USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Kategorie: Hochtemperatur-Tribologie

 

Kratzhärte bei hohen Temperaturen mit einem Tribometer

HOHE TEMPERATUR-RITZHÄRTE

MIT EINEM TRIBOMETER

Vorbereitet von

DUANJIE, PhD

EINFÜHRUNG

Die Härte misst die Widerstandsfähigkeit von Materialien gegen dauerhafte oder plastische Verformung. Ursprünglich von dem deutschen Mineralogen Friedrich Mohs im Jahr 1820 entwickelt, bestimmt die Ritzhärteprüfung die Härte eines Materials gegenüber Kratzern und Abrieb durch Reibung mit einem scharfen Gegenstand1. Die Mohs'sche Skala ist ein Vergleichsindex und keine lineare Skala. Daher wurde eine genauere und qualitative Messung der Ritzhärte entwickelt, die in der ASTM-Norm G171-03 beschrieben ist.2. Es misst die durchschnittliche Breite des von einem Diamantstift erzeugten Kratzers und berechnet die Ritzhärtezahl (HSP).

BEDEUTUNG DER MESSUNG DER RITZHÄRTE BEI HOHEN TEMPERATUREN

Die Auswahl der Werkstoffe richtet sich nach den Einsatzanforderungen. Bei Anwendungen, die mit erheblichen Temperaturschwankungen und thermischen Gradienten verbunden sind, ist es von entscheidender Bedeutung, die mechanischen Eigenschaften von Materialien bei hohen Temperaturen zu untersuchen, um die mechanischen Grenzen genau zu kennen. Werkstoffe, insbesondere Polymere, werden bei hohen Temperaturen normalerweise weicher. Viele mechanische Ausfälle werden durch Kriechverformung und thermische Ermüdung verursacht, die nur bei hohen Temperaturen auftreten. Daher ist ein zuverlässiges Verfahren zur Messung der Härte bei hohen Temperaturen erforderlich, um die richtige Auswahl der Materialien für Hochtemperaturanwendungen zu gewährleisten.

MESSZIEL

In dieser Studie misst das NANOVEA T50 Tribometer die Kratzhärte einer Teflonprobe bei verschiedenen Temperaturen von Raumtemperatur bis 300 °C. Die Fähigkeit zur Durchführung von Kratzhärtemessungen bei hohen Temperaturen zeichnet das NANOVEA aus Tribometer ein vielseitiges System zur tribologischen und mechanischen Bewertung von Materialien für Hochtemperaturanwendungen.

NANOVEA

T50

TESTBEDINGUNGEN

Mit dem NANOVEA T50 Free Weight Standard Tribometer wurden die Ritzhärtetests an einer Teflonprobe bei Temperaturen zwischen Raumtemperatur (RT) und 300°C durchgeführt. Teflon hat einen Schmelzpunkt von 326,8°C. Es wurde ein konischer Diamantstift mit einem Scheitelwinkel von 120° und einem Spitzenradius von 200 µm verwendet. Die Teflonprobe wurde auf dem rotierenden Probentisch mit einem Abstand von 10 mm zur Tischmitte fixiert. Die Probe wurde in einem Ofen aufgeheizt und bei Temperaturen von RT, 50°C, 100°C, 150°C, 200°C, 250°C und 300°C geprüft.

PRÜFPARAMETER

der Hochtemperatur-Ritzhärtemessung

NORMALE KRAFT 2 N
GLEITGESCHWINDIGKEIT 1 mm/s
GLEITSTRECKE 8 mm pro Temperatur
ATMOSPHÄRE Luft
TEMPERATUR RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

ERGEBNISSE & DISKUSSION

Die Kratzspurprofile der Teflonprobe bei verschiedenen Temperaturen sind in ABBILDUNG 1 dargestellt, um die Kratzhärte bei verschiedenen erhöhten Temperaturen zu vergleichen. Die Materialanhäufung an den Ritzspurkanten bildet sich, wenn der Stift mit einer konstanten Last von 2 N in die Teflonprobe eindringt und das Material in der Ritzspur zur Seite drückt und verformt.

