USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Catégorie : Essais de profilométrie

 

Tribologie des polymères

Introduction

Les polymères ont été largement utilisés dans une grande variété d'applications et sont devenus un élément indispensable de la vie quotidienne. Les polymères naturels tels que l'ambre, la soie et le caoutchouc naturel ont joué un rôle essentiel dans l'histoire de l'humanité. Le processus de fabrication des polymères synthétiques peut être optimisé pour obtenir des propriétés physiques uniques telles que la résistance, la viscoélasticité, l'autolubrification et bien d'autres encore.

Importance de l'usure et de la friction des polymères

Les polymères sont couramment utilisés pour des applications tribologiques, comme les pneus, les roulements et les bandes transporteuses.
Différents mécanismes d'usure se produisent en fonction des propriétés mécaniques du polymère, des conditions de contact et des propriétés des débris ou du film de transfert formés au cours du processus d'usure. Pour s'assurer que les polymères possèdent une résistance à l'usure suffisante dans les conditions de service, une évaluation tribologique fiable et quantifiable est nécessaire. L'évaluation tribologique nous permet de comparer quantitativement les comportements d'usure de différents polymères de manière contrôlée et surveillée afin de sélectionner le matériau candidat pour l'application visée.

Le tribomètre Nanovea offre des tests d'usure et de friction répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure et de lubrification à haute température disponibles dans un système pré-intégré. Cette gamme inégalée permet aux utilisateurs de simuler les différents environnements de travail des polymères, y compris les contraintes concentrées, l'usure et les hautes températures, etc.

OBJECTIF DE MESURE

Dans cette étude, nous avons montré que le Nanovea Tribomètre est un outil idéal pour comparer le frottement et la résistance à l’usure de différents polymères de manière bien contrôlée et quantitative.

PROCÉDURE DE TEST

Le coefficient de frottement (COF) et la résistance à l'usure de différents polymères courants ont été évalués par le Tribomètre Nanovea. Une bille d'Al2O3 a été utilisée comme contre-matériau (broche, échantillon statique). Les traces d'usure sur les polymères (échantillons en rotation dynamique) ont été mesurées à l'aide d'un profilomètre 3D sans contact et microscope optique une fois les tests terminés. Il convient de noter qu’un capteur endoscopique sans contact peut être utilisé en option pour mesurer la profondeur de pénétration de la broche dans l’échantillon dynamique lors d’un test d’usure. Les paramètres de test sont résumés dans le tableau 1. Le taux d'usure, K, a été évalué à l'aide de la formule K = Vl (Fxs), où V est le volume usé, F est la charge normale et s est la distance de glissement.

Veuillez noter que des billes d'Al2O3 ont été utilisées comme contre-matériau dans cette étude. Tout matériau solide peut être substitué pour simuler plus fidèlement les performances de deux spécimens dans des conditions d'application réelles.

RÉSULTATS ET DISCUSSION

La vitesse d'usure est un facteur vital pour déterminer la durée de vie des matériaux, tandis que le frottement joue un rôle critique dans les applications tribologiques. La figure 2 compare l'évolution du COF pour différents polymères contre la bille en Al2O3 pendant les tests d'usure. Le COF fonctionne comme un indicateur du moment où les défaillances se produisent et où le processus d'usure entre dans une nouvelle phase. Parmi les polymères testés, le PEHD maintient le COF constant le plus bas de ~0,15 tout au long du test d'usure. Le COF régulier implique qu'un tribo-contact stable est formé.

Les figures 3 et 4 comparent les traces d'usure des échantillons de polymère après leur mesure au microscope optique. Le profilomètre 3D sans contact in situ détermine précisément le volume d'usure des échantillons de polymère, ce qui permet de calculer avec exactitude des taux d'usure de 0,0029, 0,0020 et 0,0032m3/N m, respectivement. En comparaison, l'échantillon de CPVC présente le taux d'usure le plus élevé de 0,1121m3/N m. De profondes cicatrices d'usure parallèles sont présentes dans la trace d'usure du CPVC.

