USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Kategorie: Profilometrische Prüfung

 

Tribologie der Polymere

Einführung

Polymere werden in einer Vielzahl von Anwendungen eingesetzt und sind aus dem täglichen Leben nicht mehr wegzudenken. Natürliche Polymere wie Bernstein, Seide und Naturkautschuk haben in der Geschichte der Menschheit eine wesentliche Rolle gespielt. Der Herstellungsprozess von synthetischen Polymeren kann optimiert werden, um einzigartige physikalische Eigenschaften wie Zähigkeit, Viskoelastizität, Selbstschmierung und viele andere zu erzielen.

Bedeutung des Verschleißes und der Reibung von Polymeren

Polymere werden in der Regel für tribologische Anwendungen wie Reifen, Lager und Förderbänder verwendet.
Je nach den mechanischen Eigenschaften des Polymers, den Kontaktbedingungen und den Eigenschaften des während des Verschleißvorgangs gebildeten Abriebs oder Transferfilms treten unterschiedliche Verschleißmechanismen auf. Um sicherzustellen, dass die Polymere unter den Einsatzbedingungen eine ausreichende Verschleißfestigkeit aufweisen, ist eine zuverlässige und quantifizierbare tribologische Bewertung erforderlich. Die tribologische Bewertung ermöglicht einen kontrollierten und überwachten quantitativen Vergleich des Verschleißverhaltens verschiedener Polymere, um das geeignete Material für die gewünschte Anwendung auszuwählen.

Das Nanovea Tribometer bietet wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi, mit optionalen Hochtemperatur-Verschleiß- und Schmiermodulen, die in einem vorintegrierten System erhältlich sind. Mit diesem unübertroffenen Angebot können Benutzer die verschiedenen Arbeitsumgebungen der Polymere simulieren, einschließlich konzentrierter Belastung, Verschleiß und hoher Temperatur usw.

MESSZIEL

In dieser Studie haben wir gezeigt, dass Nanovea Tribometer ist ein ideales Werkzeug, um die Reibungs- und Verschleißfestigkeit verschiedener Polymere kontrolliert und quantitativ zu vergleichen.

TESTVORGANG

Der Reibungskoeffizient (COF) und die Verschleißfestigkeit verschiedener gängiger Polymere wurden mit dem Nanovea Tribometer bewertet. Als Gegenmaterial (Stift, statische Probe) wurde eine Al2O3-Kugel verwendet. Die Verschleißspuren auf den Polymeren (dynamisch rotierende Proben) wurden mit a gemessen berührungsloses 3D-Profilometer und optisches Mikroskop nach Abschluss der Tests. Es ist zu beachten, dass optional ein berührungsloser endoskopischer Sensor zur Messung der Eindringtiefe des Stifts in die dynamische Probe während eines Verschleißtests verwendet werden kann. Die Testparameter sind in Tabelle 1 zusammengefasst. Die Verschleißrate K wurde mithilfe der Formel K=Vl(Fxs) bewertet, wobei V das abgenutzte Volumen, F die normale Belastung und s die Gleitstrecke ist.

Bitte beachten Sie, dass in dieser Studie Al2O3-Kugeln als Gegenmaterial verwendet wurden. Jedes feste Material kann ersetzt werden, um die Leistung von zwei Proben unter realen Anwendungsbedingungen besser zu simulieren.

ERGEBNISSE UND DISKUSSION

Die Verschleißrate ist ein wichtiger Faktor für die Bestimmung der Lebensdauer der Materialien, während die Reibung bei tribologischen Anwendungen eine entscheidende Rolle spielt. Abbildung 2 vergleicht die Entwicklung der COF für verschiedene Polymere gegen die Al2O3-Kugel während der Verschleißtests. Die COF dient als Indikator dafür, wann es zu Ausfällen kommt und der Verschleißprozess in eine neue Phase eintritt. Von den getesteten Polymeren weist HDPE die niedrigste konstante COF von ~0,15 während des gesamten Verschleißtests auf. Die gleichmäßige COF bedeutet, dass sich ein stabiler Tribokontakt bildet.

