USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Kategorie: Profilometrische Prüfung

 

Pharmazeutische Tabletten Oberflächenrauhigkeitsprüfung

Pharmazeutische Tabletten

Prüfung der Rauheit mit 3d-Profilometern

Autor:

Jocelyn Esparza

Einführung

Pharmazeutische Tabletten sind heute die am häufigsten verwendeten medizinischen Darreichungsformen. Jede Tablette besteht aus einer Kombination von Wirkstoffen (den chemischen Stoffen, die eine pharmakologische Wirkung haben) und inaktiven Stoffen (Sprengstoff, Bindemittel, Gleitmittel, Verdünnungsmittel - meist in Form von Pulver). Die aktiven und inaktiven Substanzen werden dann komprimiert oder zu einem Feststoff geformt. Anschließend werden die Tabletten je nach Herstellerangaben entweder überzogen oder nicht überzogen.

Um wirksam zu sein, müssen Tablettenüberzüge den feinen Konturen der eingeprägten Logos oder Schriftzeichen auf den Tabletten folgen, sie müssen stabil und robust genug sein, um die Handhabung der Tablette zu überstehen, und sie dürfen nicht dazu führen, dass die Tabletten während des Beschichtungsprozesses aneinander kleben. Derzeitige Tabletten haben in der Regel einen Überzug auf Polysaccharid- und Polymerbasis, der Stoffe wie Pigmente und Weichmacher enthält. Die beiden gängigsten Arten von Tablettenüberzügen sind Filmüberzüge und Zuckerüberzüge. Im Vergleich zu Zuckerüberzügen sind Filmüberzüge weniger sperrig, haltbarer und weniger zeitaufwändig in der Herstellung und Anwendung. Allerdings ist es für Filmüberzüge schwieriger, das Aussehen der Tabletten zu verbergen.

Tablettenüberzüge sind wichtig für den Schutz vor Feuchtigkeit, die Maskierung des Geschmacks der Inhaltsstoffe und die Erleichterung des Schluckens der Tabletten. Noch wichtiger ist, dass der Tablettenüberzug den Ort und die Geschwindigkeit der Freisetzung des Arzneimittels steuert.

MESSZIEL

In dieser Anwendung verwenden wir die NANOVEA Optischer Profiler und fortschrittlicher Mountains-Software zur Messung und Quantifizierung der Topografie verschiedener gepresster Markenpillen (1 beschichtete und 2 unbeschichtete), um deren Oberflächenrauheit zu vergleichen.

Es wird davon ausgegangen, dass Advil (beschichtet) aufgrund der Schutzschicht die geringste Oberflächenrauhigkeit aufweist.

NANOVEA

HS2000

Testbedingungen

Drei Chargen gepresster pharmazeutischer Markentabletten wurden mit dem Nanovea HS2000 gescannt.
mit Hochgeschwindigkeits-Zeilensensor zur Messung verschiedener Oberflächenrauheitsparameter nach ISO 25178.

Scanbereich

2 x 2 mm

Auflösung des seitlichen Scans

5 x 5 μm

Scan-Zeit

4 Sekunden

Proben

Ergebnisse und Diskussion

Nach dem Scannen der Tabletten wurde eine Untersuchung der Oberflächenrauheit mit der fortschrittlichen Mountains-Analysesoftware durchgeführt, um den Oberflächendurchschnitt, den quadratischen Mittelwert und die maximale Höhe jeder Tablette zu berechnen.

Die berechneten Werte stützen die Annahme, dass Advil aufgrund des Schutzüberzugs, der die Inhaltsstoffe umschließt, eine geringere Oberflächenrauheit aufweist. Tylenol weist von allen drei gemessenen Tabletten die höchste Oberflächenrauhigkeit auf.

Es wurde eine 2D- und 3D-Höhenkarte der Oberflächentopografie jeder Tablette erstellt, die die gemessenen Höhenverteilungen zeigt. Von den fünf Tabletten wurde eine ausgewählt, um die Höhenkarten für jede Marke darzustellen. Diese Höhenkarten sind ein hervorragendes Werkzeug für die visuelle Erkennung von abstehenden Oberflächenmerkmalen wie Vertiefungen oder Erhebungen.

Schlussfolgerung

In dieser Studie haben wir die Oberflächenrauheit von drei gepressten pharmazeutischen Markentabletten analysiert und verglichen: Advil, Tylenol und Excedrin. Advil wies die geringste durchschnittliche Oberflächenrauheit auf. Dies ist auf die orangefarbene Beschichtung zurückzuführen, die das Medikament umgibt. Bei Excedrin und Tylenol hingegen fehlt die Beschichtung, dennoch unterscheiden sich die Oberflächenrauhigkeiten voneinander. Tylenol wies von allen untersuchten Tabletten die höchste durchschnittliche Oberflächenrauigkeit auf.

Die Verwendung des NANOVEA HS2000 mit Hochgeschwindigkeits-Zeilensensor konnten wir 5 Tabletten in weniger als 1 Minute messen. Dies kann sich bei der Qualitätskontrolle von Hunderten von Tabletten in der heutigen Produktion als nützlich erweisen.

UND NUN ZU IHRER BEWERBUNG

Dental-Schrauben-Dimensionale-Messung-mit-3d-Profilometer

Zahnärztliche Werkzeuge: Analyse der Dimensionen und der Oberflächenrauhigkeit



EINFÜHRUNG

 

Präzise Abmessungen und optimale Oberflächenrauheit sind für die Funktionalität von Dentalschrauben von entscheidender Bedeutung. Viele Abmessungen von Dentalschrauben erfordern eine hohe Präzision wie Radien, Winkel, Abstände und Stufenhöhen. Das Verständnis der lokalen Oberflächenrauheit ist auch für jedes medizinische Werkzeug oder Teil, das in den menschlichen Körper eingeführt wird, äußerst wichtig, um die Gleitreibung zu minimieren.

 

 

BERÜHRUNGSLOSE PROFILOMETRIE ZUR DIMENSIONALSTUDIE

 

Nanovea Berührungslose 3D-Profiler Verwenden Sie eine auf chromatischem Licht basierende Technologie, um jede Materialoberfläche zu messen: transparent, undurchsichtig, spiegelnd, diffus, poliert oder rau. Im Gegensatz zu einer Touch-Probe-Technik kann die berührungslose Technik innerhalb enger Bereiche messen und verursacht keine intrinsischen Fehler aufgrund von Verformungen, die durch das Drücken der Spitze auf ein weicheres Kunststoffmaterial verursacht werden. Die auf chromatischem Licht basierende Technologie bietet im Vergleich zur Fokusvariationstechnologie auch überlegene Seiten- und Höhengenauigkeiten. Nanovea Profiler können große Flächen ohne Nähte direkt scannen und die Länge eines Teils in wenigen Sekunden profilieren. Aufgrund der Fähigkeit des Profilers, Oberflächen zu messen, ohne dass komplexe Algorithmen die Ergebnisse manipulieren, können Oberflächenmerkmale im Nano- bis Makrobereich und große Oberflächenwinkel gemessen werden.

 

 

MESSZIEL

 

In dieser Anwendung wurde der optische Profiler ST400 von Nanovea verwendet, um eine Zahnschraube entlang von Flach- und Gewindemerkmalen in einer einzigen Messung zu messen. Aus der flachen Fläche wurde die Oberflächenrauheit berechnet und verschiedene Abmessungen der Gewindemerkmale bestimmt.

 

Qualitätskontrolle von Zahnschrauben

Probe einer Zahnschraube, analysiert von NANOVEA Optischer Profiler.

 

Zahnschraubenprobe analysiert.

 

ERGEBNISSE

 

3D-Oberfläche

Die 3D-Ansicht und die Falschfarbenansicht der Zahnschraube zeigen einen flachen Bereich mit auf beiden Seiten beginnendem Gewinde. Es bietet Benutzern ein einfaches Werkzeug, um die Morphologie der Schraube aus verschiedenen Winkeln direkt zu beobachten. Der flache Bereich wurde aus dem vollständigen Scan extrahiert, um seine Oberflächenrauheit zu messen.

 

 

2D-Oberflächenanalyse

Außerdem können Linienprofile aus der Oberfläche extrahiert werden, um eine Querschnittsansicht der Schraube zu zeigen. Die Konturanalyse und Stufenhöhenstudien wurden verwendet, um genaue Abmessungen an einer bestimmten Stelle der Schraube zu messen.

