USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Cartographie tribologique progressive des revêtements de sol

Le trafic des mouvements humains, le déplacement des meubles et d'autres activités quotidiennes imposent une dégradation constante aux revêtements de sol. Les revêtements de sol, généralement constitués de bois, de céramique ou de pierre, doivent pouvoir supporter l'usure pour laquelle ils sont conçus, qu'il s'agisse d'applications résidentielles ou commerciales. C'est pourquoi la plupart des revêtements de sol comportent une couche censée être résistante à l'usure, appelée couche d'usure. L'épaisseur et la durabilité de la couche d'usure dépendent du type de revêtement de sol et de l'intensité du trafic piétonnier qu'il reçoit. Étant donné que les revêtements de sol peuvent comporter plusieurs couches (par exemple, un revêtement UV, une couche d'usure, une couche décorative, un vernis, etc.), le taux d'usure de chaque couche peut être très différent. Avec le tribomètre Nanovea T2000 équipé d'un capteur linéaire 3D sans contact, la progression de l'usure sur un revêtement de sol en pierre et en bois est observée de près.

Cartographie tribologique progressive des revêtements de sol

Adhésion du ruban adhésif par nanoindentation

L'efficacité d'un ruban est déterminée par ses capacités cohésives et adhésives. La cohésion est définie comme la force interne du ruban, tandis que l'adhérence est la capacité du ruban à se lier à sa surface d'interaction. L'adhésion du ruban est influencée par de nombreux facteurs, tels que la pression exercée, l'énergie de surface, les forces moléculaires et la texture de la surface. [1]. Pour quantifier l'adhésion des bandes, une nanoindentation avec le module Nano du testeur mécanique Nanovea peut être réalisée pour mesurer le travail nécessaire pour séparer le pénétrateur de la bande.

Adhésion du ruban adhésif par nanoindentation

Essai de fatigue d'un fil avec un appareil de conductivité électrique

Les fils électriques sont la forme la plus courante d'interconnexion entre les appareils électriques. Les fils sont généralement fabriqués en cuivre (et parfois en aluminium) en raison de la capacité du cuivre à très bien conduire l'électricité, de sa capacité à se plier et de son coût peu élevé. En dehors du matériau, les fils peuvent également être assemblés de différentes manières. Les fils peuvent être obtenus en différentes tailles, généralement désignées par des calibres. Plus le diamètre du fil augmente, plus le calibre du fil diminue. La longévité du fil varie en fonction de son calibre. La différence de longévité peut être comparée en effectuant un test linéaire alternatif avec le tribomètre Nanovea pour simuler la fatigue.

Essai de fatigue d'un fil avec un appareil de conductivité électrique

Essai de rayure sur un film mince multicouche

Les revêtements sont largement utilisés dans de nombreuses industries pour préserver les couches sous-jacentes, pour créer des dispositifs électroniques ou pour améliorer les propriétés de surface des matériaux. En raison de leurs nombreuses utilisations, les revêtements font l'objet d'études approfondies, mais leurs propriétés mécaniques peuvent être difficiles à comprendre. La défaillance des revêtements peut se produire à l'échelle du micro/nanomètre en raison de l'interaction entre la surface et l'atmosphère, de la défaillance cohésive et d'une mauvaise adhérence entre le substrat et l'interface. Une méthode cohérente pour tester les défaillances des revêtements est l'essai de rayure. En appliquant une charge progressivement croissante, les défaillances cohésives (par exemple, la fissuration) et adhésives (par exemple, la délamination) des revêtements peuvent être comparées quantitativement.

Essai de rayure sur un film mince multicouche

Mesure de la contrainte-déformation par nanoindentation cyclique

Mesure de la contrainte-déformation par nanoindentation cyclique

En savoir plus

 

Importance de la nanoindentation

Mesures continues de la rigidité (CSM) obtenues par nanoindentation révèle la relation contrainte-déformation des matériaux à l'aide de méthodes peu invasives. Contrairement aux méthodes traditionnelles d'essai de traction, la nanoindentation fournit des données sur la contrainte et la déformation à l'échelle nanométrique sans qu'il soit nécessaire d'utiliser un instrument de grande taille. La courbe contrainte-déformation fournit des informations cruciales sur le seuil entre le comportement élastique et plastique lorsque l'échantillon est soumis à des charges croissantes. Le CSM permet de déterminer la limite d'élasticité d'un matériau sans équipement dangereux.

