereitet von

DUANJIE LI, PhD

EINFÜHRUNG

Die schützenden und dekorativen Eigenschaften von Lacken spielen in einer Vielzahl von Branchen eine wichtige Rolle, z. B. in der Automobil-, Marine-, Militär- und Bauindustrie. Um die gewünschten Eigenschaften wie Korrosionsbeständigkeit, UV-Schutz und Abriebfestigkeit zu erreichen, werden Lackrezepturen und -strukturen sorgfältig analysiert, modifiziert und optimiert.

BEDEUTUNG DES BERÜHRUNGSLOSEN 3D-PROFILOMETERS FÜR DIE ANALYSE DER OBERFLÄCHENMORPHOLOGIE TROCKNENDER FARBEN

Farbe wird in der Regel in flüssiger Form aufgetragen und durchläuft einen Trocknungsprozess, bei dem die Lösungsmittel verdampfen und sich die flüssige Farbe in einen festen Film verwandelt. Während des Trocknungsprozesses verändert die Lackoberfläche allmählich ihre Form und Textur. Durch die Verwendung von Additiven, die die Oberflächenspannung und die Fließeigenschaften des Lacks verändern, können verschiedene Oberflächenbeschaffenheiten und Texturen entwickelt werden. Im Falle einer schlecht formulierten Lackrezeptur oder einer unsachgemäßen Oberflächenbehandlung kann es jedoch zu unerwünschten Lackoberflächenfehlern kommen.

Eine genaue In-situ-Überwachung der Farboberflächenmorphologie während der Trocknungsperiode kann direkte Einblicke in den Trocknungsmechanismus liefern. Darüber hinaus ist die Echtzeitentwicklung von Oberflächenmorphologien eine sehr nützliche Information für verschiedene Anwendungen, beispielsweise beim 3D-Druck. Die NANOVEA Berührungslose 3D-Profilometer Messen Sie die Farboberflächenmorphologie von Materialien, ohne die Probe zu berühren, und vermeiden Sie Formveränderungen, die durch Kontakttechnologien wie einen gleitenden Stift verursacht werden können.

MESSZIEL

In dieser Anwendung wird das berührungslose Profilometer NANOVEA ST500, das mit einem optischen Hochgeschwindigkeits-Zeilensensor ausgestattet ist, zur Überwachung der Morphologie der Lackoberfläche während der einstündigen Trocknungszeit eingesetzt. Wir zeigen die Fähigkeit des berührungslosen Profilometers NANOVEA zur automatisierten Echtzeit-3D-Profilmessung von Materialien mit kontinuierlicher Formveränderung.

NANOVEA

ST500

ERGEBNISSE & DISKUSSION

Die Farbe wurde auf die Oberfläche eines Metallblechs aufgetragen, woraufhin sofort automatische Messungen der Morphologieentwicklung der trocknenden Farbe in situ mit dem berührungslosen Profilometer NANOVEA ST500 durchgeführt wurden, das mit einem Hochgeschwindigkeits-Zeilensensor ausgestattet ist. Ein Makro wurde programmiert, um die 3D-Oberflächenmorphologie in bestimmten Zeitintervallen automatisch zu messen und aufzuzeichnen: 0, 5, 10, 20, 30, 40, 50 und 60 Minuten. Dieses automatisierte Scanverfahren ermöglicht es den Benutzern, Scanaufgaben automatisch auszuführen, indem sie festgelegte Verfahren nacheinander ablaufen lassen, was den Aufwand, die Zeit und mögliche Benutzerfehler im Vergleich zu manuellen Tests oder wiederholten Scans erheblich reduziert. Diese Automatisierung erweist sich als äußerst nützlich für Langzeitmessungen, bei denen mehrere Scans in unterschiedlichen Zeitabständen durchgeführt werden.

Der optische Zeilensensor erzeugt eine helle Linie, die aus 192 Punkten besteht, wie in ABBILDUNG 1 dargestellt. Diese 192 Lichtpunkte tasten die Probenoberfläche gleichzeitig ab, was die Scangeschwindigkeit erheblich erhöht. Dadurch wird sichergestellt, dass jeder 3D-Scan schnell abgeschlossen wird, um wesentliche Oberflächenveränderungen während jedes einzelnen Scans zu vermeiden.

ABBILDUNG 1: Optischer Zeilensensor, der die Oberfläche der trocknenden Farbe abtastet.

Die Falschfarbenansicht, die 3D-Ansicht und das 2D-Profil der Topografie der trocknenden Farbe zu repräsentativen Zeitpunkten sind in ABBILDUNG 2, ABBILDUNG 3 bzw. ABBILDUNG 4 dargestellt. Die Falschfarben in den Bildern erleichtern die Erkennung von Merkmalen, die nicht ohne weiteres zu erkennen sind. Unterschiedliche Farben stehen für Höhenunterschiede in verschiedenen Bereichen der Probenoberfläche. Die 3D-Ansicht ist ein ideales Hilfsmittel für den Benutzer, um die Lackoberfläche aus verschiedenen Blickwinkeln zu betrachten. Während der ersten 30 Minuten des Tests wechseln die Falschfarben auf der Lackoberfläche allmählich von wärmeren zu kühleren Tönen, was auf eine fortschreitende Abnahme der Höhe in diesem Zeitraum hindeutet. Dieser Prozess verlangsamt sich, wie die leichte Farbveränderung beim Vergleich des Lacks nach 30 und 60 Minuten zeigt.