 

 

SCHLUSSFOLGERUNG

 

In dieser Anwendung haben wir die Fähigkeit des Nanovea 3D Non-Contact Profiler demonstriert, die lokale Oberflächenrauheit präzise zu berechnen und großdimensionale Merkmale in einem einzigen Scan zu messen.

Die Daten zeigen eine lokale Oberflächenrauheit von 0,9637 μm. Der Radius der Schraube zwischen den Gewindegängen betrug 1,729 mm und die Gewindegänge hatten eine durchschnittliche Höhe von 0,413 mm. Der durchschnittliche Winkel zwischen den Gewindegängen wurde mit 61,3° ermittelt.

Die hier gezeigten Daten stellen nur einen Teil der in der Analysesoftware verfügbaren Berechnungen dar.

 

Vorbereitet von
Duanjie Li, PhD., Jonathan Thomas und Pierre Leroux

Inline-Rauhigkeitsprüfung

Sofortige Fehlererkennung mit In-Line-Profilern

Mehr erfahren

BEDEUTUNG DES BERÜHRUNGSLOSEN PROFILERS FÜR DIE INLINE-RAUHEITSPRÜFUNG

Oberflächenfehler entstehen durch Materialverarbeitung und Produktherstellung. Die Inline-Oberflächenqualitätsprüfung gewährleistet eine strengste Qualitätskontrolle der Endprodukte. Der Nanovea Berührungslose 3D-Profilometer nutzen die chromatische Konfokaltechnologie mit der einzigartigen Fähigkeit, die Rauheit einer Probe berührungslos zu bestimmen. Es können mehrere Profilsensoren installiert werden, um die Rauheit und Textur verschiedener Bereiche des Produkts gleichzeitig zu überwachen. Der von der Analysesoftware in Echtzeit berechnete Rauheitsschwellenwert dient als schnelles und zuverlässiges Pass/Fail-Tool.

MESSZIEL

In dieser Studie wird das mit einem Punktsensor ausgestattete Nanovea-Förderbandsystem für die Rauheitsprüfung von Acryl- und Sandpapierproben eingesetzt. Wir zeigen die Fähigkeit des berührungslosen Nanovea-Profilometers, eine schnelle und zuverlässige Inline-Rauheitsinspektion in einer Produktionslinie in Echtzeit durchzuführen.

ERGEBNISSE UND DISKUSSION

Das Bandprofilometersystem kann in zwei Betriebsarten arbeiten, nämlich im Auslösemodus und im Dauermodus. Wie in Abbildung 2 dargestellt, wird im Auslösemodus die Oberflächenrauheit der Proben gemessen, wenn sie unter den optischen Profilmessköpfen hindurchlaufen. Im Vergleich dazu ermöglicht der Dauermodus die kontinuierliche Messung der Oberflächenrauheit auf einer kontinuierlichen Probe, wie z. B. Metallblech und Gewebe. Es können mehrere optische Profiler-Sensoren installiert werden, um die Rauheit verschiedener Probenbereiche zu überwachen und aufzuzeichnen.

 

Während der Echtzeit-Rauheitsmessung werden in den Softwarefenstern die Warnungen "bestanden" und "nicht bestanden" angezeigt, wie in Abbildung 4 und Abbildung 5 dargestellt. Wenn der Rauheitswert innerhalb der vorgegebenen Schwellenwerte liegt, wird der gemessene Rauheitswert grün hervorgehoben. Die Markierung wird jedoch rot, wenn die gemessene Oberflächenrauheit außerhalb des Bereichs der festgelegten Schwellenwerte liegt. Damit steht dem Benutzer ein Werkzeug zur Verfügung, mit dem er die Qualität der Oberflächenbeschaffenheit eines Produkts bestimmen kann.

In den folgenden Abschnitten werden zwei Arten von Proben, z. B. Acryl und Sandpapier, verwendet, um den Auslösemodus und den kontinuierlichen Modus des Inspektionssystems zu demonstrieren.

Auslösemodus: Oberflächeninspektion der Acrylprobe

Eine Reihe von Acrylproben werden auf dem Förderband ausgerichtet und unter dem optischen Profilierkopf hindurchbewegt, wie in Abbildung 1 dargestellt. Die Falschfarbenansicht in Abbildung 6 zeigt die Veränderung der Oberflächenhöhe. Einige der spiegelglatten Acrylproben wurden geschliffen, um eine raue Oberflächenstruktur zu erzeugen (siehe Abbildung 6b).

Während sich die Acrylproben mit konstanter Geschwindigkeit unter dem optischen Profilierkopf bewegen, wird das Oberflächenprofil gemessen, wie in Abbildung 7 und Abbildung 8 dargestellt. Der Rauheitswert des gemessenen Profils wird gleichzeitig berechnet und mit den Schwellenwerten verglichen. Wenn der Rauheitswert über dem eingestellten Schwellenwert liegt, wird ein roter Fehleralarm ausgelöst, so dass der Benutzer das fehlerhafte Produkt in der Produktionslinie sofort erkennen und lokalisieren kann.

Kontinuierlicher Modus: Oberflächeninspektion der Schleifpapierprobe

Oberflächenhöhenkarte, Rauheitsverteilungskarte und Pass/Fail-Rauheitsschwellenkarte der Oberfläche der Sandpapierprobe, wie in Abbildung 9 dargestellt. Die Sandpapierprobe hat einige höhere Spitzen in dem verwendeten Teil, wie in der Oberflächenhöhenkarte dargestellt. Die verschiedenen Farben in der Palette von Abbildung 9C stellen den Rauheitswert der lokalen Oberfläche dar. Die Rauheitskarte zeigt eine homogene Rauheit im intakten Bereich der Sandpapierprobe, während der benutzte Bereich in dunkelblauer Farbe hervorgehoben ist, was auf den geringeren Rauheitswert in diesem Bereich hinweist. Ein Schwellenwert für die Pass/Fail-Rauheit kann eingerichtet werden, um solche Regionen zu lokalisieren, wie in Abbildung 9D gezeigt.

Während das Schleifpapier kontinuierlich unter dem Inline-Profiler-Sensor hindurchläuft, wird der lokale Rauheitswert in Echtzeit berechnet und aufgezeichnet, wie in Abbildung 10 dargestellt. Die Pass/Fail-Warnungen werden auf dem Softwarebildschirm auf der Grundlage der eingestellten Rauheitsschwellenwerte angezeigt und dienen als schnelles und zuverlässiges Werkzeug für die Qualitätskontrolle. Die Qualität der Produktoberfläche in der Produktionslinie wird vor Ort geprüft, um fehlerhafte Bereiche rechtzeitig zu entdecken.

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, dass das Nanovea Conveyor Profilometer, ausgestattet mit einem optischen, berührungslosen Profilsensor, als zuverlässiges Inline-Qualitätskontrollinstrument effektiv und effizient arbeitet.

Das Inspektionssystem kann in der Produktionslinie installiert werden, um die Oberflächenqualität der Produkte an Ort und Stelle zu überwachen. Der Rauheitsschwellenwert dient als zuverlässiges Kriterium zur Bestimmung der Oberflächenqualität der Produkte und ermöglicht es dem Benutzer, fehlerhafte Produkte rechtzeitig zu erkennen. Zwei Inspektionsmodi, nämlich der Auslösemodus und der Dauermodus, werden angeboten, um die Anforderungen an die Inspektion verschiedener Produkttypen zu erfüllen.

Die hier gezeigten Daten stellen nur einen Teil der in der Analysesoftware verfügbaren Berechnungen dar. Nanovea Profilometer messen praktisch jede Oberfläche in Bereichen wie Halbleiter, Mikroelektronik, Solar, Glasfaser, Optik, Automobil, Luft- und Raumfahrt, Metallurgie, Bearbeitung, Beschichtungen, Pharmazeutik, Biomedizin, Umwelt und vielen anderen.

UND NUN ZU IHRER BEWERBUNG

Block-On-Ring-Verschleißtest

BEDEUTUNG DER BEWERTUNG DES BLOCK-AUF-RING-VERSCHLEISSES

Gleitverschleiß ist der fortschreitende Materialverlust, der dadurch entsteht, dass zwei Werkstoffe unter Belastung an der Kontaktfläche gegeneinander gleiten. Er tritt unweigerlich in einer Vielzahl von Branchen auf, in denen Maschinen und Motoren in Betrieb sind, darunter die Automobilindustrie, die Luft- und Raumfahrt, die Öl- und Gasindustrie und viele andere. Eine solche Gleitbewegung führt zu ernsthaftem mechanischem Verschleiß und Materialtransfer an der Oberfläche, was zu einer verringerten Produktionseffizienz, Maschinenleistung oder sogar zu Schäden an der Maschine führen kann.
 