CONCLUSION

La résistance à l'usure des polymères joue un rôle essentiel dans leur performance de service. Dans cette étude, nous avons montré que le tribomètre Nanovea évalue le coefficient de frottement et le taux d'usure de différents polymères dans un environnement de travail.
de manière bien contrôlée et quantitative. Le HDPE montre le COF le plus bas de ~0.15 parmi les polymères testés. Les échantillons de PEHD, de Nylon 66 et de polypropylène possèdent de faibles taux d'usure de 0,0029, 0,0020 et 0,0032 m3/N m, respectivement. La combinaison d'une faible friction et d'une grande résistance à l'usure fait du HDPE un bon candidat pour les applications tribologiques des polymères.

Le profilomètre 3D sans contact in situ permet de mesurer avec précision le volume d'usure et offre un outil pour analyser la morphologie détaillée des traces d'usure, ce qui permet de mieux comprendre les mécanismes fondamentaux de l'usure.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Finition de surface des panneaux en nid d'abeille avec la profilométrie 3D

INTRODUCTION


La rugosité, la porosité et la texture de la surface du panneau en nid d'abeille sont essentielles à quantifier pour la conception finale du panneau. Ces qualités de surface sont en corrélation directe avec les caractéristiques esthétiques et fonctionnelles de la surface du panneau. Une meilleure compréhension de la texture et de la porosité de la surface peut aider à optimiser le traitement et la fabrication de la surface du panneau. Une mesure quantitative, précise et fiable de la surface du panneau en nid d'abeille est nécessaire pour contrôler les paramètres de surface en fonction des exigences d'application et de peinture. Les capteurs Nanovea 3D sans contact utilisent une technologie confocale chromatique unique capable de mesurer précisément la surface de ces panneaux.



OBJECTIF DE MESURE


Dans cette étude, la plateforme Nanovea HS2000 équipée d'un capteur de ligne à grande vitesse a été utilisée pour mesurer et comparer deux panneaux en nid d'abeille avec des finitions de surface différentes. Nous présentons le Nanovea profilomètre sans contactLa capacité de fournit des mesures de profilage 3D rapides et précises et une analyse complète et approfondie de l'état de surface.



RÉSULTATS ET DISCUSSION

La surface de deux échantillons de panneaux en nid d'abeille avec des finitions de surface variées, à savoir l'échantillon 1 et l'échantillon 2, a été mesurée. La fausse couleur et la vue 3D des surfaces des échantillons 1 et 2 sont présentées respectivement sur la Figure 3 et la Figure 4. Les valeurs de rugosité et de planéité ont été calculées par un logiciel d'analyse avancé et sont comparées dans le tableau 1. L'échantillon 2 présente une surface plus poreuse que l'échantillon 1. Par conséquent, l'échantillon 2 possède une rugosité Sa plus élevée de 14,7 µm, par rapport à une valeur Sa de 4,27 µm pour l'échantillon 1.

Les profils 2D des surfaces des panneaux en nid d'abeille ont été comparés dans la Figure 5, permettant aux utilisateurs d'avoir une comparaison visuelle de la variation de hauteur à différents endroits de la surface de l'échantillon. Nous pouvons observer que l'échantillon 1 présente une variation de hauteur de ~25 µm entre le pic le plus élevé et la vallée la plus basse. D'autre part, l'échantillon 2 présente plusieurs pores profonds sur le profil 2D. Le logiciel d'analyse avancée a la capacité de localiser et de mesurer automatiquement la profondeur de six pores relativement profonds, comme le montre le tableau de la figure 4.b de l'échantillon 2. Le pore le plus profond parmi les six possède une profondeur maximale de près de 90 µm (étape 4).

Pour approfondir la taille et la distribution des pores de l'échantillon 2, une évaluation de la porosité a été réalisée et discutée dans la section suivante. La vue en coupe est présentée sur la Figure 5 et les résultats sont résumés dans le Tableau 2. Nous pouvons observer que les pores, marqués en bleu sur la Figure 5, ont une distribution relativement homogène sur la surface de l'échantillon. La surface projetée des pores constitue 18.9% de la surface totale de l'échantillon. Le volume par mm² de l'ensemble des pores est de ~0.06 mm³. Les pores ont une profondeur moyenne de 42,2 µm, et la profondeur maximale est de 108,1 µm.