In Abbildung 3 und Abbildung 4 werden die Verschleißspuren der Polymerproben nach dem Test mit dem Lichtmikroskop gemessen. Das berührungslose In-situ-3D-Profilometer bestimmt präzise das Abnutzungsvolumen der Polymerproben und ermöglicht die genaue Berechnung von Abnutzungsraten von 0,0029, 0,0020 bzw. 0,0032m3/N m. Im Vergleich dazu zeigt die CPVC-Probe die höchste Verschleißrate von 0,1121 m3/N m. In der Verschleißspur von CPVC sind tiefe parallele Verschleißnarben vorhanden.

SCHLUSSFOLGERUNG

Die Verschleißfestigkeit der Polymere spielt eine entscheidende Rolle für ihre Einsatzfähigkeit. In dieser Studie haben wir gezeigt, dass das Nanovea Tribometer den Reibungskoeffizienten und die Verschleißrate verschiedener Polymere in einem
gut kontrollierten und quantitativen Weise. HDPE weist unter den getesteten Polymeren den niedrigsten COF von ~0,15 auf. HDPE-, Nylon 66- und Polypropylen-Proben weisen niedrige Verschleißraten von 0,0029, 0,0020 bzw. 0,0032 m3/N m auf. Die Kombination aus geringer Reibung und hoher Verschleißfestigkeit macht HDPE zu einem guten Kandidaten für tribologische Anwendungen von Polymeren.

Das berührungslose In-situ-3D-Profilometer ermöglicht eine präzise Messung des Verschleißvolumens und bietet ein Werkzeug zur Analyse der detaillierten Morphologie der Verschleißspuren, was einen besseren Einblick in das grundlegende Verständnis der Verschleißmechanismen ermöglicht.

UND NUN ZU IHRER BEWERBUNG

Oberflächenbeschaffenheit von Wabenplatten mit 3D-Profilometrie

EINFÜHRUNG


Rauheit, Porosität und Textur der Oberfläche von Wabenplatten sind für das endgültige Plattendesign von entscheidender Bedeutung. Diese Oberflächenqualitäten können direkt mit der Ästhetik und den funktionalen Eigenschaften der Plattenoberfläche korrelieren. Ein besseres Verständnis der Oberflächentextur und -porosität kann dazu beitragen, die Verarbeitung und Herstellbarkeit der Plattenoberfläche zu optimieren. Eine quantitative, präzise und zuverlässige Oberflächenmessung der Wabenplatte ist erforderlich, um die Oberflächenparameter für die Anwendung und die Lackieranforderungen zu kontrollieren. Die berührungslosen Nanovea 3D-Sensoren nutzen eine einzigartige chromatische Konfokaltechnologie, die eine präzise Messung dieser Plattenoberflächen ermöglicht.



MESSZIEL


In dieser Studie wurde die Nanovea HS2000-Plattform, die mit einem Hochgeschwindigkeits-Liniensensor ausgestattet ist, verwendet, um zwei Wabenplatten mit unterschiedlichen Oberflächenbeschaffenheiten zu messen und zu vergleichen. Wir präsentieren den Nanovea berührungsloses ProfilometerDie Fähigkeit des Unternehmens, schnelle und präzise 3D-Profilmessungen und eine umfassende, tiefgehende Analyse der Oberflächenbeschaffenheit durchzuführen.



ERGEBNISSE UND DISKUSSION

Die Oberfläche von zwei Wabenplattenmustern mit unterschiedlicher Oberflächenbeschaffenheit, nämlich Probe 1 und Probe 2, wurde gemessen. Die Falschfarben- und 3D-Ansicht der Oberflächen der Proben 1 und 2 sind in Abbildung 3 bzw. Abbildung 4 dargestellt. Die Rauheits- und Ebenheitswerte wurden mit einer fortschrittlichen Analysesoftware berechnet und werden in Tabelle 1 verglichen. Probe 2 weist im Vergleich zu Probe 1 eine porösere Oberfläche auf. Infolgedessen weist Probe 2 einen höheren Rauheitswert Sa von 14,7 µm auf, verglichen mit einem Sa-Wert von 4,27 µm für Probe 1.

Die 2D-Profile der Wabenplattenoberflächen wurden in Abbildung 5 verglichen, um dem Benutzer einen visuellen Vergleich der Höhenänderung an verschiedenen Stellen der Probenoberfläche zu ermöglichen. Wir können feststellen, dass Probe 1 eine Höhenvariation von ~25 µm zwischen der höchsten Spitze und der niedrigsten Talstelle aufweist. Andererseits weist Probe 2 mehrere tiefe Poren im gesamten 2D-Profil auf. Die fortschrittliche Analysesoftware ist in der Lage, die Tiefe von sechs relativ tiefen Poren automatisch zu lokalisieren und zu messen, wie in der Tabelle in Abbildung 4.b Probe 2 dargestellt. Die tiefste der sechs Poren weist eine maximale Tiefe von fast 90 µm auf (Schritt 4).