 

Beim Gleitverschleiß treten häufig komplexe Verschleißmechanismen an der Kontaktfläche auf, wie z. B. Adhäsionsverschleiß, Zweikörperabrieb, Dreikörperabrieb und Ermüdungsverschleiß. Das Verschleißverhalten von Werkstoffen wird maßgeblich von der Arbeitsumgebung wie Normalbelastung, Geschwindigkeit, Korrosion und Schmierung beeinflusst. Ein vielseitiges Tribometer die verschiedene realistische Arbeitsbedingungen simulieren können, sind ideal für die Verschleißbewertung.
Der Block-on-Ring-Test (ASTM G77) ist eine weit verbreitete Technik, die das Gleitverschleißverhalten von Materialien unter verschiedenen simulierten Bedingungen bewertet und eine zuverlässige Einstufung von Materialpaaren für bestimmte tribologische Anwendungen ermöglicht.
 
 

 

MESSZIEL

In dieser Anwendung misst der Nanovea Mechanical Tester die YS- und UTS-Werte von Proben aus rostfreiem Stahl SS304 und Aluminiumlegierung Al6061. Die Proben wurden aufgrund ihrer allgemein anerkannten YS- und UTS-Werte ausgewählt, die die Zuverlässigkeit der Eindringmethoden von Nanovea belegen.

 

Das Gleitverschleißverhalten eines H-30-Blocks auf einem S-10-Ring wurde mit dem Tribometer von Nanovea unter Verwendung des Block-on-Ring-Moduls bewertet. Der H-30-Block besteht aus 01-Werkzeugstahl mit einer Härte von 30 HRC, während der S-10-Ring aus Stahl des Typs 4620 mit einer Oberflächenhärte von 58 bis 63 HRC und einem Ringdurchmesser von ~34,98 mm besteht. Um die Auswirkung auf das Verschleißverhalten zu untersuchen, wurden Block-on-Ring-Tests in trockenen und geschmierten Umgebungen durchgeführt. Schmierungstests wurden in USP-Schwermineralöl durchgeführt. Die Verschleißspur wurde mit Nanovea untersucht Berührungsloses 3D-Profilometer. Die Testparameter sind in Tabelle 1 zusammengefasst. Die Verschleißrate (K) wurde anhand der Formel K=V/(F×s) bewertet, wobei V das abgenutzte Volumen, F die normale Belastung und s die Gleitstrecke ist.

 

 

ERGEBNISSE UND DISKUSSION

Abbildung 2 vergleicht den Reibungskoeffizienten (COF) der Block-auf-Ring-Tests in trockenen und geschmierten Umgebungen. Der Block hat in einer trockenen Umgebung deutlich mehr Reibung als in einer geschmierten Umgebung. COF
schwankt während der Einlaufphase in den ersten 50 Umdrehungen und erreicht für den Rest des 200-Umdrehungen-Verschleißtests einen konstanten COF von ~0,8. Im Vergleich dazu zeigt der Block-on-Ring-Test, der mit der USP-Schwermineralölschmierung durchgeführt wurde, einen konstant niedrigen COF von 0,09 während des gesamten Verschleißtests mit 500.000 Umdrehungen. Das Schmiermittel reduziert den COF zwischen den Oberflächen deutlich um das ~90-fache.

 

Die Abbildungen 3 und 4 zeigen die optischen Bilder und 2D-Querschnittsprofile der Verschleißnarben auf den Blöcken nach trockenen und geschmierten Verschleißtests. Das Volumen der Verschleißspuren und die Verschleißraten sind in Tabelle 2 aufgeführt. Der Stahlblock nach dem Trockenverschleißtest bei einer niedrigeren Drehzahl von 72 U/min für 200 Umdrehungen weist ein großes Verschleißspurenvolumen von 9,45 mm˙ auf. Im Vergleich dazu erzeugt der Verschleißtest, der bei einer höheren Drehzahl von 197 U/min für 500.000 Umdrehungen im Mineralölschmierstoff durchgeführt wird, ein wesentlich kleineres Verschleißspurvolumen von 0,03 mm˙.

 


Die Bilder in Abbildung 3 zeigen, dass bei den Tests unter trockenen Bedingungen ein starker Verschleiß auftritt, verglichen mit dem geringen Verschleiß bei den Tests mit geschmiertem Verschleiß. Die hohe Hitze und die starken Vibrationen, die während des Trockenverschleißtests erzeugt werden, fördern die Oxidation der metallischen Ablagerungen, was zu einem starken Dreikörperabrieb führt. Bei der geschmierten Prüfung reduziert das Mineralöl die Reibung und kühlt die Kontaktfläche, während es gleichzeitig die beim Verschleiß entstehenden Abriebpartikel abtransportiert. Dies führt zu einer erheblichen Reduzierung der Verschleißrate um einen Faktor von ~8×10ˆ. Ein solch erheblicher Unterschied in der Verschleißfestigkeit in unterschiedlichen Umgebungen zeigt, wie wichtig eine korrekte Simulation des Gleitverschleißes unter realistischen Betriebsbedingungen ist.

 


Das Verschleißverhalten kann sich drastisch ändern, wenn kleine Änderungen der Testbedingungen eingeführt werden. Die Vielseitigkeit des Tribometers von Nanovea ermöglicht Verschleißmessungen bei hohen Temperaturen, bei Schmierung und unter Tribokorrosionsbedingungen. Dank der präzisen Geschwindigkeits- und Positionssteuerung durch den fortschrittlichen Motor können Verschleißtests bei Geschwindigkeiten von 0,001 bis 5000 U/min durchgeführt werden, was es zu einem idealen Werkzeug für Forschungs-/Testlabors macht, um den Verschleiß unter verschiedenen tribologischen Bedingungen zu untersuchen.

 

Der Oberflächenzustand der Proben wurde mit dem berührungslosen optischen Proÿlometer von Nanovea untersucht. Abbildung 5 zeigt die Oberflächenmorphologie der Ringe nach den Verschleißtests. Die Zylinderform ist entfernt, um die Oberflächenmorphologie und -rauheit, die durch den Gleitverschleißprozess entstanden ist, besser darstellen zu können. Während des Trockenverschleißtests mit 200 Umdrehungen kam es zu einer deutlichen Aufrauung der Oberfläche durch den Dreikörperabrieb. Der Block und der Ring weisen nach dem Trockenverschleißtest eine Rauheit Ra von 14,1 bzw. 18,1 µm auf, verglichen mit 5,7 und 9,1 µm beim Langzeitverschleißtest mit Schmierung und 500.000 Umdrehungen bei einer höheren Drehzahl. Dieser Test zeigt, wie wichtig die richtige Schmierung des Kolbenring-Zylinder-Kontakts ist. Starker Verschleiß beschädigt ohne Schmierung schnell die Kontaktfläche und führt zu einer irreversiblen Verschlechterung der Betriebsqualität und sogar zum Ausfall des Motors.

 

 

SCHLUSSFOLGERUNG

In dieser Studie zeigen wir, wie das Tribometer von Nanovea zur Bewertung des Gleitverschleißverhaltens eines Stahl-Metall-Paares mithilfe des Block-on-Ring-Moduls nach dem ASTM G77-Standard verwendet wird. Der Schmierstoff spielt eine entscheidende Rolle für die Verschleißeigenschaften des Werkstoffpaares. Das Mineralöl reduziert die Verschleißrate des H-30-Blocks um den Faktor ~8×10ˆ und den COF um das ~90-fache. Die Vielseitigkeit des Tribometers von Nanovea macht es zu einem idealen Werkzeug zur Messung des Verschleißverhaltens unter verschiedenen Schmier-, Hochtemperatur- und Tribokorrosionsbedingungen.

Das Tribometer von Nanovea bietet präzise und wiederholbare Verschleiß- und Reibungstests im ISO- und ASTM-konformen Rotations- und Linearmodus, mit optionalen Modulen für Hochtemperaturverschleiß, Schmierung und Tribokorrosion, die in einem vorintegrierten System verfügbar sind. Das unübertroffene Sortiment von Nanovea ist eine ideale Lösung zur Bestimmung des gesamten Spektrums tribologischer Eigenschaften dünner oder dicker, weicher oder harter Beschichtungen, Filme und Substrate.

