アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

塗装表面の形態

塗装表面の形態

自動化されたリアルタイムの進化モニタリング
ナノベア3D形状計を使用

作成者

DUANJIE LI, PhD

はじめに

塗料の保護および装飾特性は、自動車、海洋、軍事、建築などさまざまな産業で重要な役割を果たしている。耐食性、紫外線保護、耐摩耗性など、望ましい特性を実現するために、塗料の配合や構造は注意深く分析され、改良され、最適化されます。

乾燥塗料表面の形態解析における3D非接触プロフィロメータの重要性

塗料は通常、液状で塗布され、溶剤を蒸発させ、液状の塗料を固体の膜に変化させる乾燥工程を経る。乾燥の過程で、塗料の表面は徐々にその形や質感を変えていく。添加剤を用いて塗料の表面張力や流動特性を変化させることで、さまざまな表面仕上げや質感を作り出すことができる。しかし、塗料の配合が不十分であったり、表面処理が不適切であったりした場合には、塗料の表面に望ましくない不具合が生じることがある。

乾燥期間中の塗料表面の形態をその場で正確にモニタリングすることで、乾燥メカニズムについての直接的な洞察が得られます。さらに、表面形態のリアルタイムの進化は、3D プリンティングなどのさまざまなアプリケーションにおいて非常に役立つ情報です。ナノベア 3D非接触形状計 サンプルに触れることなく材料の塗装表面の形態を測定し、スライドスタイラスなどの接触技術によって引き起こされる可能性のある形状の変化を回避します。

測定目的

このアプリケーションでは、高速ライン光学センサーを搭載したNANOVEA ST500非接触型プロフィロメーターを使用して、1時間の乾燥期間中の塗料表面の形態をモニターしています。連続的に形状が変化する材料の3Dプロファイルをリアルタイムで自動測定できるNANOVEA非接触型プロフィロメータの能力を紹介します。

ナノビア

ST500

結果・考察

金属板の表面に塗料を塗布した後、直ちに高速ラインセンサーを搭載したNANOVEA ST500非接触型プロフィロメーターを用いて、乾燥中の塗料の形態変化をその場で自動測定した。特定の時間間隔(0分、5分、10分、20分、30分、40分、50分、60分)で3D表面形態を自動的に測定・記録するマクロがプログラムされている。この自動化されたスキャン手順により、ユーザーは設定された手順を順番に実行することでスキャン作業を自動的に行うことができ、手作業によるテストや繰り返しスキャンと比較して、労力、時間、起こりうるユーザーエラーを大幅に削減することができる。この自動化は、異なる時間間隔での複数のスキャンを含む長期的な測定に非常に有用であることが証明されている。

光ラインセンサーは、図1に示すように、192点からなる輝線を生成する。この192個の光点が試料表面を同時にスキャンするため、スキャン速度が大幅に向上します。これにより、各3Dスキャンが迅速に完了し、個々のスキャン中に表面が大幅に変化するのを防ぎます。

図1: 乾燥中の塗料の表面をスキャンする光学式ラインセンサー。

図2、図3、および図4に、それぞれ代表的な時間における乾燥塗膜トポグラフィのフォールスカラー図、3D図、および2Dプロファイルを示す。画像の偽色は、容易に識別できない特徴の検出を容易にする。異なる色は、サンプル表面の異なる領域にわたる高さの変化を表しています。3Dビューは、ユーザーがさまざまな角度から塗装表面を観察するための理想的なツールを提供します。最初の30分間は、塗膜表面の偽色が暖色系から寒色系へと徐々に変化し、この間に時間の経過とともに高さが徐々に低くなっていくことを示しています。30分後と60分後の塗料を比較すると、色の変化が穏やかであることがわかる。

乾燥時間0分、30分、60分後の塗膜の全粗度分析を表1に示す。塗膜表面の平均高さは、最初の30分間の乾燥で471μmから329μmへと急速に減少していることが観察される。溶媒が気化すると同時に表面のテクスチャーが発達し、粗さSa値は7.19から22.6µmに増加した。その後、塗膜の乾燥は緩やかになり、60分後の試料高さは317 µm、Sa値は19.6 µmまで徐々に減少した。

この研究では、NANOVEA 3D非接触型プロフィロメーターが、乾燥中の塗料の3D表面変化をリアルタイムでモニタリングできることを明らかにし、塗料の乾燥プロセスに関する貴重な知見を提供します。サンプルに触れることなく表面形状を測定することで、スライディングスタイラスのような接触技術で起こりうる未乾燥塗料の形状変化を避けることができます。この非接触アプローチにより、乾燥中の塗料の表面形状を正確かつ確実に分析することができます。

図2: 乾燥時間の違いによる塗料表面の形態の変化。

図3: 異なる乾燥時間における塗料表面の変化の3Dビュー。

図4: 異なる乾燥時間後の塗料サンプルの2Dプロファイル。

図5: 塗料の乾燥時間による試料の平均高さと粗さSaの変化。

ISO25178

乾燥時間(分) 0 5 10 20 30 40 50 60
正方形(μm) 7.91 9.4 10.8 20.9 22.6 20.6 19.9 19.6
スクー 26.3 19.8 14.6 11.9 10.5 9.87 9.83 9.82
Sp (µm) 97.4 105 108 116 125 118 114 112
Sv (µm) 127 70.2 116 164 168 138 130 128
Sz (µm) 224 175 224 280 294 256 244 241
Sa (µm) 4.4 5.44 6.42 12.2 13.3 12.2 11.9 11.8

平方メートル 二乗平均平方根の高さ | スクー クルトーシス | Sp 最大ピーク高さ | Sv ピットの最大高さ | Sz 最高高さ | Sv 算術平均身長

表1: 乾燥時間の違いによる塗膜の粗さ。

まとめ

このアプリケーションでは、NANOVEA ST500 3D非接触型プロフィロメーターの能力を、乾燥過程における塗料表面の形態変化をモニターすることで紹介しました。サンプル表面を同時にスキャンする192個の光スポットからなるラインを生成する高速光学ラインセンサーにより、比類のない精度を確保しながら、時間効率の高い研究が可能になりました。

取得ソフトウェアのマクロ機能は、その場で3D表面形状の自動測定をプログラミングすることを可能にし、特定の目標時間間隔で複数のスキャンを含む長期測定に特に有用である。これにより、時間、労力、ユーザーエラーの可能性が大幅に削減される。表面形状の漸進的な変化は、塗料が乾燥するにつれてリアルタイムで連続的にモニター・記録されるため、塗料の乾燥メカニズムに関する貴重な知見が得られます。

ここに示したデータは、解析ソフトウェアで利用可能な計算のほんの一部です。NANOVEAプロフィロメーターは、透明、暗色、反射性、不透明を問わず、事実上あらゆる表面を測定することができます。

 

さて、次はアプリケーションについてです。

コメント