Catégorie : Tests de laboratoire
Transition vitreuse localisée avec précision grâce à la nanoindentation DMA
En savoir plus
Mesure de la relaxation des contraintes par nanoindentation
En savoir plus
MAINTENANT, PARLONS DE VOTRE CANDIDATURE
Essai d'usure du bois avec le tribomètre Nanovea
Importance de comparer l'usure de la finition du bois et le COF
Le bois est utilisé depuis des milliers d’années comme matériau de construction pour les maisons, les meubles et les revêtements de sol. Il allie beauté naturelle et durabilité, ce qui en fait un candidat idéal pour le revêtement de sol. Contrairement aux tapis, les planchers de bois franc conservent leur couleur pendant longtemps et peuvent être facilement nettoyés et entretenus. Cependant, étant un matériau naturel, la plupart des planchers de bois nécessitent l'application d'une finition de surface pour protéger le bois de divers types de dommages tels que les éraflures et s'écailler avec le temps. Dans cette étude, un Nanovea Tribomètre a été utilisé pour mesurer le taux d'usure et le coefficient de frottement (COF) afin de mieux comprendre les performances comparatives de trois finitions en bois.
Le comportement en service d'une essence de bois utilisée pour les revêtements de sol est souvent lié à sa résistance à l'usure. La modification de la structure cellulaire et fibreuse individuelle des différentes espèces de bois contribue à leurs différents comportements mécaniques et tribologiques. Les essais de service réels du bois utilisé comme matériau de revêtement de sol sont coûteux, difficiles à reproduire et nécessitent de longues périodes d'essai. Par conséquent, il devient précieux de développer un test d'usure simple qui puisse produire des résultats fiables, reproductibles et directs.
Objectif de la mesure
Dans cette étude, nous avons simulé et comparé les comportements d'usure de trois types de bois pour démontrer la capacité du tribomètre Nanovea à évaluer les propriétés tribologiques du bois de manière contrôlée et surveillée.
Discussion
Description de l'échantillon : Le bois dur Antique Birch a une finition à l'oxyde d'aluminium à 7 couches, offrant une protection contre l'usure quotidienne. Le chêne gris Courtship et l'acajou Santos sont deux types de revêtements de sol stratifiés qui varient en termes de finition de surface et de brillance. Le Courtship Grey Oak est de couleur gris ardoise, avec une finition EIR et une faible brillance. En revanche, le Santos Mahogany est de couleur bordeaux foncé, préfini et très brillant, ce qui permet de dissimuler plus facilement les rayures et les défauts de surface.
L'évolution du COF pendant les tests d'usure des trois échantillons de parquet est représentée sur la figure 1. Les échantillons Antique Birch Hardwood, Courtship Grey Oak et Santos Mahogany ont tous montré un comportement COF différent.
On peut observer dans le graphique ci-dessus que le bois dur de bouleau ancien est le seul échantillon qui a démontré un COF stable pendant toute la durée d'un test. La forte augmentation du COF du Chêne Gris Courtship, suivie d'une diminution progressive, pourrait indiquer que la rugosité de la surface de l'échantillon a largement contribué à son comportement COF. Au fur et à mesure de l'usure de l'échantillon, la rugosité de surface a diminué et est devenue plus homogène, ce qui explique la diminution du COF, la surface de l'échantillon étant devenue plus lisse du fait de l'usure mécanique. Le COF de l'acajou Santos présente une augmentation graduelle et régulière du COF au début de l'essai, puis une transition abrupte vers une tendance hachée du COF. Cela pourrait indiquer qu'une fois que le revêtement stratifié a commencé à s'user, la bille d'acier (contre-matériau) est entrée en contact avec le substrat en bois qui s'est usé plus rapidement et de manière turbulente, créant un comportement de COF plus bruyant vers la fin du test.
Bois dur de bouleau antique :
Courtship Grey Oak :
Acajou Santos
Le tableau 2 résume les résultats des balayages et de l'analyse des traces d'usure sur tous les échantillons de parquet en bois après la réalisation des tests d'usure. Des informations détaillées et des images pour chaque échantillon sont visibles dans les Figures 2-7. Sur la base de la comparaison du taux d'usure entre les trois échantillons, nous pouvons déduire que l'acajou Santos s'est avéré moins résistant à l'usure mécanique que les deux autres échantillons. Le bois dur de bouleau antique et le chêne gris courtisé présentaient des taux d'usure très similaires, bien que leur comportement en matière d'usure au cours des essais ait été très différent. Le bois dur de bouleau antique présentait une tendance à l'usure progressive et plus uniforme, tandis que le chêne gris Courtship présentait une trace d'usure peu profonde et piquée en raison de la texture et du fini de surface préexistants.