UND NUN ZU IHRER BEWERBUNG

Analyse von Verbundwerkstoffen mit 3D-Profilometrie

Die Bedeutung der berührungslosen Profilometrie für Verbundwerkstoffe

Es ist von entscheidender Bedeutung, dass Defekte minimiert werden, damit die Verbundwerkstoffe bei Verstärkungsanwendungen so stark wie möglich sind. Da es sich um ein anisotropes Material handelt, ist es von entscheidender Bedeutung, dass die Geweberichtung konsistent ist, um eine hohe Leistungsvorhersage zu gewährleisten. Verbundwerkstoffe haben eines der höchsten Festigkeits-Gewichts-Verhältnisse und sind daher in einigen Fällen stärker als Stahl. Es ist wichtig, die exponierte Oberfläche von Verbundwerkstoffen zu begrenzen, um die chemische Anfälligkeit und die Auswirkungen der Wärmeausdehnung zu minimieren. Die profilometrische Oberflächenprüfung ist für die Qualitätskontrolle bei der Herstellung von Verbundwerkstoffen von entscheidender Bedeutung, um eine hohe Leistungsfähigkeit über eine lange Nutzungsdauer zu gewährleisten.

Nanoveas Berührungsloses 3D-Profilometer unterscheidet sich von anderen Oberflächenmesstechniken wie Tastsonden oder Interferometrie. Unsere Profilometer verwenden axialen Chromatismus, um nahezu jede Oberfläche zu messen, und die offene Lagerung ermöglicht Proben jeder Größe, ohne dass eine Vorbereitung erforderlich ist. Nano- bis Makromessungen werden während der Oberflächenprofilmessung ohne Einfluss des Probenreflexionsvermögens oder der Probenabsorption erzielt. Unsere Profilometer messen problemlos jedes Material: transparent, undurchsichtig, spiegelnd, diffusiv, poliert und rau, mit der erweiterten Fähigkeit, große Oberflächenwinkel ohne Softwaremanipulation zu messen. Die berührungslose Profilometertechnik bietet die ideale und benutzerfreundliche Möglichkeit, die Oberflächenuntersuchungen von Verbundwerkstoffen zu maximieren. zusammen mit den Vorteilen der kombinierten 2D- und 3D-Fähigkeit.

Messung Zielsetzung

Das Nanovea HS2000L Profilometer, das in dieser Anwendung verwendet wird, misst die Oberfläche von zwei Geweben aus Kohlefaserverbundwerkstoffen. Oberflächenrauhigkeit, Gewebelänge, Isotropie, Fraktalanalyse und andere Oberflächenparameter werden zur Charakterisierung der Verbundwerkstoffe verwendet. Der gemessene Bereich wurde nach dem Zufallsprinzip ausgewählt und als groß genug angenommen, damit die Eigenschaftswerte mit der leistungsstarken Oberflächenanalyse-Software von Nanovea verglichen werden können.

Ergebnisse und Diskussion

Oberflächenanalyse

 
 
 
Die Höhenparameter bestimmen, wie rau Verbundwerkstoffteile mit einem geringen Faser-Matrix-Verhältnis sein werden. Unsere Ergebnisse vergleichen verschiedene Gewebetypen und Gewebe zur Bestimmung der Oberflächengüte nach der Verarbeitung. Die Oberflächenbeschaffenheit wird bei Anwendungen kritisch, bei denen die Aerodynamik eine Rolle spielen kann.
 
Isotropie

Isotropie zeigt die Richtungsabhängigkeit des Gewebes, um die erwarteten Eigenschaftswerte zu bestimmen. Unsere Studie zeigt, dass der bidirektionale Verbundwerkstoff wie erwartet ~60% isotrop ist. In der Zwischenzeit ist der unidirektionale Verbundwerkstoff ~13% isotrop, was auf die starke Einzelfaserrichtung der Faser zurückzuführen ist.

Webart-Analyse
 

Die Größe des Gewebes bestimmt die Konsistenz der Packung und die Breite der im Verbundstoff verwendeten Fasern. Unsere Studie zeigt, wie einfach es ist, die Gewebegröße bis auf den Mikrometer genau zu messen, um die Qualität der Teile sicherzustellen.

Textur-Analyse

Die Texturanalyse der dominanten Wellenlänge deutet darauf hin, dass die Strähnengröße bei beiden Verbundwerkstoffen 4,27 Mikrometer dick ist. Die Analyse der fraktalen Dimension der Faseroberfläche bestimmt die Glätte, um herauszufinden, wie leicht sich die Fasern in einer Matrix verfestigen. Die fraktale Dimension der unidirektionalen Faser ist höher als die der bidirektionalen Faser, was sich auf die Verarbeitung der Verbundwerkstoffe auswirken kann.

Schlussfolgerung

In dieser Anwendung haben wir gezeigt, dass das berührungslose Profilometer Nanovea HS2000L die faserige Oberfläche von Verbundwerkstoffen präzise charakterisiert. Wir haben Unterschiede zwischen den Gewebetypen von Kohlenstofffasern mit Höhenparametern, Isotropie, Texturanalyse und Abstandsmessungen und vieles mehr unterschieden.

Unsere Profilometer-Oberflächenmessungen mildern präzise und schnell Schäden an Verbundwerkstoffen, wodurch Defekte in Teilen verringert und die Leistungsfähigkeit von Verbundwerkstoffen maximiert werden. Die Geschwindigkeit der 3D-Profilometer von Nanovea reicht von <1mm/s bis 500mm/s und eignet sich für Forschungsanwendungen ebenso wie für die Anforderungen der Hochgeschwindigkeitsinspektion. Das Nanovea-Profilometer ist die Lösung
für jeden Bedarf an zusammengesetzten Messungen.

UND NUN ZU IHRER BEWERBUNG

Bewertung der Abnutzung und des Kratzens von oberflächenbehandeltem Kupferdraht

Bedeutung der Bewertung von Verschleiß und Kratzern bei Kupferdraht

Kupfer wird seit der Erfindung des Elektromagneten und des Telegrafen seit langem für die elektrische Verdrahtung verwendet. Kupferdrähte werden dank ihrer Korrosionsbeständigkeit, ihrer Lötbarkeit und ihrer Leistungsfähigkeit bei hohen Temperaturen von bis zu 150 °C in einer Vielzahl elektronischer Geräte wie Schalttafeln, Messgeräten, Computern, Geschäftsmaschinen und Haushaltsgeräten eingesetzt. Ungefähr die Hälfte des gesamten geförderten Kupfers wird für die Herstellung von elektrischen Drähten und Kabeln verwendet.

Die Oberflächenqualität von Kupferdrähten ist entscheidend für die Leistungsfähigkeit und Lebensdauer der Anwendung. Mikrodefekte in Drähten können zu übermäßigem Verschleiß, Rissentstehung und -ausbreitung, verminderter Leitfähigkeit und unzureichender Lötbarkeit führen. Eine ordnungsgemäße Oberflächenbehandlung von Kupferdrähten beseitigt die beim Drahtziehen entstandenen Oberflächenfehler und verbessert die Korrosions-, Kratz- und Verschleißfestigkeit. Viele Anwendungen in der Luft- und Raumfahrt mit Kupferdrähten erfordern ein kontrolliertes Verhalten, um unerwartete Ausfälle zu vermeiden. Um die Verschleiß- und Kratzfestigkeit der Kupferdrahtoberfläche richtig zu bewerten, sind quantifizierbare und zuverlässige Messungen erforderlich.

 
 

 

Messung Zielsetzung

In dieser Anwendung simulieren wir einen kontrollierten Verschleißprozess verschiedener Kupferdrahtoberflächenbehandlungen. Kratztests misst die Last, die erforderlich ist, um einen Ausfall der behandelten Oberflächenschicht zu verursachen. Diese Studie stellt den Nanovea vor Tribometer und Mechanischer Tester als ideale Werkzeuge zur Bewertung und Qualitätskontrolle elektrischer Leitungen.

 

 

Testverfahren und -abläufe

Der Reibungskoeffizient (COF) und die Verschleißfestigkeit von zwei verschiedenen Oberflächenbehandlungen auf Kupferdrähten (Draht A und Draht B) wurden mit dem Nanovea-Tribometer unter Verwendung eines linear hin- und hergehenden Verschleißmoduls bewertet. Als Gegenmaterial kommt bei dieser Anwendung eine Al₂O₃-Kugel (6 mm Durchmesser) zum Einsatz. Die Verschleißspur wurde mit Nanovea untersucht Berührungsloses 3D-Profilometer. Die Testparameter sind in Tabelle 1 zusammengefasst.