Die Kratzspuren wurden unter dem Lichtmikroskop untersucht, wie in ABBILDUNG 2 dargestellt. Die gemessenen Kratzspurbreiten und berechneten Ritzhärtezahlen (HSP) sind in ABBILDUNG 3 zusammengefasst und verglichen. Die mit dem Mikroskop gemessene Kratzspurbreite stimmt mit der mit dem NANOVEA Profiler gemessenen überein - die Teflonprobe weist bei höheren Temperaturen eine größere Kratzspurbreite auf. Die Kratzspurbreite steigt von 281 auf 539 µm, wenn die Temperatur von RT auf 300oC ansteigt, was zu einem Rückgang des HSP von 65 auf 18 MPa führt.

Die Ritzhärte bei erhöhten Temperaturen kann mit dem NANOVEA T50 Tribometer mit hoher Präzision und Wiederholbarkeit gemessen werden. Es bietet eine alternative Lösung zu anderen Härtemessungen und macht die NANOVEA Tribometer zu einem kompletten System für umfassende tribomechanische Hochtemperaturauswertungen.

ABBILDUNG 1: Kratzspurprofile nach den Ritzhärtetests bei verschiedenen Temperaturen.

ABBILDUNG 2: Kratzspuren unter dem Mikroskop nach den Messungen bei verschiedenen Temperaturen.

ABBILDUNG 3: Entwicklung der Kratzspurbreite und der Kratzhärte in Abhängigkeit von der Temperatur.

SCHLUSSFOLGERUNG

In dieser Studie zeigen wir, wie das NANOVEA Tribometer die Ritzhärte bei erhöhten Temperaturen in Übereinstimmung mit der ASTM G171-03 misst. Die Prüfung der Ritzhärte bei konstanter Belastung bietet eine einfache Lösung für den Vergleich der Härte von Materialien mit dem Tribometer. Die Möglichkeit, Ritzhärtemessungen bei erhöhten Temperaturen durchzuführen, macht das NANOVEA Tribometer zu einem idealen Werkzeug für die Bewertung der tribomechanischen Eigenschaften von Materialien bei hohen Temperaturen.

Tribometer bieten präzise und wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi, wobei optionale Module für Hochtemperaturverschleiß, Schmierung und Tribokorrosion in einem vorintegrierten System erhältlich sind. Ein optionaler berührungsloser 3D-Profiler ist für hohe

1 Wredenberg, Fredrik; PL Larsson (2009). "Kratzprüfung von Metallen und Polymeren: Experiments and numerics". Wear 266 (1-2): 76
2 ASTM G171-03 (2009), "Standard Test Method for Scratch Hardness of Materials Using a Diamond Stylus".

UND NUN ZU IHRER BEWERBUNG

In-Situ-Verschleißmessung bei hoher Temperatur

IN-SITU-VERSCHLEISSMESSUNG BEI HOHER TEMPERATUR

MIT TRIBOMETER

IN-SITU-VerschleißMESSUNG Tribometer für die Luft- und Raumfahrt

Vorbereitet von

Duanjie Li, PhD

EINFÜHRUNG

Der lineare variable Differenzialtransformator (LVDT) ist eine Art robuster elektrischer Transformator, der zur Messung linearer Verschiebungen verwendet wird. Er wird in einer Vielzahl industrieller Anwendungen eingesetzt, z. B. in Leistungsturbinen, Hydraulik, Automatisierung, Flugzeugen, Satelliten, Kernreaktoren und vielen anderen.

In dieser Studie stellen wir die Add-ons von LVDT und Hochtemperaturmodulen des NANOVEA vor Tribometer die es ermöglichen, die Änderung der Verschleißspurtiefe der getesteten Probe während des Verschleißprozesses bei erhöhten Temperaturen zu messen. Dies ermöglicht es Benutzern, verschiedene Phasen des Verschleißprozesses mit der Entwicklung des COF zu korrelieren, was für die Verbesserung des grundlegenden Verständnisses des Verschleißmechanismus und der tribologischen Eigenschaften der Materialien für Hochtemperaturanwendungen von entscheidender Bedeutung ist.