Conclusion
Dans cette étude, nous avons montré la capacité du tribomètre de Nanovea à évaluer le coefficient de friction et la résistance à l'usure de trois types de bois, le bouleau ancien, le chêne gris et l'acajou Santos, de manière contrôlée et surveillée. Les propriétés mécaniques supérieures du bois dur de bouleau ancien lui confèrent une meilleure résistance à l'usure. La texture et l'homogénéité de la surface du bois jouent un rôle important dans le comportement à l'usure. La texture de la surface du chêne gris Courtship, comme les espaces ou les fissures entre les fibres cellulaires du bois, peuvent devenir les points faibles où l'usure se déclenche et se propage.
MAINTENANT, PARLONS DE VOTRE CANDIDATURE
Portabilité et flexibilité du profilomètre 3D sans contact Jr25
Comprendre et quantifier la surface d'un échantillon est crucial pour de nombreuses applications, notamment le contrôle qualité et la recherche. Pour étudier les surfaces, les profilomètres sont souvent utilisés pour numériser et imager des échantillons. Un gros problème avec les instruments de profilométrie conventionnels est l’incapacité à prendre en charge des échantillons non conventionnels. Des difficultés lors de la mesure d'échantillons non conventionnels peuvent survenir en raison de la taille de l'échantillon, de sa géométrie, de l'incapacité de déplacer l'échantillon ou d'autres préparations d'échantillon peu pratiques. Le portable de Nanovea Profilomètres 3D sans contact, la série JR, est capable de résoudre la plupart de ces problèmes grâce à sa capacité à numériser des surfaces d'échantillons sous différents angles et à sa portabilité.
Compression sur des matériaux souples et flexibles
Importance de tester les matériaux souples et flexibles
Un système microélectromécanique est un exemple d'échantillon très souple et flexible. Les MEMS sont utilisés dans des produits commerciaux courants tels que les imprimantes, les téléphones portables et les voitures [1]. Ils sont également utilisés pour des fonctions spéciales, comme les biocapteurs [2] et la collecte d'énergie [3]. Pour leurs applications, les MEMS doivent être capables de passer de manière réversible de leur configuration d'origine à une configuration comprimée de manière répétée [4]. Pour comprendre comment les structures vont réagir aux forces mécaniques, des tests de compression peuvent être effectués. Les essais de compression peuvent être utilisés pour tester et régler diverses configurations de MEMS ainsi que pour tester les limites supérieures et inférieures de la force pour ces échantillons.
Objectif de la mesure
Dans cette étude de cas, Nanovea a effectué des tests de compression sur deux échantillons flexibles et semblables à des ressorts, d'une différence unique. Nous présentons notre capacité à effectuer des compressions à des charges très faibles et à enregistrer des déplacements importants tout en obtenant des données précises à des charges faibles et comment cela peut être appliqué à l'industrie des MEMS. En raison des politiques de confidentialité, les échantillons et leur origine ne seront pas révélés dans cette étude.
Paramètres de mesure
Remarque : le taux de chargement de 1 V/min est proportionnel à environ 100μm de déplacement lorsque le pénétrateur est dans l'air.
Résultats et discussion
La réponse de l'échantillon aux forces mécaniques est visible dans les courbes de charge en fonction de la profondeur. L'échantillon A ne présente qu'une déformation élastique linéaire avec les paramètres d'essai énumérés ci-dessus. La figure 2 est un excellent exemple de la stabilité qui peut être obtenue pour une courbe charge vs profondeur à 75μN. En raison de la stabilité des capteurs de charge et de profondeur, il serait facile de percevoir toute réponse mécanique signicative de l'échantillon.
L'échantillon B affiche une réponse mécanique différente de celle de l'échantillon A. Passé 750μm de profondeur, un comportement de type fracture dans le graphique commence à apparaître. Cela est visible avec les chutes brutales de charge à 850 et 975μm de profondeur. Malgré un déplacement à un taux de charge élevé pendant plus de 1mm sur une plage de 8mN, nos capteurs de charge et de profondeur hautement sensibles permettent à l'utilisateur d'obtenir les courbes lisses de charge en fonction de la profondeur ci-dessous.
La rigidité a été calculée à partir de la partie de déchargement des courbes de charge par rapport à la profondeur. La rigidité reflète la quantité de force nécessaire pour déformer l'échantillon. Pour ce calcul de la rigidité, un pseudo-rapport de Poisson de 0,3 a été utilisé puisque le rapport réel du matériau n'est pas connu. Dans ce cas, l'échantillon B s'est avéré plus rigide que l'échantillon A.