CONCLUSION



Dans cette application, nous avons montré que la plateforme Nanovea HS2000 équipée d'un capteur linéaire à haute vitesse est un outil idéal pour analyser et comparer la finition de surface des échantillons de panneaux en nid d'abeille de manière rapide et précise. Les scans de profilométrie haute résolution associés à un logiciel d'analyse avancé permettent une évaluation complète et quantitative de la finition de surface des échantillons de panneaux en nid d'abeille.

Les données présentées ici ne représentent qu'une petite partie des calculs disponibles dans le logiciel d'analyse. Les profilomètres Nanovea mesurent pratiquement n'importe quelle surface pour une large gamme d'applications dans les industries des semi-conducteurs, de la microélectronique, du solaire, des fibres optiques, de l'automobile, de l'aérospatiale, de la métallurgie, de l'usinage, des revêtements, de la pharmacie, du biomédical, de l'environnement et bien d'autres.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Comprendre les défaillances des revêtements à l'aide d'essais de rayure

Introduction :

L'ingénierie de surface des matériaux joue un rôle important dans une variété d'applications fonctionnelles, allant de l'aspect décoratif à la protection des substrats contre l'usure, la corrosion et d'autres formes d'attaques. Un facteur important et primordial qui détermine la qualité et la durée de vie des revêtements est leur force de cohésion et d'adhésion.

Cliquez ici pour lire !

Balayage à grande vitesse avec profilométrie sans contact

Introduction :

Les mesures de surface à configuration rapide et facile permettent d'économiser du temps et des efforts et sont essentielles pour le contrôle qualité, la recherche et le développement et les installations de production. La Nanovéa Profilomètre sans contact est capable d'effectuer des analyses de surface 3D et 2D pour mesurer des caractéristiques à l'échelle nanométrique à macro sur n'importe quelle surface, offrant ainsi une large gamme d'utilisation.

Cliquez ici pour lire !

Rugosité de la surface et caractéristiques d'une cellule solaire

Importance de l'essai des panneaux solaires

La maximisation de l'absorption d'énergie d'une cellule solaire est essentielle à la survie de la technologie en tant que ressource renouvelable. Les multiples couches de revêtement et de verre de protection permettent l'absorption, la transmission et la réflexion de la lumière nécessaires au fonctionnement des cellules photovoltaïques. Étant donné que la plupart des cellules solaires grand public ont un rendement de 15-18%, l'optimisation de leur rendement énergétique est une bataille permanente.


Des études ont montré que la rugosité de la surface joue un rôle essentiel dans la réflexion de la lumière. La première couche de verre doit être aussi lisse que possible pour atténuer la réflexion de la lumière, mais les couches suivantes ne suivent pas cette ligne directrice. Un certain degré de rugosité est nécessaire à l'interface de chaque revêtement pour augmenter la possibilité de diffusion de la lumière dans leurs zones d'appauvrissement respectives et augmenter l'absorption de la lumière dans la cellule1. L'optimisation de la rugosité de la surface dans ces régions permet à la cellule solaire de fonctionner au mieux de ses capacités. Avec le capteur Nanovea HS2000 High Speed Sensor, la mesure de la rugosité de la surface peut être effectuée rapidement et avec précision.



Objectif de la mesure

Dans cette étude, nous montrerons les capacités du système Nanovea Profilomètre HS2000 avec High Speed Sensor en mesurant la rugosité de la surface et les caractéristiques géométriques d'une cellule photovoltaïque. Pour cette démonstration, une cellule solaire monocristalline sans protection en verre sera mesurée, mais la méthodologie peut être utilisée pour diverses autres applications.




Procédure d'essai et procédures

Les paramètres de test suivants ont été utilisés pour mesurer la surface de la cellule solaire.




Résultats et discussion

La vue 2D en fausses couleurs de la cellule solaire et une extraction de la surface avec ses paramètres de hauteur respectifs sont représentées ci-dessous. Un filtre gaussien a été appliqué aux deux surfaces et un indice plus agressif a été utilisé pour aplanir la zone extraite. Cela exclut les formes (ou ondulations) supérieures à l'indice de coupure, laissant derrière elles des caractéristiques qui représentent la rugosité de la cellule solaire.











Un profil a été pris perpendiculairement à l'orientation des lignes de grille pour mesurer leurs caractéristiques géométriques, comme le montre le graphique ci-dessous. La largeur de la ligne de grille, la hauteur du pas et le pas peuvent être mesurés pour n'importe quel endroit spécifique de la cellule solaire.