MESSZIEL

In dieser Studie möchten wir die Leistungsfähigkeit des NANOVEA T50 Tribometers für die In-situ-Überwachung der Entwicklung des Verschleißprozesses von Materialien bei erhöhten Temperaturen vorstellen.

Der Verschleißprozess der Aluminiumsilikatkeramik bei unterschiedlichen Temperaturen wird kontrolliert und überwacht simuliert.

NANOVEA

T50

TESTVORGANG

Das tribologische Verhalten, z. B. der Reibungskoeffizient (COF) und die Verschleißfestigkeit von Aluminiumsilikat-Keramikplatten, wurde mit dem NANOVEA Tribometer untersucht. Die Aluminiumsilikat-Keramikplatte wurde in einem Ofen von Raumtemperatur (RT) auf höhere Temperaturen (400°C und 800°C) aufgeheizt und anschließend bei diesen Temperaturen auf Verschleiß getestet. 

Zum Vergleich wurden die Verschleißtests durchgeführt, als die Probe von 800°C auf 400°C und dann auf Raumtemperatur abgekühlt war. Eine AI2O3-Kugelspitze (Ø 6 mm, Sorte 100) wurde auf die getesteten Proben aufgesetzt. Die COF, die Verschleißtiefe und die Temperatur wurden in situ überwacht.

PRÜFPARAMETER

der Pin-on-Disk-Messung

Tribometer LVDT Probe

Die Verschleißrate K wurde nach der Formel K=V/(Fxs)=A/(Fxn) ermittelt, wobei V das verschlissene Volumen, F die Normallast, s der Gleitweg, A die Querschnittsfläche der Verschleißspur und n die Anzahl der Umdrehungen ist. Die Oberflächenrauheit und die Profile der Verschleißspuren wurden mit dem NANOVEA Optical Profiler ausgewertet, und die Morphologie der Verschleißspuren wurde mit einem optischen Mikroskop untersucht.

ERGEBNISSE & DISKUSSION

Die in situ aufgezeichnete COF und Verschleißspurtiefe sind in ABBILDUNG 1 bzw. ABBILDUNG 2 dargestellt. In ABBILDUNG 1 bezeichnet "-I" den Test, der durchgeführt wurde, als die Temperatur von RT auf eine erhöhte Temperatur erhöht wurde. "-D" steht für die Temperatur, die von einer höheren Temperatur von 800°C herabgesetzt wurde.

Wie in ABBILDUNG 1 dargestellt, weisen die bei verschiedenen Temperaturen getesteten Proben während der gesamten Messungen einen vergleichbaren COF von ~0,6 auf. Ein solch hoher COF führt zu einem beschleunigten Verschleißprozess, bei dem eine erhebliche Menge an Abrieb entsteht. Die Tiefe der Verschleißspur wurde während der Verschleißtests mittels LVDT überwacht (siehe ABBILDUNG 2). Die Tests, die bei Raumtemperatur vor dem Aufheizen der Probe und nach dem Abkühlen der Probe durchgeführt wurden, zeigen, dass die Aluminiumoxid-Silikat-Keramikplatte bei RT einen fortschreitenden Verschleißprozess aufweist, wobei die Verschleißspurtiefe während des Verschleißtests allmählich auf ~170 bzw. ~150 μm ansteigt. 

Im Vergleich dazu weisen die Verschleißtests bei erhöhten Temperaturen (400°C und 800°C) ein anderes Verschleißverhalten auf - die Verschleißspurtiefe nimmt zu Beginn des Verschleißprozesses rasch zu und verlangsamt sich im weiteren Verlauf des Tests. Die Verschleißspurtiefen für Tests, die bei Temperaturen von 400°C-I, 800°C und 400°C-D durchgeführt wurden, betragen ~140, ~350 bzw. ~210 μm.