Eine glatte Al₂O₃-Kugel als Gegenmaterial wurde in dieser Studie als Beispiel verwendet. Jedes feste Material mit unterschiedlicher Form und Oberflächenbeschaffenheit kann mit einer kundenspezifischen Vorrichtung aufgebracht werden, um die tatsächliche Anwendungssituation zu simulieren.

 

 

Mit dem mechanischen Prüfgerät von Nanovea, das mit einer Rockwell-C-Diamantnadel (Radius 100 μm) ausgestattet ist, wurden Kratztests mit progressiver Belastung an den beschichteten Drähten im Mikrokratzmodus durchgeführt. Die Parameter des Kratztests und die Geometrie der Spitze sind in Tabelle 2 aufgeführt.
 

 

 

 

Ergebnisse und Diskussion

Abnutzung von Kupferdraht:

Abbildung 2 zeigt die COF-Entwicklung der Kupferdrähte während der Verschleißtests. Draht A zeigt während des gesamten Verschleißtests einen stabilen COF von ~0,4, während Draht B in den ersten 100 Umdrehungen einen COF von ~0,35 aufweist, der dann schrittweise auf ~0,4 ansteigt.

 

Abbildung 3 vergleicht die Verschleißspuren der Kupferdrähte nach den Tests. Das berührungslose 3D-Profilometer von Nanovea bietet eine hervorragende Analyse der detaillierten Morphologie der Verschleißspuren. Es ermöglicht eine direkte und genaue Bestimmung des Volumens der Verschleißspuren, indem es ein grundlegendes Verständnis für den Verschleißmechanismus liefert. Die Oberfläche von Draht B weist nach einem Verschleißtest mit 600 Umdrehungen erhebliche Verschleißspurenschäden auf. Die 3D-Ansicht des Profilometers zeigt, dass die oberflächenbehandelte Schicht von Draht B vollständig entfernt wurde, was den Verschleißprozess erheblich beschleunigte. Dies hinterließ eine abgeflachte Verschleißspur auf Draht B, wo das Kupfersubstrat freiliegt. Dies kann zu einer erheblich verkürzten Lebensdauer von elektrischen Geräten führen, in denen Draht B verwendet wird. Im Vergleich dazu weist Draht A einen relativ geringen Verschleiß auf, der sich in einer flachen Verschleißspur auf der Oberfläche zeigt. Die oberflächenbehandelte Schicht auf Draht A ließ sich nicht wie die Schicht auf Draht B unter denselben Bedingungen abtragen.

Kratzfestigkeit der Kupferdrahtoberfläche:

Abbildung 4 zeigt die Kratzspuren auf den Drähten nach der Prüfung. Die Schutzschicht von Draht A weist eine sehr gute Kratzfestigkeit auf. Sie delaminiert bei einer Belastung von ~12,6 N. Im Vergleich dazu versagt die Schutzschicht von Draht B bei einer Belastung von ~1,0 N. Ein solch signifikanter Unterschied in der Kratzfestigkeit dieser Drähte trägt zu ihrer Verschleißleistung bei, wobei Draht A eine wesentlich höhere Verschleißfestigkeit aufweist. Die Entwicklung der Normalkraft, des COF und der Tiefe während der Kratztests, die in Abb. 5 dargestellt sind, geben weitere Einblicke in das Versagen der Beschichtung während der Tests.

Schlussfolgerung

In dieser kontrollierten Studie stellten wir das Tribometer von Nanovea vor, das eine quantitative Bewertung der Verschleißfestigkeit von oberflächenbehandelten Kupferdrähten durchführt, und den mechanischen Tester von Nanovea, der eine zuverlässige Beurteilung der Kratzfestigkeit von Kupferdrähten ermöglicht. Die Oberflächenbehandlung von Drähten spielt eine entscheidende Rolle für die tribomechanischen Eigenschaften während ihrer Lebensdauer. Durch die richtige Oberflächenbehandlung von Drähten wird die Verschleiß- und Kratzfestigkeit erheblich verbessert, was für die Leistung und Lebensdauer elektrischer Drähte in rauen Umgebungen von entscheidender Bedeutung ist.

Das Tribometer von Nanovea bietet präzise und wiederholbare Verschleiß- und Reibungstests im ISO- und ASTM-konformen Rotations- und Linearmodus, mit optionalen Modulen für Hochtemperaturverschleiß, Schmierung und Tribokorrosion, die in einem vorintegrierten System verfügbar sind. Das unübertroffene Sortiment von Nanovea ist eine ideale Lösung zur Bestimmung des gesamten Spektrums tribologischer Eigenschaften dünner oder dicker, weicher oder harter Beschichtungen, Filme und Substrate.

UND NUN ZU IHRER BEWERBUNG

Dynamische Belastung Tribologie

Dynamische Belastung Tribologie

Einführung

Verschleiß findet in praktisch jedem Industriesektor statt und verursacht Kosten in Höhe von ~0,75% des BIP1. Die Tribologieforschung ist von entscheidender Bedeutung für die Verbesserung der Produktionseffizienz und der Anwendungsleistung sowie für die Erhaltung von Material, Energie und Umwelt. Vibrationen und Schwingungen treten bei einer Vielzahl von tribologischen Anwendungen unvermeidlich auf. Übermäßige externe Vibrationen beschleunigen den Verschleißprozess und verringern die Betriebsleistung, was zu katastrophalen Ausfällen der mechanischen Teile führt.

Herkömmliche Totlasttribometer bringen normale Lasten durch Massengewichte auf. Eine solche Belastungstechnik schränkt nicht nur die Belastungsmöglichkeiten auf eine konstante Last ein, sondern erzeugt auch starke unkontrollierte Schwingungen bei hohen Lasten und Geschwindigkeiten, was zu begrenzten und uneinheitlichen Bewertungen des Verschleißverhaltens führt. Eine zuverlässige Bewertung der Auswirkungen kontrollierter Schwingungen auf das Verschleißverhalten von Werkstoffen ist für Forschung und Entwicklung sowie für die Qualitätskontrolle in verschiedenen industriellen Anwendungen wünschenswert.

Die bahnbrechende Hochlast von Nanovea Tribometer verfügt über eine maximale Tragfähigkeit von 2000 N mit einem dynamischen Lastkontrollsystem. Das fortschrittliche pneumatische Druckluft-Ladesystem ermöglicht es Benutzern, das tribologische Verhalten eines Materials unter hohen normalen Belastungen zu bewerten, mit dem Vorteil, unerwünschte Vibrationen zu dämpfen, die während des Verschleißprozesses entstehen. Daher wird die Last direkt gemessen, ohne dass Pufferfedern wie bei älteren Konstruktionen erforderlich sind. Ein oszillierendes Belastungsmodul mit parallelem Elektromagneten erzeugt eine gut kontrollierte Schwingung mit der gewünschten Amplitude von bis zu 20 N und einer Frequenz von bis zu 150 Hz.

Die Reibung wird mit hoher Genauigkeit direkt anhand der auf den oberen Halter ausgeübten Seitenkraft gemessen. Die Verschiebung wird vor Ort überwacht und gibt Aufschluss über die Entwicklung des Verschleißverhaltens der Testproben. Der Verschleißtest unter kontrollierter Schwingungsbelastung kann auch in Korrosions-, Hochtemperatur-, Feuchtigkeits- und Schmierumgebungen durchgeführt werden, um die realen Arbeitsbedingungen für tribologische Anwendungen zu simulieren. Ein integrierter Hochgeschwindigkeitsmotor berührungsloses Profilometer Misst automatisch die Morphologie der Verschleißspur und das Verschleißvolumen in wenigen Sekunden.

Messung Zielsetzung

In dieser Studie zeigen wir die Leistungsfähigkeit des Nanovea T2000 Dynamic Load Tribometers bei der Untersuchung des tribologischen Verhaltens verschiedener Beschichtungs- und Metallproben unter kontrollierten Schwingungsbelastungen.

 

Testverfahren

Das tribologische Verhalten, z.B. der Reibungskoeffizient (COF) und die Verschleißfestigkeit einer 300 µm dicken verschleißfesten Beschichtung wurde mit dem Nanovea T2000 Tribometer und einem konventionellen Totlasttribometer unter Verwendung eines Stift-Scheibe-Aufbaus nach ASTM G992 bewertet und verglichen.