Um die Porengröße und -verteilung von Probe 2 weiter zu untersuchen, wurde eine Porositätsbewertung durchgeführt, die im folgenden Abschnitt erläutert wird. Die Schnittansicht ist in Abbildung 5 dargestellt und die Ergebnisse sind in Tabelle 2 zusammengefasst. Wir können feststellen, dass die Poren, die in Abbildung 5 blau markiert sind, eine relativ homogene Verteilung auf der Probenoberfläche aufweisen. Die projizierte Fläche der Poren macht 18,9% der gesamten Probenoberfläche aus. Das Volumen pro mm² der gesamten Poren beträgt ~0,06 mm³. Die Poren haben eine durchschnittliche Tiefe von 42,2 µm, und die maximale Tiefe beträgt 108,1 µm.

SCHLUSSFOLGERUNG



In dieser Anwendung haben wir gezeigt, dass die Nanovea HS2000 Plattform, die mit einem Hochgeschwindigkeits-Zeilensensor ausgestattet ist, ein ideales Werkzeug für die schnelle und genaue Analyse und den Vergleich der Oberflächenbeschaffenheit von Wabenplattenproben ist. Die hochauflösenden profilometrischen Scans in Verbindung mit einer fortschrittlichen Analysesoftware ermöglichen eine umfassende und quantitative Bewertung der Oberflächenbeschaffenheit von Wabenplattenproben.

Die hier gezeigten Daten stellen nur einen kleinen Teil der in der Analysesoftware verfügbaren Berechnungen dar. Nanovea Profilometer messen praktisch jede Oberfläche für eine Vielzahl von Anwendungen in der Halbleiter-, Mikroelektronik-, Solar-, Faseroptik-, Automobil-, Luft- und Raumfahrt-, Metallurgie-, Bearbeitungs-, Beschichtungs-, Pharma-, Biomedizin-, Umwelt- und vielen anderen Branchen.

UND NUN ZU IHRER BEWERBUNG

Verständnis von Beschichtungsfehlern durch Kratztests

Einleitung:

Die Oberflächentechnik von Werkstoffen spielt eine wichtige Rolle bei einer Vielzahl von funktionellen Anwendungen, die vom dekorativen Aussehen bis zum Schutz der Substrate vor Verschleiß, Korrosion und anderen Angriffen reichen. Ein wichtiger und übergeordneter Faktor, der die Qualität und Lebensdauer der Beschichtungen bestimmt, ist ihre Kohäsions- und Haftfestigkeit.

Zum Lesen hier klicken!

Hochgeschwindigkeits-Scannen mit berührungsloser Profilometrie

Einleitung:

Schnell und einfach einzurichtende Oberflächenmessungen sparen Zeit und Aufwand und sind für die Qualitätskontrolle, Forschung und Entwicklung sowie Produktionsanlagen unerlässlich. Der Nanovea Berührungsloses Profilometer ist in der Lage, sowohl 3D- als auch 2D-Oberflächenscans durchzuführen, um Merkmale im Nano- bis Makromaßstab auf jeder Oberfläche zu messen und bietet so eine breite Einsatzmöglichkeit.

Zum Lesen hier klicken!

Oberflächenrauhigkeit und Eigenschaften einer Solarzelle

Die Bedeutung der Solarmodulprüfung

Die Maximierung der Energieabsorption einer Solarzelle ist der Schlüssel für das Überleben dieser Technologie als erneuerbare Ressource. Die verschiedenen Beschichtungs- und Glasschutzschichten ermöglichen die Absorption, Durchlässigkeit und Reflexion von Licht, die für das Funktionieren der Solarzellen erforderlich sind. Da die meisten Verbraucher-Solarzellen mit einem Wirkungsgrad von 15-18% arbeiten, ist die Optimierung ihrer Energieausbeute ein ständiger Kampf.