COF bei Pin-on-Desk-Tests bei verschiedenen Temperaturen

ABBILDUNG 1. Reibungskoeffizient bei Stift-auf-Scheibe-Tests bei verschiedenen Temperaturen

Verschleißspurtiefe der Aluminiumsilikat-Keramikplatte bei verschiedenen Temperaturen

ABBILDUNG 2. Entwicklung der Verschleißspurtiefe der Aluminiumsilikat-Keramikplatte bei verschiedenen Temperaturen

Die durchschnittliche Verschleißrate und die Verschleißspurtiefe der Aluminiumsilikat-Keramikplatten bei verschiedenen Temperaturen wurden mit NANOVEA Optischer Profiler, zusammengefasst in ABBILDUNG 3. Die Tiefe der Verschleißspur stimmt mit der mittels LVDT aufgezeichneten überein. Die Aluminiumoxid-Silikat-Keramikplatte weist bei 800°C eine deutlich erhöhte Verschleißrate von ~0,5 mm3/Nm auf, verglichen mit den Verschleißraten unter 0,2mm3/N bei Temperaturen unter 400°C. Die Aluminiumoxid-Silikat-Keramikplatte weist nach dem kurzen Erhitzungsprozess keine signifikant verbesserten mechanischen/tribologischen Eigenschaften auf und besitzt eine vergleichbare Verschleißrate vor und nach der Wärmebehandlung.

Aluminiumoxid-Silikatkeramik, auch bekannt als Lava und Wunderstein, ist vor der Wärmebehandlung weich und bearbeitbar. Durch einen langen Brennvorgang bei hohen Temperaturen von bis zu 1093 °C kann die Härte und Festigkeit erheblich gesteigert werden, woraufhin eine Diamantbearbeitung erforderlich ist. Diese einzigartige Eigenschaft macht Tonerdesilikatkeramik zu einem idealen Material für die Bildhauerei.

In dieser Studie zeigen wir, dass eine Wärmebehandlung bei einer niedrigeren Temperatur als der für das Brennen erforderlichen (800°C vs. 1093°C) in kurzer Zeit die mechanischen und tribologischen Eigenschaften von Aluminiumsilikatkeramik nicht verbessert, so dass ein ordnungsgemäßes Brennen ein wesentlicher Prozess für dieses Material vor seiner Verwendung in realen Anwendungen ist.

 
Verschleißrate und Verschleißspurtiefe der Probe bei verschiedenen Temperaturen 1

FIGUR 3. Verschleißrate und Verschleißspurtiefe der Probe bei verschiedenen Temperaturen

SCHLUSSFOLGERUNG

Auf der Grundlage der umfassenden tribologischen Analyse in dieser Studie zeigen wir, dass die Aluminiumoxid-Silikat-Keramikplatte einen vergleichbaren Reibungskoeffizienten bei verschiedenen Temperaturen von Raumtemperatur bis 800 °C aufweist. Allerdings zeigt sie bei 800°C eine deutlich erhöhte Verschleißrate von ~0,5 mm3/Nm, was die Bedeutung einer ordnungsgemäßen Wärmebehandlung dieser Keramik unterstreicht.

NANOVEA Tribometer sind in der Lage, die tribologischen Eigenschaften von Materialien für Anwendungen bei hohen Temperaturen bis zu 1000°C zu bewerten. Die Funktion der In-situ-COF- und Verschleißspurtiefenmessung ermöglicht es dem Anwender, verschiedene Stadien des Verschleißprozesses mit der Entwicklung der COF zu korrelieren, was für die Verbesserung des grundlegenden Verständnisses des Verschleißmechanismus und der tribologischen Eigenschaften der bei hohen Temperaturen verwendeten Materialien entscheidend ist.