Separate Cu- und TiN-beschichtete Proben gegen eine 6 mm große Al₂O₃-Kugel unter kontrollierter Oszillation wurden im Dynamic Load Tribology Mode des Nanovea T2000 Tribometers bewertet.

Die Prüfparameter sind in Tabelle 1 zusammengefasst.

Das integrierte 3D-Profilometer mit Zeilensensor tastet die Verschleißspur nach den Tests automatisch ab und liefert in Sekundenschnelle die genaueste Messung des Verschleißvolumens.

Ergebnisse und Diskussion

 

Pneumatisches Ladesystem vs. Totlastsystem

 

Das tribologische Verhalten einer verschleißfesten Beschichtung unter Verwendung des Nanovea T2000 Tribometers wird mit einem herkömmlichen Totlasttribometer (DL) verglichen. Die Entwicklung des COF der Beschichtung ist in Abb. 2 dargestellt. Wir stellen fest, dass die Beschichtung einen vergleichbaren COF-Wert von ~0,6 während des Verschleißtests aufweist. Die 20 Querschnittsprofile an verschiedenen Stellen der Verschleißspur in Abb. 3 zeigen jedoch, dass die Beschichtung unter dem Totlastsystem einen viel stärkeren Verschleiß erfährt.

Durch den Verschleißprozess des Totlastsystems bei hoher Belastung und Geschwindigkeit wurden intensive Vibrationen erzeugt. Der massive, konzentrierte Druck an der Kontaktfläche in Verbindung mit einer hohen Gleitgeschwindigkeit erzeugt erhebliche Gewichts- und Strukturschwingungen, die zu einem beschleunigten Verschleiß führen. Beim herkömmlichen Totlasttribometer wird die Belastung durch Massengewichte aufgebracht. Diese Methode ist bei niedrigeren Kontaktbelastungen unter milden Verschleißbedingungen zuverlässig; unter aggressiven Verschleißbedingungen bei höheren Belastungen und Geschwindigkeiten führen die erheblichen Vibrationen jedoch dazu, dass die Gewichte wiederholt ausschlagen, was zu einer ungleichmäßigen Verschleißspur und damit zu einer unzuverlässigen tribologischen Bewertung führt. Die berechnete Verschleißrate beträgt 8,0±2,4 x 10-4 mm3/N m, was eine hohe Verschleißrate und große Standardabweichung bedeutet.

Das Nanovea T2000 Tribometer ist mit einem dynamischen Kontroll-Ladesystem ausgestattet, um die Schwingungen zu dämpfen. Die normale Last wird mit Druckluft aufgebracht, wodurch unerwünschte Schwingungen während des Verschleißprozesses minimiert werden. Darüber hinaus sorgt die aktive Belastungssteuerung im geschlossenen Regelkreis dafür, dass während des gesamten Verschleißtests eine konstante Last aufgebracht wird und der Taststift der Tiefenänderung der Verschleißspur folgt. Wie in Abb. 3a zu sehen ist, wird ein deutlich gleichmäßigeres Profil der Verschleißspur gemessen, was zu einer niedrigen Verschleißrate von 3,4±0,5 x 10-4 mm3/N m führt.

Die in Abb. 4 gezeigte Analyse der Verschleißspur bestätigt, dass der Verschleißtest, der mit dem pneumatischen Druckluftsystem des Nanovea T2000 Tribometers durchgeführt wird, eine glattere und gleichmäßigere Verschleißspur im Vergleich zu einem konventionellen Totlasttribometer erzeugt. Darüber hinaus misst das Nanovea T2000 Tribometer die Verschiebung des Tastereinsatzes während des Verschleißprozesses, was einen weiteren Einblick in den Verlauf des Verschleißverhaltens in situ ermöglicht.

 

 

Kontrollierte Oszillation bei Abnutzung der Cu-Probe

Mit dem parallel oszillierenden Belastungs-Elektromagnetmodul des Nanovea T2000 Tribometers können die Auswirkungen von kontrollierten Amplituden- und Frequenzschwingungen auf das Verschleißverhalten von Materialien untersucht werden. Die COF der Cu-Proben wird in situ aufgezeichnet, wie in Abb. 6 dargestellt. Die Cu-Probe weist während der ersten Messung mit 330 Umdrehungen eine konstante COF von ~0,3 auf, was auf die Bildung eines stabilen Kontakts an der Grenzfläche und eine relativ glatte Verschleißspur hinweist. Im weiteren Verlauf des Verschleißtests deutet die Variation des COF auf eine Veränderung des Verschleißmechanismus hin. Im Vergleich dazu zeigen die Verschleißtests unter einer amplitudengesteuerten Oszillation von 5 N bei 50 N ein anderes Verschleißverhalten: Die COF steigt zu Beginn des Verschleißprozesses sofort an und zeigt während des gesamten Verschleißtests erhebliche Schwankungen. Dieses Verhalten der COF deutet darauf hin, dass die aufgezwungene Oszillation in der Normallast eine Rolle für den instabilen Gleitzustand am Kontakt spielt.

Abb. 7 vergleicht die mit dem integrierten berührungslosen optischen Profilometer gemessene Morphologie der Verschleißspur. Es ist zu beobachten, dass die Cu-Probe unter einer kontrollierten Schwingungsamplitude von 5 N eine viel größere Verschleißspur mit einem Volumen von 1,35 x 109 µm3 aufweist, verglichen mit 5,03 x 108 µm3 ohne auferlegte Schwingung. Die kontrollierte Oszillation beschleunigt die Verschleißrate signifikant um einen Faktor von ~2,7, was die kritische Wirkung der Oszillation auf das Verschleißverhalten zeigt.

 

Kontrollierte Oszillation bei der Abnutzung der TiN-Beschichtung

Die COF und die Verschleißspuren der TiN-Beschichtungsprobe sind in Abb. 8 dargestellt. Die TiN-Beschichtung weist ein deutlich unterschiedliches Verschleißverhalten unter Oszillation auf, wie die Entwicklung der COF während der Tests zeigt. Die TiN-Beschichtung zeigt nach der Einlaufphase zu Beginn des Verschleißtests einen konstanten COF von ~0,3, was auf den stabilen Gleitkontakt an der Schnittstelle zwischen der TiN-Beschichtung und der Al₂O₃-Kugel zurückzuführen ist. Wenn jedoch die TiN-Beschichtung zu versagen beginnt, dringt die Al₂O₃-Kugel durch die Beschichtung und gleitet gegen das frische Stahlsubstrat darunter. Gleichzeitig entsteht in der Verschleißspur eine beträchtliche Menge harter TiN-Beschichtungsreste, wodurch aus einem stabilen Zweikörper-Gleitverschleiß ein Dreikörper-Abriebverschleiß wird. Eine solche Änderung der Materialpaarungseigenschaften führt zu größeren Schwankungen bei der Entwicklung der COF. Die aufgezwungene Oszillation von 5 N und 10 N beschleunigt das Versagen der TiN-Beschichtung von ~400 Umdrehungen auf unter 100 Umdrehungen. Die größeren Verschleißspuren auf den TiN-Beschichtungsproben nach den Verschleißtests unter der kontrollierten Oszillation stehen im Einklang mit einer solchen Änderung der COF.

Schlussfolgerung

Das fortschrittliche pneumatische Belastungssystem des Nanovea T2000 Tribometers besitzt einen intrinsischen Vorteil als ein natürlich schneller Schwingungsdämpfer im Vergleich zu traditionellen Totlastsystemen. Dieser technologische Vorteil pneumatischer Systeme gilt auch im Vergleich zu lastgesteuerten Systemen, die eine Kombination aus Servomotoren und Federn zur Aufbringung der Last verwenden. Die Technologie gewährleistet eine zuverlässige und besser kontrollierte Verschleißbewertung bei hohen Belastungen, wie in dieser Studie gezeigt wurde. Darüber hinaus kann das aktive Lastsystem mit geschlossenem Regelkreis die normale Last während der Verschleißtests auf einen gewünschten Wert ändern, um reale Anwendungen in Bremssystemen zu simulieren.

Anstelle der Beeinflussung durch unkontrollierte Schwingungsbedingungen während der Tests haben wir gezeigt, dass das Nanovea T2000 Dynamic-Load Tribometer es dem Benutzer ermöglicht, das tribologische Verhalten von Materialien unter verschiedenen kontrollierten Schwingungsbedingungen quantitativ zu bewerten. Schwingungen spielen eine wichtige Rolle für das Verschleißverhalten von Metall- und Keramikbeschichtungsproben.