Conclusion
Deux échantillons flexibles différents ont été testés en compression à l'aide du module Nano du testeur mécanique Nanovea. Les tests ont été réalisés à des charges très faibles (1mm). Les tests de compression à l'échelle nanométrique avec le Nano Module ont montré la capacité du module à tester des échantillons très mous et flexibles. Des tests supplémentaires pour cette étude pourraient aborder la façon dont la charge cyclique répétée affecte l'aspect de récupération élastique des échantillons à ressort via l'option de chargement multiple du testeur mécanique Nanovea.
Pour plus d'informations sur cette méthode d'essai, n'hésitez pas à nous contacter à l'adresse info@nanovea.com. Pour d'autres notes d'application, veuillez consulter notre vaste bibliothèque numérique de notes d'application.
Références
[1] " Introduction et domaines d'application des MEMS ". EEHerald, 1er mars 2017, www.eeherald.com/section/design-guide/mems_application_introduction.html.
[2] Louizos, Louizos-Alexandros ; Athanasopoulos, Panagiotis G. ; Varty, Kevin (2012). " Systèmes microélectromécaniques et nanotechnologies. A Platform for the Next Stent Technological Era". Vasc Endovascular Surg.46 (8) : 605–609. doi:10.1177/1538574412462637. PMID 23047818.
[3] Hajati, Arman ; Sang-Gook Kim (2011). "Récolte d'énergie piézoélectrique à bande passante ultra-large". AppliedPhysics Letters. 99 (8) : 083105. doi:10.1063/1.3629551.
[4] Fu, Haoran, et al. "Morphable 3D mesostructures and microelectronic devices by multistable bucklingmechanics". Nature materials 17.3 (2018) : 268.
MAINTENANT, PARLONS DE VOTRE CANDIDATURE
Évaluation des plaquettes de frein avec la tribologie
Importance de l'évaluation des performances des coussins de sécurité
Les plaquettes de frein sont des composites, c'est-à-dire un matériau composé de plusieurs ingrédients, qui doivent pouvoir satisfaire à un grand nombre d'exigences en matière de sécurité. Les plaquettes de frein idéales ont un coefficient de frottement (COF) élevé, un faible taux d'usure, un bruit minimal et restent fiables dans des environnements variés. Pour s'assurer que la qualité des plaquettes de frein est en mesure de répondre à ces exigences, les essais tribologiques peuvent être utilisés pour identifier les spécifications critiques.
L'importance de la fiabilité des plaquettes de frein est placée très haut ; la sécurité des passagers ne doit jamais être négligée. Il est donc essentiel de reproduire les conditions de fonctionnement et d'identifier les points de défaillance possibles.
Avec le Nanovéa Tribomètre, une charge constante est appliquée entre une goupille, une bille ou un plat et un contre-matériau en mouvement constant. Le frottement entre les deux matériaux est collecté avec une cellule de pesée rigide, permettant de collecter les propriétés du matériau à différentes charges et vitesses et testé dans des environnements à haute température, corrosifs ou liquides.
Objectif de la mesure
Dans cette étude, le coefficient de friction des plaquettes de frein a été étudié dans un environnement où la température augmente continuellement, de la température ambiante à 700°C. La température de l'environnement a été augmentée in-situ jusqu'à ce qu'une défaillance notable de la plaquette de frein soit observée. Un thermocouple a été fixé à l'arrière de l'axe pour mesurer la température près de l'interface de glissement.
Résultats et discussion
Cette étude se concentre principalement sur la température à laquelle les plaquettes de frein commencent à tomber en panne. Les COF obtenus ne représentent pas des valeurs réelles ; le matériau de l'axe n'est pas le même que celui des rotors de frein. Il convient également de noter que les données de température collectées sont la température de la goupille et non celle de l'interface de glissement.
Au début de l'essai (température ambiante), le COF entre la broche en SS440C et la plaquette de frein a donné une valeur constante d'environ 0,2. Au fur et à mesure que la température augmentait, le COF augmentait régulièrement et atteignait une valeur maximale de 0,26 près de 350°C. Au-delà de 390°C, le COF commence rapidement à diminuer. Le COF a commencé à augmenter pour revenir à 0,2 à 450°C mais commence à diminuer jusqu'à une valeur de 0,05 peu après.
La température à laquelle les plaquettes de frein se sont systématiquement rompues est identifiée à des températures supérieures à 500°C. Au-delà de cette température, le COF n'était plus en mesure de conserver le COF de départ de 0,2.