Studien haben gezeigt, dass die Oberflächenrauhigkeit eine entscheidende Rolle bei der Lichtreflexion spielt. Die erste Glasschicht muss so glatt wie möglich sein, um die Lichtreflexion zu vermindern, aber die nachfolgenden Schichten folgen nicht dieser Vorgabe. An den Grenzflächen zwischen den einzelnen Schichten ist ein gewisses Maß an Rauheit erforderlich, um die Möglichkeit der Lichtstreuung in den jeweiligen Verarmungszonen zu erhöhen und die Lichtabsorption innerhalb der Zelle zu steigern1. Die Optimierung der Oberflächenrauheit in diesen Bereichen ermöglicht es der Solarzelle, optimal zu funktionieren, und mit dem Nanovea HS2000 High Speed Sensor kann die Oberflächenrauheit schnell und genau gemessen werden.



Messung Zielsetzung

In dieser Studie werden wir die Möglichkeiten des Nanovea Profilometer HS2000 mit Hochgeschwindigkeitssensor durch Messung der Oberflächenrauheit und der geometrischen Merkmale einer Solarzelle. Für diese Demonstration wird eine monokristalline Solarzelle ohne Schutzglas gemessen, aber die Methodik kann auch für verschiedene andere Anwendungen verwendet werden.




Testverfahren und -abläufe

Die folgenden Testparameter wurden zur Messung der Oberfläche der Solarzelle verwendet.




Ergebnisse und Diskussion

Die folgende Abbildung zeigt die 2D-Falschfarbenansicht der Solarzelle und eine Flächenextraktion der Oberfläche mit den entsprechenden Höhenparametern. Auf beide Oberflächen wurde ein Gauß-Filter angewendet und ein aggressiverer Index verwendet, um die extrahierte Fläche zu glätten. Dadurch werden Formen (oder Welligkeiten), die größer als der Cut-off-Index sind, ausgeschlossen, so dass Merkmale zurückbleiben, die die Rauheit der Solarzelle darstellen.











Zur Messung der geometrischen Merkmale wurde ein Profil senkrecht zur Ausrichtung der Rasterlinien aufgenommen, das unten abgebildet ist. Die Breite der Gitterlinien, die Stufenhöhe und der Abstand können an jeder beliebigen Stelle der Solarzelle gemessen werden.









Schlussfolgerung





In dieser Studie konnten wir die Fähigkeit des Nanovea HS2000 Zeilensensors zur Messung der Oberflächenrauhigkeit und -merkmale einer monokristallinen Photovoltaikzelle zeigen. Mit der Möglichkeit, genaue Messungen mehrerer Proben zu automatisieren und Grenzwerte für das Bestehen und Nichtbestehen festzulegen, ist der Nanovea HS2000 Zeilensensor eine perfekte Wahl für Qualitätskontrollprüfungen.

Referenz

1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. "Influence of Surface Roughness on Optical Characteristics of Multilayer Solar Cells " Advances in Electrical and Electronic Engineering, vol. 12, no. 6, 2014, pp. 631-638.

UND NUN ZU IHRER BEWERBUNG

Vergleich der Abriebfestigkeit von Denim

Einführung

Die Form und Funktion eines Stoffes wird durch seine Qualität und Haltbarkeit bestimmt. Durch den täglichen Gebrauch von Stoffen kommt es zu Abnutzungserscheinungen, wie z. B. Knötchenbildung, Ausfransen und Verfärbung des Materials. Eine minderwertige Stoffqualität bei Kleidung führt oft zu Unzufriedenheit beim Verbraucher und schadet der Marke.

Der Versuch, die mechanischen Eigenschaften von Geweben zu quantifizieren, kann viele Herausforderungen mit sich bringen. Die Garnstruktur und sogar die Fabrik, in der es hergestellt wurde, können zu einer schlechten Reproduzierbarkeit der Testergebnisse führen. Dies erschwert den Vergleich von Testergebnissen aus verschiedenen Labors. Die Messung des Verschleißverhaltens von Stoffen ist für die Hersteller, Verteiler und Einzelhändler in der Textilproduktionskette von entscheidender Bedeutung. Eine gut kontrollierte und reproduzierbare Messung der Verschleißfestigkeit ist entscheidend für eine zuverlässige Qualitätskontrolle des Gewebes.

Klicken Sie hier, um den vollständigen Anwendungshinweis zu lesen!