Die durchschnittliche Probenhöhe und die Rauheit Sa in Abhängigkeit von der Trocknungszeit des Lacks sind in ABBILDUNG 5 dargestellt. Die vollständige Rauheitsanalyse des Lacks nach 0, 30 und 60 Minuten Trocknungszeit ist in TABELLE 1 aufgeführt. Es ist zu beobachten, dass die durchschnittliche Höhe der Lackoberfläche in den ersten 30 Minuten der Trocknungszeit rasch von 471 auf 329 µm abnimmt. Die Oberflächentextur entwickelt sich gleichzeitig mit dem Verdampfen des Lösungsmittels, was zu einem Anstieg des Rauhigkeitswertes Sa von 7,19 auf 22,6 µm führt. Danach verlangsamt sich der Lacktrocknungsprozess, was zu einer allmählichen Abnahme der Probenhöhe und des Sa-Wertes auf 317 µm bzw. 19,6 µm nach 60 Minuten führt.

Diese Studie unterstreicht die Fähigkeiten des berührungslosen NANOVEA 3D-Profilometers bei der Überwachung der 3D-Oberflächenveränderungen der trocknenden Farbe in Echtzeit, was wertvolle Einblicke in den Trocknungsprozess der Farbe ermöglicht. Durch die Messung der Oberflächenmorphologie ohne Berührung der Probe vermeidet das Profilometer Formveränderungen der ungetrockneten Farbe, wie sie bei Kontakttechnologien wie dem gleitenden Taststift auftreten können. Dieser berührungslose Ansatz gewährleistet eine genaue und zuverlässige Analyse der Oberflächenmorphologie der trocknenden Farbe.

ABBILDUNG 2: Entwicklung der Oberflächenmorphologie der trocknenden Farbe zu verschiedenen Zeitpunkten.

ABBILDUNG 3: 3D-Ansicht der Entwicklung der Lackoberfläche bei verschiedenen Trocknungszeiten.

ABBILDUNG 4: 2D-Profil über der Lackprobe nach verschiedenen Trocknungszeiten.

ABBILDUNG 5: Entwicklung der durchschnittlichen Probenhöhe und des Rauhigkeitswerts Sa in Abhängigkeit von der Trocknungszeit des Lacks.

ISO 25178

Trocknungszeit (min) 0 5 10 20 30 40 50 60
Sq (µm) 7.91 9.4 10.8 20.9 22.6 20.6 19.9 19.6
Sku 26.3 19.8 14.6 11.9 10.5 9.87 9.83 9.82
Sp (µm) 97.4 105 108 116 125 118 114 112
Sv (µm) 127 70.2 116 164 168 138 130 128
Sz (µm) 224 175 224 280 294 256 244 241
Sa (µm) 4.4 5.44 6.42 12.2 13.3 12.2 11.9 11.8

Sq - Wurzel-Mittel-Quadrat-Höhe | Sku - Kurtosis | Sp - Maximale Peakhöhe | Sv - Maximale Grubenhöhe | Sz - Maximale Höhe | Sv - Arithmetisches Mittel der Höhe

TABELLE 1: Rauheit der Farbe bei unterschiedlichen Trocknungszeiten.

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir die Fähigkeiten des berührungslosen 3D-Profilometers NANOVEA ST500 bei der Überwachung der Entwicklung der Oberflächenmorphologie von Lacken während des Trocknungsprozesses demonstriert. Der optische Hochgeschwindigkeits-Zeilensensor, der eine Linie mit 192 Lichtpunkten erzeugt, die die Probenoberfläche gleichzeitig abtasten, hat die Untersuchung zeitsparend gemacht und gleichzeitig eine unübertroffene Genauigkeit gewährleistet.

Die Makrofunktion der Erfassungssoftware ermöglicht die Programmierung automatischer Messungen der 3D-Oberflächenmorphologie in situ, was besonders für Langzeitmessungen mit mehreren Scans in bestimmten Zeitintervallen nützlich ist. Dies reduziert den Zeit- und Arbeitsaufwand sowie das Potenzial für Benutzerfehler erheblich. Die fortschreitenden Veränderungen der Oberflächenmorphologie werden kontinuierlich überwacht und in Echtzeit aufgezeichnet, während die Farbe trocknet, was wertvolle Einblicke in den Trocknungsmechanismus der Farbe ermöglicht.

Die hier gezeigten Daten stellen nur einen Bruchteil der in der Analysesoftware verfügbaren Berechnungen dar. NANOVEA Profilometer sind in der Lage, praktisch jede Oberfläche zu messen, egal ob sie transparent, dunkel, reflektierend oder undurchsichtig ist.

 

UND NUN ZU IHRER BEWERBUNG

Kommentar