Conclusion
Les plaquettes de frein ont montré une défaillance constante à une température supérieure à 500°C. Son COF de 0,2 augmente lentement jusqu'à une valeur de 0,26 avant de redescendre à 0,05 à la fin de l'essai (580°C). La différence entre 0,05 et 0,2 est un facteur de 4. Cela signifie que la force normale à 580°C doit être quatre fois plus importante qu'à température ambiante pour obtenir la même force d'arrêt !
Bien qu'il ne soit pas inclus dans cette étude, le tribomètre Nanovea est également capable d'effectuer des tests pour observer une autre propriété importante des plaquettes de frein : le taux d'usure. En utilisant nos profilomètres 3D sans contact, le volume de la trace d'usure peut être obtenu pour calculer la vitesse d'usure des échantillons. Les tests d'usure peuvent être effectués avec le tribomètre Nanovea dans différentes conditions et environnements de test afin de simuler au mieux les conditions de fonctionnement.
MAINTENANT, PARLONS DE VOTRE CANDIDATURE
Analyse de la qualité des métaux usinés par électroérosion
L'usinage par électroérosion, ou EDM, est un procédé de fabrication qui consiste à enlever de la matière par l'intermédiaire de l'électricité.
décharges [1]. Ce procédé d'usinage est généralement utilisé pour les métaux conducteurs qui seraient difficiles à usiner.
à usiner avec les méthodes conventionnelles.
Comme pour tous les processus d'usinage, la précision et l'exactitude doivent être élevées afin d'atteindre un niveau acceptable.
les niveaux de tolérance. Dans cette note d'application, la qualité des métaux usinés sera évaluée à l'aide d'une
Nanovea Profilomètre 3D sans contact.
Analyse viscoélastique du caoutchouc
Analyse viscoélastique du caoutchouc
En savoir plus
Les pneus sont soumis à de fortes déformations cycliques lorsque les véhicules roulent sur la route. Lorsqu'ils sont exposés à des conditions routières difficiles, la durée de vie des pneus est compromise par de nombreux facteurs, tels que l'usure du fil, la chaleur générée par la friction, le vieillissement du caoutchouc, etc.
En conséquence, les pneus ont généralement des structures de couches composites faites de caoutchouc chargé de carbone, de cordes de nylon et de fils d'acier, etc. En particulier, la composition du caoutchouc à différents endroits des systèmes de pneus est optimisée pour fournir différentes propriétés fonctionnelles, y compris, mais sans s'y limiter, un fil résistant à l'usure, une couche de caoutchouc amortissant et une couche de base en caoutchouc dur.
Un test fiable et reproductible du comportement viscoélastique du caoutchouc est essentiel pour le contrôle qualité et la R&D des pneus neufs, ainsi que pour l'évaluation de la durée de vie des pneus usagés. Analyse mécanique dynamique (DMA) pendant Nanoindentation est une technique de caractérisation de la viscoélasticité. Lorsqu'une contrainte oscillatoire contrôlée est appliquée, la déformation résultante est mesurée, permettant aux utilisateurs de déterminer le module complexe des matériaux testés.
Un meilleur regard sur le papier
Le papier joue un rôle important dans la diffusion de l'information depuis son invention au IIe siècle [1]. Le papier est constitué de fibres entrelacées, généralement obtenues à partir d'arbres, qui ont été séchées en fines feuilles. En tant que support de stockage de l'information, le papier a permis la diffusion des idées, de l'art et de l'histoire sur de longues distances et à travers le temps.
Aujourd’hui, le papier est couramment utilisé pour la monnaie, les livres, les articles de toilette, les emballages, etc. Le papier est traité de différentes manières pour obtenir des propriétés adaptées à son application. Par exemple, le papier brillant visuellement attrayant d’un magazine est différent du papier aquarelle rugueux pressé à froid. La méthode de production du papier affectera les propriétés de surface du papier. Cela influence la manière dont l'encre (ou tout autre support) se déposera et apparaîtra sur le papier. Pour inspecter l'impact des différents processus de papier sur les propriétés de surface, Nanovea a inspecté la rugosité et la texture de différents types de papier en effectuant une numérisation sur une grande surface avec notre Profilomètre 3D sans contact.
Cliquez pour en savoir plus sur le Rugosité de la surface du papier!