Rotativer oder linearer Verschleiß & COF? (Eine umfassende Studie unter Verwendung des Nanovea Tribometers)

Unter Verschleiß versteht man den Prozess der Abtragung und Verformung von Material auf einer Oberfläche infolge der mechanischen Einwirkung der gegenüberliegenden Oberfläche. Es wird durch eine Vielzahl von Faktoren beeinflusst, darunter unidirektionales Gleiten, Rollen, Geschwindigkeit, Temperatur und viele andere. Das Studium des Verschleißes, der Tribologie, umfasst viele Disziplinen, von Physik und Chemie bis hin zu Maschinenbau und Materialwissenschaften. Die komplexe Natur des Verschleißes erfordert isolierte Studien zu spezifischen Verschleißmechanismen oder -prozessen, wie z. B. adhäsiver Verschleiß, abrasiver Verschleiß, Oberflächenermüdung, Reibverschleiß und erosiver Verschleiß. Bei „industrieller Abnutzung“ handelt es sich jedoch häufig um mehrere Verschleißmechanismen, die synergetisch wirken.

Lineare hin- und hergehende und rotative Verschleißtests (Stift auf Scheibe) sind zwei weit verbreitete ASTM-konforme Aufbauten zur Messung des Gleitverschleißverhaltens von Materialien. Da der Verschleißratenwert einer Verschleißtestmethode häufig zur Vorhersage der relativen Rangfolge von Materialkombinationen verwendet wird, ist es äußerst wichtig, die Wiederholbarkeit der mit verschiedenen Testaufbauten gemessenen Verschleißrate zu bestätigen. Dadurch können Benutzer den in der Literatur angegebenen Verschleißratenwert sorgfältig berücksichtigen, was für das Verständnis der tribologischen Eigenschaften von Materialien von entscheidender Bedeutung ist.

Mehr lesen!

Hochgeschwindigkeitscharakterisierung einer Austernschale

Große Proben mit komplexen Geometrien können aufgrund der Probenvorbereitung, der Größe, scharfer Winkel und Krümmungen schwierig zu bearbeiten sein. In dieser Studie wird eine Austernschale gescannt, um die Fähigkeit des Nanovea HS2000 Zeilensensors zu demonstrieren, eine große, biologische Probe mit komplexer Geometrie zu scannen. Obwohl in dieser Studie eine biologische Probe verwendet wurde, können die gleichen Konzepte auch auf andere Proben angewendet werden.

Mehr lesen

 

 

 

 

 

 

 

 

 

 

Inspektion der Oberflächenbeschaffenheit von Holzfußböden

 

Bedeutung der Profilierung von Holzoberflächen

In verschiedenen Industriezweigen besteht der Zweck einer Holzveredelung darin, die Holzoberfläche vor verschiedenen Arten von Schäden, z. B. chemischer, mechanischer oder biologischer Art, zu schützen und/oder ihr eine bestimmte visuelle Ästhetik zu verleihen. Für Hersteller und Käufer gleichermaßen kann die Quantifizierung der Oberflächeneigenschaften ihrer Holzoberflächen für die Qualitätskontrolle oder die Optimierung von Holzveredelungsprozessen von entscheidender Bedeutung sein. In dieser Anwendung werden wir die verschiedenen Oberflächenmerkmale untersuchen, die mit einem berührungslosen Nanovea 3D-Profilometer quantifiziert werden können.


Die Quantifizierung der Rauheit und Textur einer Holzoberfläche kann von entscheidender Bedeutung sein, um sicherzustellen, dass sie den Anforderungen der jeweiligen Anwendung gerecht wird. Die Verfeinerung des Veredelungsprozesses oder die Überprüfung der Qualität von Holzoberflächen auf der Grundlage einer quantifizierbaren, wiederholbaren und zuverlässigen Oberflächeninspektionsmethode würde es den Herstellern ermöglichen, kontrollierte Oberflächenbehandlungen zu entwickeln, und den Käufern die Möglichkeit geben, Holzwerkstoffe entsprechend ihren Anforderungen zu prüfen und auszuwählen.



Messung Zielsetzung

In dieser Studie der Hochgeschwindigkeits-Nanovea HS2000 profilometer Ausgestattet mit einem berührungslosen Profilliniensensor wurde die Oberflächenbeschaffenheit von drei Bodenbelagsproben gemessen und verglichen: Antiker Birken-Hartholzboden, Courtship Grey Oak-Bodenbelag und Santos Mahagoni-Bodenbelag. Wir demonstrieren die Fähigkeit des Nanovea Non-Tact Profilometers, bei der Messung von drei Arten von Oberflächenbereichen sowohl Geschwindigkeit als auch Präzision zu liefern und eine umfassende, tiefgehende Analyse der Scans durchzuführen.