Conclusion





Dans cette étude, nous avons pu montrer la capacité du capteur linéaire Nanovea HS2000 à mesurer la rugosité et les caractéristiques de surface d'une cellule photovoltaïque monocristalline. Avec la possibilité d'automatiser des mesures précises de plusieurs échantillons et de fixer des limites de réussite et d'échec, le capteur linéaire Nanovea HS2000 est un choix parfait pour les inspections de contrôle de la qualité.

Référence

1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. " Influence de la rugosité de surface sur les caractéristiques optiques des cellules solaires multicouches " Advances in Electrical and Electronic Engineering, vol. 12, no. 6, 2014, pp. 631-638.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Comparaison de l'usure par abrasion sur le denim

Introduction

La forme et la fonction d'un tissu sont déterminées par sa qualité et sa durabilité. L'utilisation quotidienne des tissus entraîne leur usure, par exemple l'empilement, le peluchage et la décoloration. La qualité médiocre des tissus utilisés pour les vêtements peut souvent entraîner le mécontentement des consommateurs et porter atteinte à la marque.

Tenter de quantifier les propriétés mécaniques des tissus peut poser de nombreux défis. La structure du fil et même l'usine dans laquelle il a été produit peuvent entraîner une mauvaise reproductibilité des résultats des tests. Il est donc difficile de comparer les résultats de tests provenant de différents laboratoires. La mesure de la résistance à l'usure des tissus est essentielle pour les fabricants, les distributeurs et les détaillants de la chaîne de production textile. Une mesure de la résistance à l'usure bien contrôlée et reproductible est cruciale pour assurer un contrôle de qualité fiable du tissu.

Cliquez pour lire la note d'application complète !

Usure rotative ou linéaire et COF ? (Une étude complète utilisant le tribomètre Nanovea)

L'usure est le processus d'enlèvement et de déformation d'un matériau sur une surface résultant de l'action mécanique de la surface opposée. Il est influencé par divers facteurs, notamment le glissement unidirectionnel, le roulement, la vitesse, la température et bien d'autres. L'étude de l'usure, la tribologie, couvre de nombreuses disciplines, de la physique et de la chimie au génie mécanique et à la science des matériaux. La nature complexe de l'usure nécessite des études isolées sur des mécanismes ou processus d'usure spécifiques, tels que l'usure adhésive, l'usure abrasive, la fatigue de surface, l'usure par frottement et l'usure érosive. Cependant, « l’usure industrielle » implique généralement plusieurs mécanismes d’usure se produisant en synergie.

Les tests d'usure linéaires alternatifs et rotatifs (broche sur disque) sont deux configurations largement utilisées conformes à la norme ASTM pour mesurer le comportement d'usure par glissement des matériaux. Étant donné que la valeur du taux d'usure de toute méthode de test d'usure est souvent utilisée pour prédire le classement relatif des combinaisons de matériaux, il est extrêmement important de confirmer la répétabilité du taux d'usure mesuré à l'aide de différentes configurations de test. Cela permet aux utilisateurs d’examiner attentivement la valeur du taux d’usure rapportée dans la littérature, ce qui est essentiel pour comprendre les caractéristiques tribologiques des matériaux.

Lire la suite !

Caractérisation à grande vitesse d'une coquille d'huître

Les grands échantillons à géométrie complexe peuvent s'avérer difficiles à travailler en raison de la préparation de l'échantillon, de sa taille, des angles aigus et de la courbure. Dans cette étude, une coquille d'huître sera scannée pour démontrer la capacité du capteur linéaire Nanovea HS2000 à scanner un grand échantillon biologique à géométrie complexe. Bien qu'un échantillon biologique ait été utilisé dans cette étude, les mêmes concepts peuvent être appliqués à d'autres échantillons.