Un meilleur regard sur les verres en polycarbonate
Essai de rayure sur un film mince multicouche
Les revêtements sont largement utilisés dans de nombreuses industries pour préserver les couches sous-jacentes, pour créer des dispositifs électroniques ou pour améliorer les propriétés de surface des matériaux. En raison de leurs nombreuses utilisations, les revêtements font l'objet d'études approfondies, mais leurs propriétés mécaniques peuvent être difficiles à comprendre. La défaillance des revêtements peut se produire à l'échelle du micro/nanomètre en raison de l'interaction entre la surface et l'atmosphère, de la défaillance cohésive et d'une mauvaise adhérence entre le substrat et l'interface. Une méthode cohérente pour tester les défaillances des revêtements est l'essai de rayure. En appliquant une charge progressivement croissante, les défaillances cohésives (par exemple, la fissuration) et adhésives (par exemple, la délamination) des revêtements peuvent être comparées quantitativement.
Catégories
- Notes d'application
- Bloc sur la tribologie des anneaux
- Corrosion Tribologie
- Essai de friction - Coefficient de friction
- Essais mécaniques à haute température
- Tribologie à haute température
- Humidité et gaz Tribologie
- Humidité Essais mécaniques
- Indentation | Fluage et relaxation
- Indentation | Ténacité à la rupture
- Indentation | Dureté et élasticité
- Indentation | Perte et stockage
- Indentation | Contrainte et déformation
- Indentation | Limite d'élasticité et fatigue
- Tests de laboratoire
- Tribologie linéaire
- Essais mécaniques des liquides
- Tribologie des liquides
- Tribologie à basse température
- Essais mécaniques
- Communiqué de presse
- Profilométrie - Planéité et gauchissement
- Profilométrie | Géométrie et forme
- Profilométrie | Rugosité et finition
- Profilométrie | Hauteur et épaisseur des marches
- Profilométrie | Texture et grain
- Profilométrie | Volume et surface
- Essais de profilométrie
- Tribologie "anneau sur anneau
- Tribologie rotationnelle
- Test de rayures | Défaillance de l'adhésif
- Essai de grattage | Défaillance de la cohésion
- Test de rayures | Usure multi-passages
- Test de rayures | Dureté à la rayure
- Test de rayure Tribologie
- Tradeshow
- Essais de tribologie
- Non classé
Archives
- septembre 2023
- août 2023
- juin 2023
- mai 2023
- juillet 2022
- mai 2022
- avril 2022
- janvier 2022
- décembre 2021
- novembre 2021
- octobre 2021
- septembre 2021
- août 2021
- juillet 2021
- juin 2021
- mai 2021
- mars 2021
- février 2021
- décembre 2020
- novembre 2020
- octobre 2020
- septembre 2020
- juillet 2020
- mai 2020
- avril 2020
- mars 2020
- février 2020
- janvier 2020
- novembre 2019
- octobre 2019
- septembre 2019
- août 2019
- juillet 2019
- juin 2019
- mai 2019
- avril 2019
- mars 2019
- janvier 2019
- décembre 2018
- novembre 2018
- octobre 2018
- septembre 2018
- juillet 2018
- juin 2018
- mai 2018
- avril 2018
- mars 2018
- février 2018
- novembre 2017
- octobre 2017
- septembre 2017
- août 2017
- juin 2017
- mai 2017
- avril 2017
- mars 2017
- février 2017
- janvier 2017
- novembre 2016
- octobre 2016
- août 2016
- juillet 2016
- juin 2016
- mai 2016
- avril 2016
- mars 2016
- février 2016
- janvier 2016
- décembre 2015
- novembre 2015
- octobre 2015
- septembre 2015
- août 2015
- juillet 2015
- juin 2015
- mai 2015
- avril 2015
- mars 2015
- février 2015
- janvier 2015
- novembre 2014
- octobre 2014
- septembre 2014
- août 2014
- juillet 2014
- juin 2014
- mai 2014
- avril 2014
- mars 2014
- février 2014
- janvier 2014
- décembre 2013
- novembre 2013
- octobre 2013
- septembre 2013
- août 2013
- juillet 2013
- juin 2013
- mai 2013
- avril 2013
- mars 2013
- février 2013
- janvier 2013
- décembre 2012
- novembre 2012
- octobre 2012
- septembre 2012
- août 2012
- juillet 2012
- juin 2012
- mai 2012
- avril 2012
- mars 2012
- février 2012
- janvier 2012
- décembre 2011
- novembre 2011
- octobre 2011
- septembre 2011
- août 2011
- juillet 2011
- juin 2011
- mai 2011
- novembre 2010
- janvier 2010
- avril 2009
- mars 2009
- janvier 2009
- décembre 2008
- octobre 2008
- août 2007
- juillet 2006
- mars 2006
- janvier 2005
- avril 2004