Testverfahren und -abläufe




Ergebnisse und Diskussion

Beschreibung der Muster: Courtship Grey Oak und Santos Mahogany sind Laminatfußböden. Courtship Grey Oak ist ein niedrigglänzendes, strukturiertes schiefergraues Muster mit einer EIR-Oberfläche. Santos Mahagoni ist ein hochglänzendes, dunkles burgunderrotes Muster, das vorlackiert wurde. Antique Birch Hardwood ist mit einer 7-schichtigen Aluminiumoxid-Beschichtung versehen, die Schutz vor täglicher Abnutzung bietet.

 





Antike Birke Hartholz






Brautwerbung Graue Eiche






Santos Mahagoni




Diskussion

Es gibt einen deutlichen Unterschied zwischen den Sa-Werten aller Proben. Am glattesten war Antique Birch Hardwood mit einem Sa-Wert von 1,716 µm, gefolgt von Santos Mahogany mit einem Sa-Wert von 2,388 µm und einem signifikanten Anstieg bei Courtship Grey Oak mit einem Sa-Wert von 11,17 µm. P-Werte und R-Werte sind ebenfalls gängige Rauheitswerte, die zur Beurteilung der Rauheit bestimmter Profile entlang der Oberfläche verwendet werden können. Die Courtship Grey Oak besitzt eine grobe Textur mit rissartigen Merkmalen entlang der Zell- und Faserrichtung des Holzes. Aufgrund der strukturierten Oberfläche wurde die Probe der Grauen Eiche Courtship einer zusätzlichen Analyse unterzogen. Bei der Probe der Eiche Courtship Grey wurden Scheiben verwendet, um die Tiefe und das Volumen der Risse von der flacheren, gleichmäßigen Oberfläche zu trennen und zu berechnen.



Schlussfolgerung




In dieser Anwendung haben wir gezeigt, wie das Hochgeschwindigkeitsprofilometer Nanovea HS2000 zur effektiven und effizienten Prüfung der Oberflächenbeschaffenheit von Holzproben verwendet werden kann. Messungen der Oberflächenbeschaffenheit können sowohl für Hersteller als auch für Verbraucher von Hartholzfußböden wichtig sein, um zu verstehen, wie sie einen Herstellungsprozess verbessern oder das geeignete Produkt auswählen können, das für eine bestimmte Anwendung am besten geeignet ist.

UND NUN ZU IHRER BEWERBUNG

Holzverschleißtest mit dem Nanovea Tribometer

Die Bedeutung des Vergleichs von Holzverschleiß und COF

Holz wird seit Jahrtausenden als Baumaterial für Häuser, Möbel und Fußböden verwendet. Es verfügt über eine Kombination aus natürlicher Schönheit und Haltbarkeit, was es zu einem idealen Kandidaten für Bodenbeläge macht. Im Gegensatz zu Teppichen behalten Hartholzböden ihre Farbe lange und lassen sich leicht reinigen und pflegen. Da es sich jedoch um ein natürliches Material handelt, ist bei den meisten Holzböden eine Oberflächenbehandlung erforderlich, um das Holz vor verschiedenen Arten von Schäden wie Abnutzung und Abnutzung zu schützen splittert mit der Zeit. In dieser Studie ein Nanovea Tribometer wurde zur Messung der Verschleißrate und des Reibungskoeffizienten (COF) verwendet, um die Vergleichsleistung von drei Holzoberflächen besser zu verstehen.

Das Nutzungsverhalten einer Holzart, die für Fußböden verwendet wird, hängt häufig mit ihrer Verschleißfestigkeit zusammen. Die Veränderungen in der individuellen Zell- und Faserstruktur der verschiedenen Holzarten tragen zu ihrem unterschiedlichen mechanischen und tribologischen Verhalten bei. Tatsächliche Gebrauchsprüfungen von Holz als Bodenbelag sind teuer, schwer zu reproduzieren und erfordern lange Prüfzeiten. Daher ist es wichtig, einen einfachen Verschleißtest zu entwickeln, der zuverlässig, reproduzierbar und einfach durchzuführen ist.

