USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Dynamisch-mechanische Analyse von Kork mittels Nanoindentation

DYNAMISCHE MECHANISCHE ANALYSE

VON KORK MITTELS NANOINDENTATION

Vorbereitet von

FRANK LIU

EINFÜHRUNG

Die dynamisch-mechanische Analyse (DMA) ist eine leistungsstarke Technik zur Untersuchung der mechanischen Eigenschaften von Materialien. In dieser Anwendung konzentrieren wir uns auf die Analyse von Kork, einem weit verbreiteten Material für die Versiegelung und Reifung von Wein. Kork, der aus der Rinde der Eiche Quercus suber gewonnen wird, weist ausgeprägte zelluläre Strukturen auf, die mechanische Eigenschaften aufweisen, die denen von synthetischen Polymeren ähneln. In einer Achse hat der Kork eine wabenförmige Struktur. Die beiden anderen Achsen sind in mehrere rechteckige Prismen unterteilt. Dies verleiht dem Kork je nach der geprüften Ausrichtung unterschiedliche mechanische Eigenschaften.

BEDEUTUNG DER DYNAMISCH-MECHANISCHEN ANALYSE (DMA) BEI DER BEWERTUNG DER MECHANISCHEN EIGENSCHAFTEN VON KORK

Die Qualität von Korken hängt in hohem Maße von ihren mechanischen und physikalischen Eigenschaften ab, die für ihre Effektivität beim Verschließen von Wein entscheidend sind. Zu den Schlüsselfaktoren, die die Korkqualität bestimmen, gehören Flexibilität, Isolierung, Elastizität und Undurchlässigkeit für Gas und Flüssigkeiten. Mit Hilfe der dynamisch-mechanischen Analyse (DMA) können wir die Elastizität und das Rückstellvermögen von Korken quantitativ bewerten und so eine zuverlässige Methode zur Beurteilung bieten.

Der mechanische Tester NANOVEA PB1000 im Nanoindentation Modus ermöglicht die Charakterisierung dieser Eigenschaften, insbesondere des Elastizitätsmoduls, des Speichermoduls, des Verlustmoduls und des tan delta (tan (δ)). Die DMA-Prüfung ermöglicht auch die Erfassung wertvoller Daten zu Phasenverschiebung, Härte, Spannung und Dehnung des Korkmaterials. Durch diese umfassenden Analysen erhalten wir tiefere Einblicke in das mechanische Verhalten von Korken und ihre Eignung für Weinverschlussanwendungen.

MESSZIEL

In dieser Studie wird die dynamisch-mechanische Analyse (DMA) von vier Korken mit dem NANOVEA PB1000 Mechanikprüfgerät im Nanoindentationsmodus durchgeführt. Die Qualität der Korken ist wie folgt gekennzeichnet: 1 - Flor, 2 - First, 3 - Colmated, 4 - Synthetischer Gummi. Für jeden Korken wurden DMA-Eindringtests in axialer und radialer Richtung durchgeführt. Durch die Analyse der mechanischen Reaktion der Korken wollten wir Einblicke in ihr dynamisches Verhalten gewinnen und ihre Leistung unter verschiedenen Ausrichtungen bewerten.

NANOVEA

PB1000

PRÜFPARAMETER

MAX FORCE75 mN
LADUNGSVERFAHREN150 mN/min
ENTLADUNGSRATE150 mN/min
AMPLITUDE5 mN
FREQUENZ1 Hz
CREEP60 s

Eindringkörpertyp

Kugel

51200 Stahl

3 mm Durchmesser

ERGEBNISSE

In den nachstehenden Tabellen und Diagrammen werden der Elastizitätsmodul, der Speichermodul, der Verlustmodul und tan delta für jede Probe und Orientierung verglichen.

Elastizitätsmodul: Stiffness; hohe Werte bedeuten stiff, niedrige Werte bedeuten flexibel.

Speichermodul: Elastische Reaktion; im Material gespeicherte Energie.

Verlustmodul: Viskose Reaktion; Energieverlust durch Wärme.

Tan (δ): Befeuchtung; hohe Werte bedeuten mehr Befeuchtung.

AXIALE AUSRICHTUNG

StopperELASTIZITÄTSMODULSPEICHERMODULMODULUS VERLUSTTAN
#(MPa)(MPa)(MPa)(δ)
122.567522.272093.6249470.162964
218.5466418.271533.1623490.17409
323.7538123.472673.6178190.154592
423.697223.580642.3470080.099539



RADIALE ORIENTIERUNG

StopperELASTIZITÄTSMODULSPEICHERMODULMODULUS VERLUSTTAN
#(MPa)(MPa)(MPa)(δ)
124.7886324.565423.3082240.134865
226.6661426.317394.2862160.163006
344.0786743.614266.3659790.146033
428.0475127.941482.4359780.087173

ELASTIZITÄTSMODUL

SPEICHERMODUL

MODULUS VERLUST

TAN DELTA

Zwischen den Korken ist der Elastizitätsmodul nicht sehr unterschiedlich, wenn sie in axialer Richtung geprüft werden. Nur die Korken #2 und #3 zeigten einen deutlichen Unterschied im Elastizitätsmodul zwischen radialer und axialer Richtung. Infolgedessen sind auch der Speichermodul und der Verlustmodul in radialer Richtung höher als in axialer Richtung. Der Stopfen #4 zeigt ähnliche Eigenschaften wie die Naturkorkstopfen, mit Ausnahme des Verlustmoduls. Dies ist recht interessant, da es bedeutet, dass der Naturkorken eine zähere Eigenschaft hat als das synthetische Gummimaterial.

SCHLUSSFOLGERUNG

Die NANOVEA Mechanischer Tester Im Nano-Scratch-Tester-Modus können viele reale Fehler von Lackbeschichtungen und Hartbeschichtungen simuliert werden. Durch die kontrollierte und genau überwachte Anwendung steigender Lasten ermöglicht das Instrument die Erkennung, bei welcher Last Ausfälle auftreten. Daraus lassen sich dann quantitative Werte für die Kratzfestigkeit ermitteln. Es ist bekannt, dass die getestete Beschichtung ohne Witterungseinflüsse einen ersten Riss bei etwa 22 mN aufweist. Bei Werten, die näher bei 5 mN liegen, ist klar, dass die 7-Jahres-Runde den Lack beschädigt hat.

Die Kompensation des ursprünglichen Profils ermöglicht es, die korrigierte Tiefe während des Ritzens zu erhalten und auch die Resttiefe nach dem Ritzen zu messen. Dies gibt zusätzliche Informationen über das plastische bzw. elastische Verhalten der Beschichtung bei zunehmender Belastung. Sowohl die Rissbildung als auch die Informationen über die Verformung können von großem Nutzen für die Verbesserung der Hartstoffschicht sein. Die sehr geringen Standardabweichungen zeigen auch die Reproduzierbarkeit der Technik des Geräts, die den Herstellern helfen kann, die Qualität ihrer Hartbeschichtung/Lackierung zu verbessern und Bewitterungseffekte zu untersuchen.

UND NUN ZU IHRER BEWERBUNG

Kommentar