NANOVEA Tribometer bieten präzise und wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi, mit optionalen Modulen für Hochtemperaturverschleiß, Schmierung und Tribokorrosion in einem vorintegrierten System. Das unübertroffene Angebot von NANOVEA ist die ideale Lösung für die Bestimmung der gesamten Bandbreite tribologischer Eigenschaften von dünnen oder dicken, weichen oder harten Beschichtungen, Filmen und Substraten.

Optional sind berührungslose 3D-Profiler für die hochauflösende 3D-Darstellung von Verschleißspuren zusätzlich zu anderen Oberflächenmessungen wie z. B. der Rauheit erhältlich.

IN-SITU-VERSCHLEISSMESSUNG

UND NUN ZU IHRER BEWERBUNG

Rotativer oder linearer Verschleiß & COF? (Eine umfassende Studie unter Verwendung des Nanovea Tribometers)

Unter Verschleiß versteht man den Prozess der Abtragung und Verformung von Material auf einer Oberfläche infolge der mechanischen Einwirkung der gegenüberliegenden Oberfläche. Es wird durch eine Vielzahl von Faktoren beeinflusst, darunter unidirektionales Gleiten, Rollen, Geschwindigkeit, Temperatur und viele andere. Das Studium des Verschleißes, der Tribologie, umfasst viele Disziplinen, von Physik und Chemie bis hin zu Maschinenbau und Materialwissenschaften. Die komplexe Natur des Verschleißes erfordert isolierte Studien zu spezifischen Verschleißmechanismen oder -prozessen, wie z. B. adhäsiver Verschleiß, abrasiver Verschleiß, Oberflächenermüdung, Reibverschleiß und erosiver Verschleiß. Bei „industrieller Abnutzung“ handelt es sich jedoch häufig um mehrere Verschleißmechanismen, die synergetisch wirken.

Lineare hin- und hergehende und rotative Verschleißtests (Stift auf Scheibe) sind zwei weit verbreitete ASTM-konforme Aufbauten zur Messung des Gleitverschleißverhaltens von Materialien. Da der Verschleißratenwert einer Verschleißtestmethode häufig zur Vorhersage der relativen Rangfolge von Materialkombinationen verwendet wird, ist es äußerst wichtig, die Wiederholbarkeit der mit verschiedenen Testaufbauten gemessenen Verschleißrate zu bestätigen. Dadurch können Benutzer den in der Literatur angegebenen Verschleißratenwert sorgfältig berücksichtigen, was für das Verständnis der tribologischen Eigenschaften von Materialien von entscheidender Bedeutung ist.

Mehr lesen!

Bewertung von Bremsbelägen mit Tribologie


Wichtigkeit der Bewertung der Bremsbelagleistung

Bremsbeläge sind Verbundwerkstoffe, d. h. ein Material, das aus mehreren Bestandteilen besteht und eine Vielzahl von Sicherheitsanforderungen erfüllen muss. Ideale Bremsbeläge haben einen hohen Reibungskoeffizienten (COF), eine geringe Verschleißrate, minimale Geräuschentwicklung und bleiben auch unter wechselnden Bedingungen zuverlässig. Um sicherzustellen, dass die Qualität der Bremsbeläge den Anforderungen entspricht, können mit Hilfe von tribologischen Tests kritische Spezifikationen ermittelt werden.


Die Zuverlässigkeit von Bremsbelägen ist von großer Bedeutung; die Sicherheit der Fahrgäste darf niemals vernachlässigt werden. Daher ist es von entscheidender Bedeutung, die Betriebsbedingungen zu reproduzieren und mögliche Fehlerstellen zu identifizieren.
Mit dem Nanovea TribometerDabei wird eine konstante Last zwischen einem Stift, einer Kugel oder einer Fläche und einem sich ständig bewegenden Gegenmaterial ausgeübt. Die Reibung zwischen den beiden Materialien wird mit einer steifen Wägezelle erfasst, was die Erfassung von Materialeigenschaften bei unterschiedlichen Belastungen und Geschwindigkeiten ermöglicht und in Umgebungen mit hohen Temperaturen, Korrosion oder Flüssigkeiten getestet wird.