Messung Zielsetzung

In dieser Studie haben wir das Verschleißverhalten von drei Holzarten simuliert und verglichen, um die Fähigkeit des Nanovea Tribometers zu demonstrieren, die tribologischen Eigenschaften von Holz kontrolliert und überwacht zu bewerten.

Diskussion

Muster Beschreibung: Antique Birch Hardwood ist mit einer 7-schichtigen Aluminiumoxid-Oberfläche versehen, die Schutz vor täglicher Abnutzung bietet. Courtship Grey Oak und Santos Mahogany sind beides Laminatböden, die sich in der Oberflächenbeschaffenheit und im Glanz unterscheiden. Courtship Grey Oak hat eine schiefergraue Farbe, eine EIR-Oberfläche und einen niedrigen Glanzgrad. Santos Mahagoni hingegen hat eine dunkle burgunderrote Farbe, ist vorlackiert und hochglänzend, wodurch Kratzer und Defekte auf der Oberfläche leichter verborgen werden können.

Die Entwicklung des COF-Wertes während der Abnutzungstests der drei Holzfußbodenproben ist in Abb. 1 dargestellt. Die Proben "Antique Birch Hardwood", "Courtship Grey Oak" und "Santos Mahogany" zeigten alle ein unterschiedliches COF-Verhalten.

Aus dem obigen Diagramm ist ersichtlich, dass das Laubholz Antique Birch die einzige Probe war, die während der gesamten Testdauer einen gleichmäßigen COF aufwies. Der starke Anstieg des COF der Eiche Courtship Grey und der anschließende allmähliche Rückgang könnten darauf hindeuten, dass die Oberflächenrauhigkeit der Probe weitgehend zu ihrem COF-Verhalten beigetragen hat. Mit der Abnutzung der Probe nahm die Oberflächenrauheit ab und wurde homogener, was den Rückgang des COF erklärt, da die Oberfläche der Probe durch die mechanische Abnutzung glatter wurde. Die COF von Santos Mahagoni zeigt zu Beginn des Tests einen gleichmäßigen, allmählichen Anstieg der COF und geht dann abrupt in einen abgehackten COF-Trend über. Dies könnte darauf hindeuten, dass die Stahlkugel (Gegenmaterial) mit dem Holzsubstrat in Berührung kam, sobald die Laminatbeschichtung zu verschleißen begann, was zu einer schnelleren und turbulenteren Abnutzung führte, die gegen Ende des Tests zu einem lauteren COF-Verhalten führte.

 

Antikes Birken-Hartholz:

Brautwerbung Graue Eiche:

Santos Mahagoni

Tabelle 2 fasst die Ergebnisse der Verschleißspuren-Scans und -Analysen aller Holzbodenproben nach der Durchführung der Verschleißtests zusammen. Detaillierte Informationen und Bilder für jede Probe sind in den Abbildungen 2-7 zu sehen. Aus dem Vergleich der Abnutzungsraten aller drei Proben lässt sich ableiten, dass sich Santos Mahagoni als weniger widerstandsfähig gegenüber mechanischer Abnutzung erweist als die beiden anderen Proben. Antique Birch Hardwood und Courtship Grey Oak hatten sehr ähnliche Abnutzungsraten, obwohl sich ihr Abnutzungsverhalten während der Tests deutlich unterschied. Antikes Birken-Laubholz wies einen allmählichen und gleichmäßigeren Abnutzungstrend auf, während Eiche Courtship Grey aufgrund der bereits vorhandenen Oberflächentextur und -behandlung eine flache und löchrige Abnutzungsspur zeigte.

Schlussfolgerung

In dieser Studie haben wir die Leistungsfähigkeit des Tribometers von Nanovea bei der kontrollierten und überwachten Bewertung des Reibungskoeffizienten und der Verschleißfestigkeit der drei Holzarten Antikes Birken-Hartholz, Graue Eiche und Santos-Mahagoni unter Beweis gestellt. Die überlegenen mechanischen Eigenschaften des antiken Birken-Hartholzes führen zu seiner besseren Verschleißfestigkeit. Die Textur und Homogenität der Holzoberfläche spielen eine wichtige Rolle für das Verschleißverhalten. Die Oberflächentextur von Courtship Grey Oak, wie z. B. Lücken oder Risse zwischen den Zellfasern des Holzes, können zu Schwachstellen werden, an denen der Verschleiß einsetzt und sich ausbreitet.

UND NUN ZU IHRER BEWERBUNG