Das parallele elektromagnetische Schwingungsbelastungsmodul liefert präzise kontrollierte Schwingungen mit festgelegten Amplituden und Frequenzen, so dass der Benutzer den Verschleißprozess unter realen Bedingungen simulieren kann, bei denen Umgebungsschwingungen oft ein wichtiger Faktor sind. Bei Vorhandensein von aufgezwungenen Schwingungen während des Verschleißes zeigen sowohl die Cu- als auch die TiN-Beschichtungsproben eine deutlich erhöhte Verschleißrate. Die Entwicklung des Reibungskoeffizienten und die in situ gemessene Tasterauslenkung sind wichtige Indikatoren für die Leistung des Materials während der tribologischen Anwendungen. Das integrierte berührungslose 3D-Profilometer bietet ein Werkzeug zur präzisen Messung des Verschleißvolumens und zur sekundenschnellen Analyse der detaillierten Morphologie der Verschleißspuren, was zu einem besseren Verständnis des Verschleißmechanismus führt.

Das T2000 ist mit einem selbstabgestimmten, hochwertigen und drehmomentstarken Motor mit einem internen 20-Bit-Drehzahl- und einem externen 16-Bit-Positionsgeber ausgestattet. Er ermöglicht dem Tribometer einen unübertroffenen Drehzahlbereich von 0,01 bis 5000 U/min, der sich schrittweise oder kontinuierlich ändern kann. Im Gegensatz zu Systemen, die einen unten angebrachten Drehmomentsensor verwenden, nutzt das Nanovea-Tribometer eine oben angebrachte hochpräzise Kraftmesszelle, um die Reibungskräfte genau und separat zu messen.

Nanovea Tribometer bietet präzise und wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi (einschließlich 4-Kugel-, Anlaufscheiben- und Block-auf-Ring-Tests), mit optionalen Hochtemperatur-Verschleiß-, Schmier- und Tribokorrosionsmodulen in einem vorintegrierten System. Die unübertroffene Bandbreite des Nanovea T2000 ist eine ideale Lösung für die Bestimmung des gesamten Spektrums tribologischer Eigenschaften von dünnen oder dicken, weichen oder harten Beschichtungen, Filmen und Substraten.

UND NUN ZU IHRER BEWERBUNG

Analyse der Textur von Orangenschalen mit 3D-Profilometrie

Analyse der Textur von Orangenschalen mit 3D-Profilometrie

Einführung

Die Größe und Häufigkeit von Oberflächenstrukturen auf Substraten wirken sich auf die Qualität von Glanzlacken aus. Die Orangenschalentextur, die nach ihrem Aussehen benannt ist, kann sich durch den Einfluss des Substrats und der Lackauftragungstechnik entwickeln. Texturprobleme werden in der Regel anhand der Welligkeit, der Wellenlänge und der visuellen Wirkung, die sie auf Glanzlacke haben, quantifiziert. Kleinste Texturen führen zu einer Glanzminderung, während größere Texturen zu sichtbaren Wellen auf der beschichteten Oberfläche führen. Für die Qualitätskontrolle ist es wichtig, die Entwicklung dieser Texturen und ihre Beziehung zu Substraten und Techniken zu verstehen.

Die Bedeutung der Profilometrie für die Texturmessung

Im Gegensatz zu herkömmlichen 2D-Instrumenten zur Messung der Glanztextur liefert die berührungslose 3D-Messung schnell ein 3D-Bild, das zum Verständnis von Oberflächeneigenschaften verwendet wird, mit der zusätzlichen Möglichkeit, interessierende Bereiche schnell zu untersuchen. Ohne Geschwindigkeit und 3D-Überprüfung würde sich eine Qualitätskontrollumgebung ausschließlich auf 2D-Informationen verlassen, die kaum eine Vorhersagbarkeit der gesamten Oberfläche ermöglichen. Das Verständnis von Texturen in 3D ermöglicht die beste Auswahl von Verarbeitungs- und Kontrollmaßnahmen. Die Gewährleistung der Qualitätskontrolle solcher Parameter hängt in hohem Maße von quantifizierbaren, reproduzierbaren und zuverlässigen Inspektionen ab. Nanovea 3D berührungslos Profilometer nutzen die chromatische Konfokaltechnologie, um die einzigartige Fähigkeit zu haben, die steilen Winkel zu messen, die bei schnellen Messungen auftreten. Nanovea-Profilometer sind dort erfolgreich, wo andere Techniken aufgrund von Sondenkontakt, Oberflächenvariation, Winkel oder Reflexionsvermögen keine zuverlässigen Daten liefern können.

Messung Zielsetzung

In dieser Anwendung misst der Nanovea HS2000L die Orangenschalentextur eines Glanzlacks. Aus dem 3D-Oberflächenscan werden automatisch unzählige Oberflächenparameter berechnet. Hier analysieren wir eine gescannte 3D-Oberfläche, indem wir die Merkmale der Orangenschalentextur quantifizieren.

Ergebnisse und Diskussion

Mit dem Nanovea HS2000L wurden die Isotropie- und Höhenparameter der Orangenschalenfarbe quantifiziert. Die Orangenschalentextur quantifizierte die Richtung des Zufallsmusters mit 94,4% Isotropie. Die Höhenparameter quantifizieren die Textur mit einer Höhendifferenz von 24,84µm.

Die Kurve des Lagerungsverhältnisses in Abbildung 4 ist eine grafische Darstellung der Tiefenverteilung. Dabei handelt es sich um eine interaktive Funktion innerhalb der Software, die es dem Benutzer ermöglicht, Verteilungen und Prozentsätze in verschiedenen Tiefen anzuzeigen. Ein extrahiertes Profil in Abbildung 5 liefert nützliche Rauheitswerte für die Orangenschalentextur. Die Extraktion von Spitzenwerten oberhalb eines Schwellenwerts von 144 Mikrometern zeigt die Orangenschalentextur an. Diese Parameter können leicht an andere Bereiche oder Parameter von Interesse angepasst werden.

Schlussfolgerung

In dieser Anwendung charakterisiert das berührungslose 3D-Profilometer Nanovea HS2000L sowohl die Topografie als auch die Nanometer-Details der Orangenhauttextur auf einer glänzenden Beschichtung präzise. Interessante Bereiche aus 3D-Oberflächenmessungen werden schnell identifiziert und mit vielen nützlichen Messungen analysiert (Dimension, Rauheit, Oberflächenstruktur, Formtopographie, Ebenheit, Verzug, Planarität, Volumenbereich, Stufenhöhe usw.). Schnell ausgewählte 2D-Querschnitte bieten einen vollständigen Satz von Oberflächenmessressourcen zur Glanztextur. Spezielle Bereiche von Interesse können mit einem integrierten AFM-Modul weiter analysiert werden. Die Geschwindigkeit des Nanovea 3D Profilometers reicht von <1 mm/s bis 500 mm/s und eignet sich damit für Forschungsanwendungen ebenso wie für Hochgeschwindigkeitsinspektionen. Die Nanovea 3D-Profilometer verfügen über eine breite Palette von Konfigurationen, die für Ihre Anwendung geeignet sind.

UND NUN ZU IHRER BEWERBUNG

3D-Oberflächenanalyse eines Pennys mit berührungsloser Profilometrie

Bedeutung der berührungslosen Profilometrie für Münzen

Währungen haben in der modernen Gesellschaft einen hohen Stellenwert, da sie gegen Waren und Dienstleistungen eingetauscht werden. Münzen und Scheine zirkulieren in den Händen vieler Menschen. Der ständige Transfer physischer Währung führt zu einer Oberflächenverformung. Nanoveas 3D Profilometer scannt die Topographie von Münzen, die in verschiedenen Jahren geprägt wurden, um Oberflächenunterschiede zu untersuchen.

Münzmerkmale sind für die breite Öffentlichkeit leicht erkennbar, da es sich um alltägliche Gegenstände handelt. Ein Cent ist ideal, um die Stärken der Advanced Surface Analysis Software von Nanovea vorzustellen: Mountains 3D. Mit unserem 3D-Profilometer erfasste Oberflächendaten ermöglichen umfassende Analysen komplexer Geometrien mit Oberflächensubtraktion und 2D-Konturextraktion. Die Oberflächensubtraktion mit einer kontrollierten Maske, einem Stempel oder einer Form vergleicht die Qualität von Fertigungsprozessen, während die Konturextraktion Toleranzen mithilfe einer Dimensionsanalyse identifiziert. Die 3D-Profilometer- und Mountains-3D-Software von Nanovea untersucht die Submikrontopographie scheinbar einfacher Objekte wie Pennys.



Messung Zielsetzung

Die gesamte Oberseite von fünf Pfennigen wurde mit dem Hochgeschwindigkeits-Zeilensensor von Nanovea gescannt. Der innere und äußere Radius jedes Pennys wurde mit der Mountains Advanced Analysis Software gemessen. Eine Extraktion von jeder Pfennigoberfläche in einem Bereich von Interesse mit direkter Oberflächensubtraktion quantifizierte die Oberflächenverformung.

 



Ergebnisse und Diskussion

3D-Oberfläche

Das Nanovea HS2000-Profilometer benötigte nur 24 Sekunden, um 4 Millionen Punkte in einem 20 mm x 20 mm großen Bereich mit einer Schrittgröße von 10 um x 10 um zu scannen und die Oberfläche eines Pennys zu erfassen. Unten sehen Sie eine Höhenkarte und eine 3D-Visualisierung des Scans. Die 3D-Ansicht zeigt die Fähigkeit des High-Speed-Sensors, kleine Details zu erfassen, die mit dem Auge nicht wahrnehmbar sind. Auf der Oberfläche des Pennys sind viele kleine Kratzer zu erkennen. Textur und Rauheit der Münze in der 3D-Ansicht werden untersucht.

 










Dimensionale Analyse

Die Konturen des Pennys wurden extrahiert, und die Dimensionsanalyse ergab den Innen- und Außendurchmesser des Kantenmerkmals. Der Außenradius betrug durchschnittlich 9,500 mm ± 0,024, der Innenradius durchschnittlich 8,960 mm ± 0,032. Weitere dimensionale Analysen, die Mountains 3D mit 2D- und 3D-Datenquellen durchführen kann, sind Abstandsmessungen, Stufenhöhe, Ebenheit und Winkelberechnungen.







Oberflächen-Subtraktion

Abbildung 5 zeigt den Bereich, der für die Analyse der Oberflächensubtraktion von Interesse ist. Der Pfennig von 2007 wurde als Referenzoberfläche für die vier älteren Pfennige verwendet. Die Oberflächensubtraktion von der Oberfläche des Pfennigs von 2007 zeigt die Unterschiede zwischen den Pfennigen mit Löchern/Spitzen. Die Gesamtvolumendifferenz der Oberfläche ergibt sich aus der Addition der Volumina der Löcher/Spitzen. Der RMS-Fehler gibt an, wie gut die Oberflächen der Pfennige übereinstimmen.


 









Schlussfolgerung





Der High-Speed HS2000L von Nanovea scannte fünf Pfennige, die in verschiedenen Jahren geprägt wurden. Die Mountains 3D-Software verglich die Oberflächen der einzelnen Münzen mithilfe von Konturextraktion, Dimensionsanalyse und Oberflächensubtraktion. Die Analyse definiert eindeutig den inneren und äußeren Radius zwischen den Münzen und vergleicht direkt die Unterschiede zwischen den Oberflächenmerkmalen. Mit der Fähigkeit des Nanovea 3D-Profilometers, beliebige Oberflächen mit einer Auflösung im Nanometerbereich zu messen, in Kombination mit den 3D-Analysefähigkeiten von Mountains, sind die möglichen Anwendungen für Forschung und Qualitätskontrolle endlos.

 


UND NUN ZU IHRER BEWERBUNG

Abmessungen und Oberflächenbeschaffenheit von Kunststoffrohren

Die Bedeutung der Dimensions- und Oberflächenanalyse von Polymerrohren

Rohre aus Polymermaterial werden häufig in vielen Branchen eingesetzt, von der Automobilindustrie über die Medizintechnik bis hin zur Elektrotechnik und vielen anderen Branchen. In dieser Studie wurden medizinische Katheter aus verschiedenen Polymermaterialien mit dem Nanovea untersucht Berührungsloses 3D-Profilometer zur Messung von Oberflächenrauhigkeit, Morphologie und Abmessungen. Die Oberflächenrauheit ist für Katheter von entscheidender Bedeutung, da viele Probleme mit Kathetern, einschließlich Infektionen, physischen Traumata und Entzündungen, mit der Katheteroberfläche in Verbindung gebracht werden können. Mechanische Eigenschaften, wie z. B. der Reibungskoeffizient, können ebenfalls durch Beobachtung der Oberflächeneigenschaften untersucht werden. Mit diesen quantifizierbaren Daten kann sichergestellt werden, dass der Katheter für medizinische Anwendungen verwendet werden kann.

Im Vergleich zur Lichtmikroskopie und Elektronenmikroskopie ist die berührungslose 3D-Profilometrie mit Axialchromatismus für die Charakterisierung von Katheteroberflächen äußerst vorteilhaft, da Winkel/Krümmung gemessen werden können, Materialoberflächen trotz Transparenz oder Reflektivität gemessen werden können, die Probenvorbereitung minimal ist und die Messung nicht invasiv ist. Anders als bei der konventionellen optischen Mikroskopie kann die Höhe der Oberfläche ermittelt und für rechnerische Analysen verwendet werden, z. B. zur Ermittlung der Abmessungen und zum Entfernen der Form, um die Oberflächenrauheit zu bestimmen. Die im Gegensatz zur Elektronenmikroskopie geringe Probenvorbereitung und die Berührungslosigkeit ermöglichen eine schnelle Datenerfassung, ohne Kontamination und Fehler bei der Probenvorbereitung befürchten zu müssen.

Messung Zielsetzung

In dieser Anwendung wird das Nanovea 3D Non-Contact Profilometer verwendet, um die Oberfläche von zwei Kathetern zu scannen: einer aus TPE (Thermoplastisches Elastomer) und der andere aus PVC (Polyvinylchlorid). Die Morphologie, die radiale Dimension und die Höhenparameter der beiden Katheter werden ermittelt und verglichen.

 

 

Ergebnisse und Diskussion

3D-Oberfläche

Trotz der Krümmung von Polymerschläuchen kann das berührungslose Nanovea 3D-Profilometer die Oberfläche der Katheter scannen. Aus dem Scan kann ein 3D-Bild für eine schnelle, direkte visuelle Inspektion der Oberfläche gewonnen werden.

 
 

 

2D-Dimensionale Analyse

Die radiale Außenabmessung wurde durch Extraktion eines Profils aus dem Originalscan und Anpassung eines Bogens an das Profil ermittelt. Dies zeigt die Fähigkeit des berührungslosen 3D-Profilometers, eine schnelle Dimensionsanalyse für Qualitätskontrollanwendungen durchzuführen. Es können auch problemlos mehrere Profile entlang der Länge des Katheters erstellt werden.

 

 

Oberflächenanalyse Rauhigkeit

Die radiale Außenabmessung wurde durch Extraktion eines Profils aus dem Originalscan und Anpassung eines Bogens an das Profil ermittelt. Dies zeigt die Fähigkeit des berührungslosen 3D-Profilometers, eine schnelle Dimensionsanalyse für Qualitätskontrollanwendungen durchzuführen. Es können auch problemlos mehrere Profile entlang der Länge des Katheters erstellt werden.

Schlussfolgerung

In dieser Anwendung haben wir gezeigt, wie das berührungslose Nanovea 3D-Profilometer zur Charakterisierung von Polymerschläuchen verwendet werden kann. Insbesondere wurden die Oberflächenmessung, die radialen Abmessungen und die Oberflächenrauhigkeit für medizinische Katheter ermittelt. Der Außenradius des TPE-Katheters betrug 2,40 mm, der des PVC-Katheters 1,27 mm. Die Oberfläche des TPE-Katheters erwies sich als rauer als die des PVC-Katheters. Der Sa-Wert von TPE betrug 0,9740µm im Vergleich zu 0,1791µm bei PVC. Obwohl für diese Anwendung medizinische Katheter verwendet wurden, kann die berührungslose 3D-Profilometrie auch auf eine Vielzahl anderer Oberflächen angewendet werden. Die erzielbaren Daten und Berechnungen sind nicht auf das Gezeigte beschränkt.

UND NUN ZU IHRER BEWERBUNG