Messung Zielsetzung

In dieser Studie wurde der Reibungskoeffizient der Bremsbeläge unter einer kontinuierlich ansteigenden Umgebungstemperatur von Raumtemperatur bis 700°C untersucht. Die Umgebungstemperatur wurde in-situ erhöht, bis ein spürbares Versagen des Bremsbelags beobachtet wurde. Ein Thermoelement wurde auf der Rückseite des Stifts angebracht, um die Temperatur in der Nähe der Gleitfläche zu messen.



Testverfahren und -abläufe




Ergebnisse und Diskussion

Diese Studie konzentriert sich hauptsächlich auf die Temperatur, bei der Bremsbeläge zu versagen beginnen. Die ermittelten COF entsprechen nicht den realen Werten; das Material der Stifte ist nicht dasselbe wie das der Bremsscheiben. Außerdem ist zu beachten, dass es sich bei den erfassten Temperaturdaten um die Temperatur des Stifts und nicht um die Temperatur der Gleitfläche handelt

 








Zu Beginn des Tests (Raumtemperatur) ergab der COF zwischen dem SS440C-Stift und dem Bremsbelag einen konstanten Wert von etwa 0,2. Mit steigender Temperatur nahm der COF stetig zu und erreichte bei 350°C einen Spitzenwert von 0,26. Nach 390°C beginnt der COF schnell zu sinken. Bei 450°C beginnt der COF wieder auf 0,2 anzusteigen, sinkt aber kurz darauf auf einen Wert von 0,05.


Die Temperatur, bei der die Bremsbeläge durchweg versagten, wurde bei Temperaturen über 500°C ermittelt. Jenseits dieser Temperatur war der COF nicht mehr in der Lage, den Ausgangswert von 0,2 beizubehalten.



Schlussfolgerung




Die Bremsbeläge haben bei einer Temperatur von über 500°C durchweg versagt. Ihr COF von 0,2 steigt langsam auf einen Wert von 0,26 an, bevor er am Ende des Tests (580°C) auf 0,05 sinkt. Der Unterschied zwischen 0,05 und 0,2 ist ein Faktor von 4. Das bedeutet, dass die Normalkraft bei 580°C viermal so hoch sein muss wie bei Raumtemperatur, um die gleiche Bremskraft zu erreichen!


Das Nanovea Tribometer ist zwar nicht Teil dieser Studie, kann aber auch Tests durchführen, um eine andere wichtige Eigenschaft von Bremsbelägen zu beobachten: die Verschleißrate. Durch den Einsatz unserer berührungslosen 3D-Profilometer kann das Volumen der Verschleißspur ermittelt werden, um zu berechnen, wie schnell sich die Proben abnutzen. Verschleißtests können mit dem Nanovea Tribometer unter verschiedenen Testbedingungen und Umgebungen durchgeführt werden, um die Betriebsbedingungen bestmöglich zu simulieren.

UND NUN ZU IHRER BEWERBUNG

Hochtemperatur-Tribologie

Kratzhärte bei hohen Temperaturen mit Tribometer

Die Auswahl der Werkstoffe richtet sich nach den Einsatzanforderungen. Bei Anwendungen, die mit erheblichen Temperaturschwankungen und thermischen Gradienten verbunden sind, ist es von entscheidender Bedeutung, die mechanischen Eigenschaften von Materialien bei hohen Temperaturen zu untersuchen, um die mechanischen Grenzen genau zu kennen. Werkstoffe, insbesondere Polymere, werden bei hohen Temperaturen normalerweise weicher. Viele mechanische Ausfälle werden durch Kriechverformung und thermische Ermüdung verursacht, die nur bei hohen Temperaturen auftreten. Daher ist ein zuverlässiges Verfahren zur Messung der Ritzhärte bei hohen Temperaturen erforderlich, um die richtige Auswahl der Materialien für Hochtemperaturanwendungen zu gewährleisten.

Kratzhärte bei hohen Temperaturen mit Tribometer