 

La nanoindentation offre une méthode fiable et conviviale pour étudier rapidement les données de contrainte-déformation. En outre, la mesure du comportement contrainte-déformation à l'échelle nanométrique permet d'étudier des propriétés importantes sur de petits revêtements et particules dans des matériaux de plus en plus perfectionnés. La nanoindentation fournit des informations sur la limite élastique et la limite d'élasticité en plus de la dureté, du module d'élasticité, du fluage, de la résistance à la rupture, etc., ce qui en fait un instrument de métrologie polyvalent.

Les données de contrainte-déformation fournies par la nanoindentation dans cette étude identifient la limite élastique du matériau tout en ne pénétrant que de 1,2 micron dans la surface. Nous utilisons la MSC pour déterminer comment les propriétés mécaniques des matériaux évoluent lorsqu'un pénétrateur pénètre plus profondément dans la surface. Ceci est particulièrement utile dans les applications de films minces où les propriétés peuvent dépendre de la profondeur. La nanoindentation est une méthode peu invasive pour confirmer les propriétés des matériaux dans les échantillons d'essai.

L'essai CSM est utile pour mesurer les propriétés des matériaux en fonction de la profondeur. Des essais cycliques peuvent être effectués à des charges constantes pour déterminer des propriétés plus complexes du matériau. Cela peut être utile pour étudier la fatigue ou éliminer l'effet de la porosité pour obtenir le véritable module d'élasticité.

Objectif de la mesure

Dans cette application, le testeur mécanique Nanovea utilise la MSC pour étudier la dureté et le module d'élasticité en fonction de la profondeur et des données de contrainte-déformation sur un échantillon d'acier standard. L'acier a été choisi pour ses caractéristiques communément reconnues afin de montrer le contrôle et la précision des données de contrainte-déformation à l'échelle nanométrique. Une pointe sphérique d'un rayon de 5 microns a été utilisée pour atteindre des contraintes suffisamment élevées au-delà de la limite élastique de l'acier.

 

Conditions et procédures d'essai

Les paramètres d'indentation suivants ont été utilisés :

Résultats :

 

L'augmentation de la charge pendant les oscillations fournit la courbe de profondeur en fonction de la charge suivante. Plus de 100 oscillations ont été effectuées pendant le chargement pour trouver les données de contrainte-déformation lorsque le pénétrateur pénètre dans le matériau.

 

Nous avons déterminé la contrainte et la déformation à partir des informations obtenues à chaque cycle. La charge et la profondeur maximales à chaque cycle nous permettent de calculer la contrainte maximale appliquée à chaque cycle sur le matériau. La déformation est calculée à partir de la profondeur résiduelle à chaque cycle provenant du déchargement partiel. Cela nous permet de calculer le rayon de l'empreinte résiduelle en divisant le rayon de la pointe pour obtenir le facteur de déformation. Le tracé de la contrainte en fonction de la déformation pour le matériau montre les zones élastique et plastique avec la contrainte limite élastique correspondante. Nos tests ont déterminé que la transition entre les zones élastique et plastique du matériau se situe autour de 0,076 déformation avec une limite élastique de 1,45 GPa.

Chaque cycle agit comme une empreinte unique. Ainsi, à mesure que nous augmentons la charge, nous effectuons des tests à différentes profondeurs contrôlées dans l'acier. Ainsi, la dureté et le module d'élasticité en fonction de la profondeur peuvent être tracés directement à partir des données obtenues pour chaque cycle.

Au fur et à mesure que le pénétrateur pénètre dans le matériau, la dureté augmente et le module d'élasticité diminue.

Conclusion

Nous avons montré que le testeur mécanique Nanovea fournit des données de contrainte-déformation fiables. L'utilisation d'une pointe sphérique avec indentation CSM permet de mesurer les propriétés des matériaux sous une contrainte accrue. La charge et le rayon de l'indentation peuvent être modifiés pour tester divers matériaux à des profondeurs contrôlées. Les testeurs mécaniques Nanovea fournissent ces essais d'indentation de la gamme sub-mN à 400N.