Lire la suite

 

 

 

 

 

 

 

 

 

 

Inspection du fini de surface des parquets en bois

 

Importance du profilage des finitions du bois

Dans diverses industries, l'objectif d'une finition du bois est de protéger la surface du bois contre divers types de dommages tels que chimiques, mécaniques ou biologiques et/ou de fournir une esthétique visuelle spécifique. Pour les fabricants comme pour les acheteurs, la quantification des caractéristiques de surface des finitions du bois peut être vitale pour le contrôle de la qualité ou l'optimisation des processus de finition du bois. Dans cette application, nous allons explorer les différentes caractéristiques de surface qui peuvent être quantifiées à l'aide d'un profilomètre sans contact Nanovea 3D.


Quantifier la quantité de rugosité et de texture qui existe sur une surface en bois peut être essentiel à connaître afin de s'assurer qu'elle peut répondre aux exigences de son application. En affinant le processus de finition ou en vérifiant la qualité des surfaces en bois sur la base d'une méthode d'inspection de surface quantifiable, reproductible et fiable, les fabricants pourraient créer des traitements de surface contrôlés et les acheteurs pourraient inspecter et sélectionner les matériaux en bois en fonction de leurs besoins.



Objectif de la mesure

Dans cette étude, le Nanovea HS2000 à grande vitesse profilomètre équipé d'un capteur de ligne de profilage sans contact a été utilisé pour mesurer et comparer la finition de surface de trois échantillons de revêtement de sol : bois dur de bouleau antique, chêne gris Courtship et acajou Santos. Nous présentons la capacité du profilomètre sans contact Nanovea à fournir à la fois vitesse et précision lors de la mesure de trois types de surfaces et d'une analyse approfondie et complète des scans.





Procédure d'essai et procédures




Résultats et discussion

Description de l'échantillon : Les revêtements de sol Courtship Grey Oak et Santos Mahogany sont des revêtements de sol stratifiés. Courtship Grey Oak est un échantillon gris ardoise texturé, peu brillant, avec un fini EIR. L'acajou Santos est un échantillon bourgogne foncé lustré qui a été préfini. Le bois dur Antique Birch a un fini à l'oxyde d'aluminium à 7 couches, offrant une protection contre l'usure quotidienne.

 





Bois dur de bouleau antique






Chêne gris de la cour






Acajou Santos




Discussion

Il existe une distinction claire entre les valeurs Sa de tous les échantillons. Le plus lisse était le bois dur de bouleau antique avec une Sa de 1,716 µm, suivi de l'acajou Santos avec une Sa de 2,388 µm, et augmentant significativement pour le chêne gris Courtship avec une Sa de 11,17 µm. Les valeurs P et R sont également des valeurs de rugosité courantes qui peuvent être utilisées pour évaluer la rugosité de profils spécifiques le long de la surface. Le chêne gris Courtship possède une texture grossière avec des caractéristiques semblables à des fissures le long de la direction des cellules et des fibres du bois. Une analyse supplémentaire a été effectuée sur l'échantillon de Chêne Gris Courtship en raison de sa surface texturée. Sur l'échantillon de chêne gris Courtship, des tranches ont été utilisées pour séparer et calculer la profondeur et le volume des fissures de la surface uniforme plus plate.



Conclusion




Dans cette application, nous avons montré comment le profilomètre à grande vitesse Nanovea HS2000 peut être utilisé pour inspecter la finition de surface des échantillons de bois de manière efficace et efficiente. Les mesures de la finition de surface peuvent s'avérer importantes pour les fabricants et les consommateurs de parquets en bois dur, car elles leur permettent de comprendre comment améliorer un processus de fabrication ou de choisir le produit le plus performant pour une application spécifique.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Essai d'usure du bois avec le tribomètre Nanovea

Importance de comparer l'usure de la finition du bois et le COF

Le bois est utilisé depuis des milliers d’années comme matériau de construction pour les maisons, les meubles et les revêtements de sol. Il allie beauté naturelle et durabilité, ce qui en fait un candidat idéal pour le revêtement de sol. Contrairement aux tapis, les planchers de bois franc conservent leur couleur pendant longtemps et peuvent être facilement nettoyés et entretenus. Cependant, étant un matériau naturel, la plupart des planchers de bois nécessitent l'application d'une finition de surface pour protéger le bois de divers types de dommages tels que les éraflures et s'écailler avec le temps. Dans cette étude, un Nanovea Tribomètre a été utilisé pour mesurer le taux d'usure et le coefficient de frottement (COF) afin de mieux comprendre les performances comparatives de trois finitions en bois.

