USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Kategorie: Profilometrie | Geometrie und Form

 

Abmessungen und Oberflächenbeschaffenheit von Kunststoffrohren

Die Bedeutung der Dimensions- und Oberflächenanalyse von Polymerrohren

Rohre aus Polymermaterial werden häufig in vielen Branchen eingesetzt, von der Automobilindustrie über die Medizintechnik bis hin zur Elektrotechnik und vielen anderen Branchen. In dieser Studie wurden medizinische Katheter aus verschiedenen Polymermaterialien mit dem Nanovea untersucht Berührungsloses 3D-Profilometer zur Messung von Oberflächenrauhigkeit, Morphologie und Abmessungen. Die Oberflächenrauheit ist für Katheter von entscheidender Bedeutung, da viele Probleme mit Kathetern, einschließlich Infektionen, physischen Traumata und Entzündungen, mit der Katheteroberfläche in Verbindung gebracht werden können. Mechanische Eigenschaften, wie z. B. der Reibungskoeffizient, können ebenfalls durch Beobachtung der Oberflächeneigenschaften untersucht werden. Mit diesen quantifizierbaren Daten kann sichergestellt werden, dass der Katheter für medizinische Anwendungen verwendet werden kann.

Im Vergleich zur Lichtmikroskopie und Elektronenmikroskopie ist die berührungslose 3D-Profilometrie mit Axialchromatismus für die Charakterisierung von Katheteroberflächen äußerst vorteilhaft, da Winkel/Krümmung gemessen werden können, Materialoberflächen trotz Transparenz oder Reflektivität gemessen werden können, die Probenvorbereitung minimal ist und die Messung nicht invasiv ist. Anders als bei der konventionellen optischen Mikroskopie kann die Höhe der Oberfläche ermittelt und für rechnerische Analysen verwendet werden, z. B. zur Ermittlung der Abmessungen und zum Entfernen der Form, um die Oberflächenrauheit zu bestimmen. Die im Gegensatz zur Elektronenmikroskopie geringe Probenvorbereitung und die Berührungslosigkeit ermöglichen eine schnelle Datenerfassung, ohne Kontamination und Fehler bei der Probenvorbereitung befürchten zu müssen.

Messung Zielsetzung

In dieser Anwendung wird das Nanovea 3D Non-Contact Profilometer verwendet, um die Oberfläche von zwei Kathetern zu scannen: einer aus TPE (Thermoplastisches Elastomer) und der andere aus PVC (Polyvinylchlorid). Die Morphologie, die radiale Dimension und die Höhenparameter der beiden Katheter werden ermittelt und verglichen.

 

 

Ergebnisse und Diskussion

3D-Oberfläche

Trotz der Krümmung von Polymerschläuchen kann das berührungslose Nanovea 3D-Profilometer die Oberfläche der Katheter scannen. Aus dem Scan kann ein 3D-Bild für eine schnelle, direkte visuelle Inspektion der Oberfläche gewonnen werden.

 
 

 

2D-Dimensionale Analyse

Die radiale Außenabmessung wurde durch Extraktion eines Profils aus dem Originalscan und Anpassung eines Bogens an das Profil ermittelt. Dies zeigt die Fähigkeit des berührungslosen 3D-Profilometers, eine schnelle Dimensionsanalyse für Qualitätskontrollanwendungen durchzuführen. Es können auch problemlos mehrere Profile entlang der Länge des Katheters erstellt werden.

 

 

Oberflächenanalyse Rauhigkeit

Die radiale Außenabmessung wurde durch Extraktion eines Profils aus dem Originalscan und Anpassung eines Bogens an das Profil ermittelt. Dies zeigt die Fähigkeit des berührungslosen 3D-Profilometers, eine schnelle Dimensionsanalyse für Qualitätskontrollanwendungen durchzuführen. Es können auch problemlos mehrere Profile entlang der Länge des Katheters erstellt werden.

Schlussfolgerung

In dieser Anwendung haben wir gezeigt, wie das berührungslose Nanovea 3D-Profilometer zur Charakterisierung von Polymerschläuchen verwendet werden kann. Insbesondere wurden die Oberflächenmessung, die radialen Abmessungen und die Oberflächenrauhigkeit für medizinische Katheter ermittelt. Der Außenradius des TPE-Katheters betrug 2,40 mm, der des PVC-Katheters 1,27 mm. Die Oberfläche des TPE-Katheters erwies sich als rauer als die des PVC-Katheters. Der Sa-Wert von TPE betrug 0,9740µm im Vergleich zu 0,1791µm bei PVC. Obwohl für diese Anwendung medizinische Katheter verwendet wurden, kann die berührungslose 3D-Profilometrie auch auf eine Vielzahl anderer Oberflächen angewendet werden. Die erzielbaren Daten und Berechnungen sind nicht auf das Gezeigte beschränkt.

UND NUN ZU IHRER BEWERBUNG

Hochgeschwindigkeits-Scannen mit berührungsloser Profilometrie

Einleitung:

Schnell und einfach einzurichtende Oberflächenmessungen sparen Zeit und Aufwand und sind für die Qualitätskontrolle, Forschung und Entwicklung sowie Produktionsanlagen unerlässlich. Der Nanovea Berührungsloses Profilometer ist in der Lage, sowohl 3D- als auch 2D-Oberflächenscans durchzuführen, um Merkmale im Nano- bis Makromaßstab auf jeder Oberfläche zu messen und bietet so eine breite Einsatzmöglichkeit.

Zum Lesen hier klicken!

Oberflächenrauhigkeit und Eigenschaften einer Solarzelle

Die Bedeutung der Solarmodulprüfung

Die Maximierung der Energieabsorption einer Solarzelle ist der Schlüssel für das Überleben dieser Technologie als erneuerbare Ressource. Die verschiedenen Beschichtungs- und Glasschutzschichten ermöglichen die Absorption, Durchlässigkeit und Reflexion von Licht, die für das Funktionieren der Solarzellen erforderlich sind. Da die meisten Verbraucher-Solarzellen mit einem Wirkungsgrad von 15-18% arbeiten, ist die Optimierung ihrer Energieausbeute ein ständiger Kampf.


Studien haben gezeigt, dass die Oberflächenrauhigkeit eine entscheidende Rolle bei der Lichtreflexion spielt. Die erste Glasschicht muss so glatt wie möglich sein, um die Lichtreflexion zu vermindern, aber die nachfolgenden Schichten folgen nicht dieser Vorgabe. An den Grenzflächen zwischen den einzelnen Schichten ist ein gewisses Maß an Rauheit erforderlich, um die Möglichkeit der Lichtstreuung in den jeweiligen Verarmungszonen zu erhöhen und die Lichtabsorption innerhalb der Zelle zu steigern1. Die Optimierung der Oberflächenrauheit in diesen Bereichen ermöglicht es der Solarzelle, optimal zu funktionieren, und mit dem Nanovea HS2000 High Speed Sensor kann die Oberflächenrauheit schnell und genau gemessen werden.



Messung Zielsetzung

In dieser Studie werden wir die Möglichkeiten des Nanovea Profilometer HS2000 mit Hochgeschwindigkeitssensor durch Messung der Oberflächenrauheit und der geometrischen Merkmale einer Solarzelle. Für diese Demonstration wird eine monokristalline Solarzelle ohne Schutzglas gemessen, aber die Methodik kann auch für verschiedene andere Anwendungen verwendet werden.




Testverfahren und -abläufe

Die folgenden Testparameter wurden zur Messung der Oberfläche der Solarzelle verwendet.




Ergebnisse und Diskussion

Die folgende Abbildung zeigt die 2D-Falschfarbenansicht der Solarzelle und eine Flächenextraktion der Oberfläche mit den entsprechenden Höhenparametern. Auf beide Oberflächen wurde ein Gauß-Filter angewendet und ein aggressiverer Index verwendet, um die extrahierte Fläche zu glätten. Dadurch werden Formen (oder Welligkeiten), die größer als der Cut-off-Index sind, ausgeschlossen, so dass Merkmale zurückbleiben, die die Rauheit der Solarzelle darstellen.











Zur Messung der geometrischen Merkmale wurde ein Profil senkrecht zur Ausrichtung der Rasterlinien aufgenommen, das unten abgebildet ist. Die Breite der Gitterlinien, die Stufenhöhe und der Abstand können an jeder beliebigen Stelle der Solarzelle gemessen werden.









Schlussfolgerung





In dieser Studie konnten wir die Fähigkeit des Nanovea HS2000 Zeilensensors zur Messung der Oberflächenrauhigkeit und -merkmale einer monokristallinen Photovoltaikzelle zeigen. Mit der Möglichkeit, genaue Messungen mehrerer Proben zu automatisieren und Grenzwerte für das Bestehen und Nichtbestehen festzulegen, ist der Nanovea HS2000 Zeilensensor eine perfekte Wahl für Qualitätskontrollprüfungen.

Referenz

1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. "Influence of Surface Roughness on Optical Characteristics of Multilayer Solar Cells " Advances in Electrical and Electronic Engineering, vol. 12, no. 6, 2014, pp. 631-638.

UND NUN ZU IHRER BEWERBUNG

Tragbarkeit und Flexibilität des berührungslosen 3D-Profilometers Jr25

Das Verständnis und die Quantifizierung der Probenoberfläche ist für viele Anwendungen, einschließlich Qualitätskontrolle und Forschung, von entscheidender Bedeutung. Zur Untersuchung von Oberflächen werden häufig Profilometer verwendet, um Proben zu scannen und abzubilden. Ein großes Problem bei herkömmlichen Profilometrieinstrumenten ist die Unfähigkeit, nicht herkömmliche Proben aufzunehmen. Schwierigkeiten bei der Messung nicht konventioneller Proben können aufgrund der Probengröße, der Geometrie, der Unfähigkeit, die Probe zu bewegen, oder anderer umständlicher Probenvorbereitungen auftreten. Nanovea ist tragbar 3D berührungslose ProfilometerDie JR-Serie ist in der Lage, die meisten dieser Probleme zu lösen, da sie Probenoberflächen aus verschiedenen Winkeln scannen kann und tragbar ist.

Lesen Sie über das berührungslose Profilometer Jr25!

Qualitätsanalyse von durch Funkenerosion bearbeiteten Metallen

Die Funkenerosion (EDM) ist ein Fertigungsverfahren, bei dem Material durch elektrische Spannung abgetragen wird.
Entladungen [1]. Dieses Bearbeitungsverfahren wird im Allgemeinen bei leitfähigen Metallen eingesetzt, die schwierig zu bearbeiten wären.
mit herkömmlichen Methoden zu bearbeiten.

Wie bei allen Bearbeitungsprozessen müssen Präzision und Genauigkeit hoch sein, um akzeptable Ergebnisse zu erzielen.
Toleranzwerte. In diesem Anwendungshinweis wird die Qualität der bearbeiteten Metalle anhand eines
Nanovea Berührungsloses 3D-Profilometer.

Zum Lesen anklicken!

Ein BESSERER Blick auf Polycarbonatlinsen

Ein BESSERER Blick auf Polycarbonatlinsen Mehr erfahren
 
Polycarbonatlinsen werden in vielen optischen Anwendungen eingesetzt. Ihre hohe Stoßfestigkeit, ihr geringes Gewicht und die günstigen Kosten für die Großserienproduktion machen sie für verschiedene Anwendungen praktischer als herkömmliches Glas [1]. Einige dieser Anwendungen erfordern Sicherheits- (z. B. Schutzbrillen), Komplexitäts- (z. B. Fresnel-Linse) oder Haltbarkeitskriterien (z. B. Ampel-Linse), die ohne den Einsatz von Kunststoffen nur schwer zu erfüllen sind. Kunststofflinsen zeichnen sich dadurch aus, dass sie viele Anforderungen kostengünstig erfüllen können und gleichzeitig ausreichende optische Eigenschaften aufweisen. Polycarbonatgläser haben aber auch ihre Grenzen. Die größte Sorge der Verbraucher ist, dass sie leicht zerkratzt werden können. Um dies zu kompensieren, kann eine zusätzliche Beschichtung gegen Kratzer aufgebracht werden. Nanovea wirft einen Blick auf einige wichtige Eigenschaften von Kunststoffgläsern, indem wir unsere drei Messinstrumente einsetzen: Profilometer, Tribometerund Mechanischer Tester.   Klicken Sie, um mehr zu lesen!

Automatisierte großflächige Profilometrie von PCB

Die Skalierung von Fertigungsprozessen ist notwendig, damit die Industrie wachsen und mit der ständig steigenden Nachfrage Schritt halten kann. Mit der Skalierung des Fertigungsprozesses müssen auch die für die Qualitätskontrolle verwendeten Werkzeuge skaliert werden. Diese Werkzeuge müssen schnell sein, um mit der Produktionsrate mithalten zu können, und gleichzeitig eine hohe Genauigkeit aufweisen, um die Produkttoleranzgrenzen einzuhalten. Hier wird das Nanovea HS2000 Profilometer, mit Zeilensensor, zeigt seinen Wert als Qualitätskontrollinstrument mit seinen schnellen, automatisierten und hochauflösenden großflächigen Profilometriefunktionen.

Videoclip oder App Note: Automatisierte großflächige Profilometrie von PCB