Le comportement en service d'une essence de bois utilisée pour les revêtements de sol est souvent lié à sa résistance à l'usure. La modification de la structure cellulaire et fibreuse individuelle des différentes espèces de bois contribue à leurs différents comportements mécaniques et tribologiques. Les essais de service réels du bois utilisé comme matériau de revêtement de sol sont coûteux, difficiles à reproduire et nécessitent de longues périodes d'essai. Par conséquent, il devient précieux de développer un test d'usure simple qui puisse produire des résultats fiables, reproductibles et directs.

Objectif de la mesure

Dans cette étude, nous avons simulé et comparé les comportements d'usure de trois types de bois pour démontrer la capacité du tribomètre Nanovea à évaluer les propriétés tribologiques du bois de manière contrôlée et surveillée.

Discussion

Description de l'échantillon : Le bois dur Antique Birch a une finition à l'oxyde d'aluminium à 7 couches, offrant une protection contre l'usure quotidienne. Le chêne gris Courtship et l'acajou Santos sont deux types de revêtements de sol stratifiés qui varient en termes de finition de surface et de brillance. Le Courtship Grey Oak est de couleur gris ardoise, avec une finition EIR et une faible brillance. En revanche, le Santos Mahogany est de couleur bordeaux foncé, préfini et très brillant, ce qui permet de dissimuler plus facilement les rayures et les défauts de surface.

L'évolution du COF pendant les tests d'usure des trois échantillons de parquet est représentée sur la figure 1. Les échantillons Antique Birch Hardwood, Courtship Grey Oak et Santos Mahogany ont tous montré un comportement COF différent.

On peut observer dans le graphique ci-dessus que le bois dur de bouleau ancien est le seul échantillon qui a démontré un COF stable pendant toute la durée d'un test. La forte augmentation du COF du Chêne Gris Courtship, suivie d'une diminution progressive, pourrait indiquer que la rugosité de la surface de l'échantillon a largement contribué à son comportement COF. Au fur et à mesure de l'usure de l'échantillon, la rugosité de surface a diminué et est devenue plus homogène, ce qui explique la diminution du COF, la surface de l'échantillon étant devenue plus lisse du fait de l'usure mécanique. Le COF de l'acajou Santos présente une augmentation graduelle et régulière du COF au début de l'essai, puis une transition abrupte vers une tendance hachée du COF. Cela pourrait indiquer qu'une fois que le revêtement stratifié a commencé à s'user, la bille d'acier (contre-matériau) est entrée en contact avec le substrat en bois qui s'est usé plus rapidement et de manière turbulente, créant un comportement de COF plus bruyant vers la fin du test.

 

Bois dur de bouleau antique :

Courtship Grey Oak :

Acajou Santos

Le tableau 2 résume les résultats des balayages et de l'analyse des traces d'usure sur tous les échantillons de parquet en bois après la réalisation des tests d'usure. Des informations détaillées et des images pour chaque échantillon sont visibles dans les Figures 2-7. Sur la base de la comparaison du taux d'usure entre les trois échantillons, nous pouvons déduire que l'acajou Santos s'est avéré moins résistant à l'usure mécanique que les deux autres échantillons. Le bois dur de bouleau antique et le chêne gris courtisé présentaient des taux d'usure très similaires, bien que leur comportement en matière d'usure au cours des essais ait été très différent. Le bois dur de bouleau antique présentait une tendance à l'usure progressive et plus uniforme, tandis que le chêne gris Courtship présentait une trace d'usure peu profonde et piquée en raison de la texture et du fini de surface préexistants.

Conclusion

Dans cette étude, nous avons montré la capacité du tribomètre de Nanovea à évaluer le coefficient de friction et la résistance à l'usure de trois types de bois, le bouleau ancien, le chêne gris et l'acajou Santos, de manière contrôlée et surveillée. Les propriétés mécaniques supérieures du bois dur de bouleau ancien lui confèrent une meilleure résistance à l'usure. La texture et l'homogénéité de la surface du bois jouent un rôle important dans le comportement à l'usure. La texture de la surface du chêne gris Courtship, comme les espaces ou les fissures entre les fibres cellulaires du bois, peuvent devenir les points faibles où l'usure se déclenche et se propage.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE