USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Kategorie: Laboruntersuchungen

 

Präzise lokalisierte Glasübergänge mit Nanoindentation DMA

Präzise lokalisierte Glasübergänge mit Nanoindentation DMA

Mehr erfahren
 
Stellen Sie sich ein Szenario vor, in dem eine Schüttgutprobe gleichmäßig und mit konstanter Geschwindigkeit erhitzt wird. Wenn ein Schüttgut erwärmt wird und sich seinem Schmelzpunkt nähert, beginnt es seine Steifigkeit zu verlieren. Wenn periodische Eindrücke (Härteprüfungen) mit der gleichen Zielkraft durchgeführt werden, sollte die Tiefe jedes Eindrucks ständig zunehmen, da die Probe weicher wird (siehe Abbildung 1). Dies setzt sich fort, bis die Probe zu schmelzen beginnt. An diesem Punkt ist eine starke Zunahme der Tiefe pro Eindruck zu beobachten. Auf der Grundlage dieses Konzepts kann die Phasenveränderung in einem Material durch dynamische Schwingungen mit einer festen Kraftamplitude und die Messung der Auslenkung, d. h. die Dynamisch-Mechanische Analyse (DMA), beobachtet werden.   Lesen Sie über den präzisen lokalisierten Glasübergang!

Messung der Spannungsrelaxation mittels Nanoindentation

Mehr erfahren

UND NUN ZU IHRER BEWERBUNG

Holzverschleißtest mit dem Nanovea Tribometer

Die Bedeutung des Vergleichs von Holzverschleiß und COF

Holz wird seit Jahrtausenden als Baumaterial für Häuser, Möbel und Fußböden verwendet. Es verfügt über eine Kombination aus natürlicher Schönheit und Haltbarkeit, was es zu einem idealen Kandidaten für Bodenbeläge macht. Im Gegensatz zu Teppichen behalten Hartholzböden ihre Farbe lange und lassen sich leicht reinigen und pflegen. Da es sich jedoch um ein natürliches Material handelt, ist bei den meisten Holzböden eine Oberflächenbehandlung erforderlich, um das Holz vor verschiedenen Arten von Schäden wie Abnutzung und Abnutzung zu schützen splittert mit der Zeit. In dieser Studie ein Nanovea Tribometer wurde zur Messung der Verschleißrate und des Reibungskoeffizienten (COF) verwendet, um die Vergleichsleistung von drei Holzoberflächen besser zu verstehen.

Das Nutzungsverhalten einer Holzart, die für Fußböden verwendet wird, hängt häufig mit ihrer Verschleißfestigkeit zusammen. Die Veränderungen in der individuellen Zell- und Faserstruktur der verschiedenen Holzarten tragen zu ihrem unterschiedlichen mechanischen und tribologischen Verhalten bei. Tatsächliche Gebrauchsprüfungen von Holz als Bodenbelag sind teuer, schwer zu reproduzieren und erfordern lange Prüfzeiten. Daher ist es wichtig, einen einfachen Verschleißtest zu entwickeln, der zuverlässig, reproduzierbar und einfach durchzuführen ist.

Messung Zielsetzung

In dieser Studie haben wir das Verschleißverhalten von drei Holzarten simuliert und verglichen, um die Fähigkeit des Nanovea Tribometers zu demonstrieren, die tribologischen Eigenschaften von Holz kontrolliert und überwacht zu bewerten.

Diskussion

Muster Beschreibung: Antique Birch Hardwood ist mit einer 7-schichtigen Aluminiumoxid-Oberfläche versehen, die Schutz vor täglicher Abnutzung bietet. Courtship Grey Oak und Santos Mahogany sind beides Laminatböden, die sich in der Oberflächenbeschaffenheit und im Glanz unterscheiden. Courtship Grey Oak hat eine schiefergraue Farbe, eine EIR-Oberfläche und einen niedrigen Glanzgrad. Santos Mahagoni hingegen hat eine dunkle burgunderrote Farbe, ist vorlackiert und hochglänzend, wodurch Kratzer und Defekte auf der Oberfläche leichter verborgen werden können.

Die Entwicklung des COF-Wertes während der Abnutzungstests der drei Holzfußbodenproben ist in Abb. 1 dargestellt. Die Proben "Antique Birch Hardwood", "Courtship Grey Oak" und "Santos Mahogany" zeigten alle ein unterschiedliches COF-Verhalten.

Aus dem obigen Diagramm ist ersichtlich, dass das Laubholz Antique Birch die einzige Probe war, die während der gesamten Testdauer einen gleichmäßigen COF aufwies. Der starke Anstieg des COF der Eiche Courtship Grey und der anschließende allmähliche Rückgang könnten darauf hindeuten, dass die Oberflächenrauhigkeit der Probe weitgehend zu ihrem COF-Verhalten beigetragen hat. Mit der Abnutzung der Probe nahm die Oberflächenrauheit ab und wurde homogener, was den Rückgang des COF erklärt, da die Oberfläche der Probe durch die mechanische Abnutzung glatter wurde. Die COF von Santos Mahagoni zeigt zu Beginn des Tests einen gleichmäßigen, allmählichen Anstieg der COF und geht dann abrupt in einen abgehackten COF-Trend über. Dies könnte darauf hindeuten, dass die Stahlkugel (Gegenmaterial) mit dem Holzsubstrat in Berührung kam, sobald die Laminatbeschichtung zu verschleißen begann, was zu einer schnelleren und turbulenteren Abnutzung führte, die gegen Ende des Tests zu einem lauteren COF-Verhalten führte.

 

Antikes Birken-Hartholz:

Brautwerbung Graue Eiche:

Santos Mahagoni

Tabelle 2 fasst die Ergebnisse der Verschleißspuren-Scans und -Analysen aller Holzbodenproben nach der Durchführung der Verschleißtests zusammen. Detaillierte Informationen und Bilder für jede Probe sind in den Abbildungen 2-7 zu sehen. Aus dem Vergleich der Abnutzungsraten aller drei Proben lässt sich ableiten, dass sich Santos Mahagoni als weniger widerstandsfähig gegenüber mechanischer Abnutzung erweist als die beiden anderen Proben. Antique Birch Hardwood und Courtship Grey Oak hatten sehr ähnliche Abnutzungsraten, obwohl sich ihr Abnutzungsverhalten während der Tests deutlich unterschied. Antikes Birken-Laubholz wies einen allmählichen und gleichmäßigeren Abnutzungstrend auf, während Eiche Courtship Grey aufgrund der bereits vorhandenen Oberflächentextur und -behandlung eine flache und löchrige Abnutzungsspur zeigte.

Schlussfolgerung

In dieser Studie haben wir die Leistungsfähigkeit des Tribometers von Nanovea bei der kontrollierten und überwachten Bewertung des Reibungskoeffizienten und der Verschleißfestigkeit der drei Holzarten Antikes Birken-Hartholz, Graue Eiche und Santos-Mahagoni unter Beweis gestellt. Die überlegenen mechanischen Eigenschaften des antiken Birken-Hartholzes führen zu seiner besseren Verschleißfestigkeit. Die Textur und Homogenität der Holzoberfläche spielen eine wichtige Rolle für das Verschleißverhalten. Die Oberflächentextur von Courtship Grey Oak, wie z. B. Lücken oder Risse zwischen den Zellfasern des Holzes, können zu Schwachstellen werden, an denen der Verschleiß einsetzt und sich ausbreitet.

UND NUN ZU IHRER BEWERBUNG

Tragbarkeit und Flexibilität des berührungslosen 3D-Profilometers Jr25

Das Verständnis und die Quantifizierung der Probenoberfläche ist für viele Anwendungen, einschließlich Qualitätskontrolle und Forschung, von entscheidender Bedeutung. Zur Untersuchung von Oberflächen werden häufig Profilometer verwendet, um Proben zu scannen und abzubilden. Ein großes Problem bei herkömmlichen Profilometrieinstrumenten ist die Unfähigkeit, nicht herkömmliche Proben aufzunehmen. Schwierigkeiten bei der Messung nicht konventioneller Proben können aufgrund der Probengröße, der Geometrie, der Unfähigkeit, die Probe zu bewegen, oder anderer umständlicher Probenvorbereitungen auftreten. Nanovea ist tragbar 3D berührungslose ProfilometerDie JR-Serie ist in der Lage, die meisten dieser Probleme zu lösen, da sie Probenoberflächen aus verschiedenen Winkeln scannen kann und tragbar ist.

Lesen Sie über das berührungslose Profilometer Jr25!

Kompression auf weichen, flexiblen Materialien

Wichtigkeit der Prüfung weicher, flexibler Materialien

Ein Beispiel für sehr weiche und flexible Proben ist ein mikroelektromechanisches System. MEMS werden in alltäglichen kommerziellen Produkten wie Druckern, Mobiltelefonen und Autos verwendet [1]. Sie werden auch für spezielle Funktionen wie Biosensoren [2] und Energiegewinnung [3] verwendet. Für ihre Anwendungen müssen MEMS in der Lage sein, wiederholt reversibel zwischen ihrer ursprünglichen Konfiguration und einer komprimierten Konfiguration zu wechseln [4]. Um zu verstehen, wie die Strukturen auf mechanische Kräfte reagieren, können Kompressionstests durchgeführt werden. Kompressionstests können genutzt werden, um verschiedene MEMS-Konfigurationen zu testen und abzustimmen sowie obere und untere Kraftgrenzen für diese Proben zu testen.

 Der Nanovea Mechanischer Tester Nano Die Fähigkeit des Moduls, Daten bei sehr geringen Lasten und einer Distanz von über 1 mm genau zu erfassen, macht es ideal für die Prüfung weicher und flexibler Proben. Durch die Verwendung unabhängiger Last- und Tiefensensoren hat eine große Eindringkörperverschiebung keinen Einfluss auf die Messwerte des Lastsensors. Die Möglichkeit, Schwachlasttests über einen Bereich von mehr als 1 mm Eindringkörperweg durchzuführen, macht unser System im Vergleich zu anderen Nanoindentationssystemen einzigartig. Im Vergleich dazu liegt eine angemessene Verfahrstrecke für ein nanoskaliges Eindrucksystem typischerweise unter 250 μm.
 

Messung Zielsetzung

In dieser Fallstudie führte Nanovea Kompressionstests an zwei völlig unterschiedlichen flexiblen, federähnlichen Proben durch. Wir zeigen, dass wir in der Lage sind, Kompressionstests bei sehr geringen Belastungen durchzuführen und große Auslenkungen aufzuzeichnen, während wir gleichzeitig genaue Daten bei geringen Belastungen erhalten, und wie dies in der MEMS-Industrie angewendet werden kann. Aus Gründen des Datenschutzes werden die Proben und ihre Herkunft in dieser Studie nicht veröffentlicht.

Messparameter

Hinweis: Die Belastungsrate von 1 V/min ist proportional zu einer Verschiebung von etwa 100 μm, wenn sich der Eindringkörper in der Luft befindet.

Ergebnisse und Diskussion

Die Reaktion der Probe auf die mechanischen Kräfte ist aus den Kurven Last/Tiefe ersichtlich. Probe A zeigt nur eine lineare elastische Verformung mit den oben genannten Prüfparametern. Abbildung 2 ist ein gutes Beispiel für die Stabilität, die für eine Last-Tiefen-Kurve bei 75μN erreicht werden kann. Aufgrund der Stabilität der Last- und Tiefensensoren wäre es einfach, eine signifikante mechanische Reaktion der Probe zu erkennen.

Probe B zeigt eine andere mechanische Reaktion als Probe A. Nach 750 μm Tiefe beginnt das Diagramm ein bruchähnliches Verhalten zu zeigen. Dies ist an den starken Lastabfällen bei 850 und 975 μm Tiefe zu erkennen. Trotz einer hohen Belastungsrate von mehr als 1 mm über einen Bereich von 8 mN ermöglichen unsere hochempfindlichen Belastungs- und Tiefensensoren dem Benutzer, die nachstehenden glatten Kurven zwischen Belastung und Tiefe zu erhalten.

Die Steifigkeit wurde aus dem Entlastungsanteil der Last-Tiefen-Kurven berechnet. Die Steifigkeit gibt an, wie viel Kraft erforderlich ist, um die Probe zu verformen. Für diese Steifigkeitsberechnung wurde eine Pseudo-Poissonzahl von 0,3 verwendet, da die tatsächliche Zahl des Materials nicht bekannt ist. In diesem Fall erwies sich Probe B als steifer als Probe A.

 

Schlussfolgerung

Zwei verschiedene flexible Proben wurden mit dem Nanomodul des Nanovea-Mechanik-Testers auf Druck geprüft. Die Tests wurden bei sehr geringen Belastungen (1mm) durchgeführt. Die Druckprüfung im Nanomaßstab mit dem Nanomodul hat gezeigt, dass das Modul in der Lage ist, sehr weiche und flexible Proben zu prüfen. Weitere Tests für diese Studie könnten sich damit befassen, wie wiederholte zyklische Belastungen den Aspekt der elastischen Erholung der federähnlichen Proben über die Mehrfachbelastungsoption des Nanovea-Mechanik-Testers beeinflussen.

Wenn Sie weitere Informationen zu dieser Prüfmethode wünschen, wenden Sie sich bitte an info@nanovea.com. Weitere Anwendungshinweise finden Sie in unserer umfangreichen digitalen Bibliothek mit Anwendungshinweisen.

Referenzen

[1] "Einführung und Anwendungsbereiche für MEMS". EEHerald, 1 Mar. 2017, www.eeherald.com/section/design-guide/mems_application_introduction.html.

[2] Louizos, Louizos-Alexandros; Athanasopoulos, Panagiotis G.; Varty, Kevin (2012). "Microelectromechanical Systems and Nanotechnology. A Platform for the Next Stent Technological Era". Vasc Endovascular Surg.46 (8): 605–609. doi:10.1177/1538574412462637. PMID 23047818.

[3] Hajati, Arman; Sang-Gook Kim (2011). "Ultra wide bandwidth piezoelectric energy harvesting". AppliedPhysics Letters. 99 (8): 083105. doi:10.1063/1.3629551.

[4] Fu, Haoran, et al. "Morphable 3D mesostructures and microelectronic devices by multistable bucklingmechanics." Nature materials 17.3 (2018): 268.

UND NUN ZU IHRER BEWERBUNG

Bewertung von Bremsbelägen mit Tribologie


Wichtigkeit der Bewertung der Bremsbelagleistung

Bremsbeläge sind Verbundwerkstoffe, d. h. ein Material, das aus mehreren Bestandteilen besteht und eine Vielzahl von Sicherheitsanforderungen erfüllen muss. Ideale Bremsbeläge haben einen hohen Reibungskoeffizienten (COF), eine geringe Verschleißrate, minimale Geräuschentwicklung und bleiben auch unter wechselnden Bedingungen zuverlässig. Um sicherzustellen, dass die Qualität der Bremsbeläge den Anforderungen entspricht, können mit Hilfe von tribologischen Tests kritische Spezifikationen ermittelt werden.


Die Zuverlässigkeit von Bremsbelägen ist von großer Bedeutung; die Sicherheit der Fahrgäste darf niemals vernachlässigt werden. Daher ist es von entscheidender Bedeutung, die Betriebsbedingungen zu reproduzieren und mögliche Fehlerstellen zu identifizieren.
Mit dem Nanovea TribometerDabei wird eine konstante Last zwischen einem Stift, einer Kugel oder einer Fläche und einem sich ständig bewegenden Gegenmaterial ausgeübt. Die Reibung zwischen den beiden Materialien wird mit einer steifen Wägezelle erfasst, was die Erfassung von Materialeigenschaften bei unterschiedlichen Belastungen und Geschwindigkeiten ermöglicht und in Umgebungen mit hohen Temperaturen, Korrosion oder Flüssigkeiten getestet wird.



Messung Zielsetzung

In dieser Studie wurde der Reibungskoeffizient der Bremsbeläge unter einer kontinuierlich ansteigenden Umgebungstemperatur von Raumtemperatur bis 700°C untersucht. Die Umgebungstemperatur wurde in-situ erhöht, bis ein spürbares Versagen des Bremsbelags beobachtet wurde. Ein Thermoelement wurde auf der Rückseite des Stifts angebracht, um die Temperatur in der Nähe der Gleitfläche zu messen.



Testverfahren und -abläufe




Ergebnisse und Diskussion

Diese Studie konzentriert sich hauptsächlich auf die Temperatur, bei der Bremsbeläge zu versagen beginnen. Die ermittelten COF entsprechen nicht den realen Werten; das Material der Stifte ist nicht dasselbe wie das der Bremsscheiben. Außerdem ist zu beachten, dass es sich bei den erfassten Temperaturdaten um die Temperatur des Stifts und nicht um die Temperatur der Gleitfläche handelt

 








Zu Beginn des Tests (Raumtemperatur) ergab der COF zwischen dem SS440C-Stift und dem Bremsbelag einen konstanten Wert von etwa 0,2. Mit steigender Temperatur nahm der COF stetig zu und erreichte bei 350°C einen Spitzenwert von 0,26. Nach 390°C beginnt der COF schnell zu sinken. Bei 450°C beginnt der COF wieder auf 0,2 anzusteigen, sinkt aber kurz darauf auf einen Wert von 0,05.


Die Temperatur, bei der die Bremsbeläge durchweg versagten, wurde bei Temperaturen über 500°C ermittelt. Jenseits dieser Temperatur war der COF nicht mehr in der Lage, den Ausgangswert von 0,2 beizubehalten.



Schlussfolgerung




Die Bremsbeläge haben bei einer Temperatur von über 500°C durchweg versagt. Ihr COF von 0,2 steigt langsam auf einen Wert von 0,26 an, bevor er am Ende des Tests (580°C) auf 0,05 sinkt. Der Unterschied zwischen 0,05 und 0,2 ist ein Faktor von 4. Das bedeutet, dass die Normalkraft bei 580°C viermal so hoch sein muss wie bei Raumtemperatur, um die gleiche Bremskraft zu erreichen!


Das Nanovea Tribometer ist zwar nicht Teil dieser Studie, kann aber auch Tests durchführen, um eine andere wichtige Eigenschaft von Bremsbelägen zu beobachten: die Verschleißrate. Durch den Einsatz unserer berührungslosen 3D-Profilometer kann das Volumen der Verschleißspur ermittelt werden, um zu berechnen, wie schnell sich die Proben abnutzen. Verschleißtests können mit dem Nanovea Tribometer unter verschiedenen Testbedingungen und Umgebungen durchgeführt werden, um die Betriebsbedingungen bestmöglich zu simulieren.

UND NUN ZU IHRER BEWERBUNG

Qualitätsanalyse von durch Funkenerosion bearbeiteten Metallen

Die Funkenerosion (EDM) ist ein Fertigungsverfahren, bei dem Material durch elektrische Spannung abgetragen wird.
Entladungen [1]. Dieses Bearbeitungsverfahren wird im Allgemeinen bei leitfähigen Metallen eingesetzt, die schwierig zu bearbeiten wären.
mit herkömmlichen Methoden zu bearbeiten.

Wie bei allen Bearbeitungsprozessen müssen Präzision und Genauigkeit hoch sein, um akzeptable Ergebnisse zu erzielen.
Toleranzwerte. In diesem Anwendungshinweis wird die Qualität der bearbeiteten Metalle anhand eines
Nanovea Berührungsloses 3D-Profilometer.

Zum Lesen anklicken!

Viskoelastische Analyse von Gummi

Viskoelastische Analyse von Gummi

Mehr erfahren

 

Reifen sind im Straßenverkehr zyklisch hohen Verformungen ausgesetzt. Wenn sie rauen Straßenbedingungen ausgesetzt sind, wird die Lebensdauer der Reifen durch viele Faktoren gefährdet, wie z. B. den Verschleiß des Gewindes, die durch Reibung erzeugte Wärme, die Alterung des Gummis und andere.

Infolgedessen haben Reifen in der Regel Verbundschichtstrukturen aus kohlenstoffgefülltem Gummi, Nylonfäden, Stahldrähten usw. Insbesondere wird die Gummizusammensetzung in den verschiedenen Bereichen des Reifensystems optimiert, um unterschiedliche funktionale Eigenschaften zu erzielen, einschließlich, aber nicht beschränkt auf verschleißfeste Fäden, Gummipuffer und Hartgummibasisschicht.

Ein zuverlässiger und wiederholbarer Test des viskoelastischen Verhaltens von Gummi ist für die Qualitätskontrolle und Forschung und Entwicklung neuer Reifen sowie für die Bewertung der Lebensdauer alter Reifen von entscheidender Bedeutung. Dynamisch-mechanische Analyse (DMA) während Nanoindentation ist eine Technik zur Charakterisierung der Viskoelastizität. Wenn eine kontrollierte oszillierende Belastung ausgeübt wird, wird die resultierende Dehnung gemessen, sodass Benutzer den komplexen Modul der getesteten Materialien bestimmen können.

Ein besserer Blick auf Papier

Papier hat seit seiner Erfindung im 2. Jahrhundert eine große Rolle bei der Informationsverbreitung gespielt [1]. Papier besteht aus ineinander verschlungenen Fasern, die in der Regel von Bäumen stammen und zu dünnen Blättern getrocknet worden sind. Als Medium zur Informationsspeicherung hat Papier die Verbreitung von Ideen, Kunst und Geschichte über weite Entfernungen und im Laufe der Zeit ermöglicht.

Heutzutage wird Papier häufig für Bargeld, Bücher, Toilettenartikel, Verpackungen und mehr verwendet. Papier wird auf unterschiedliche Weise verarbeitet, um Eigenschaften zu erhalten, die zu seiner Anwendung passen. Beispielsweise unterscheidet sich das optisch ansprechende, glänzende Papier einer Zeitschrift von rauem, kaltgepresstem Aquarellpapier. Die Art und Weise, wie Papier hergestellt wird, beeinflusst die Oberflächeneigenschaften des Papiers. Dies beeinflusst, wie sich Tinte (oder ein anderes Medium) auf dem Papier absetzt und darauf erscheint. Um zu untersuchen, wie sich verschiedene Papierprozesse auf die Oberflächeneigenschaften auswirken, untersuchte Nanovea die Rauheit und Textur verschiedener Papierarten, indem es mit unserem einen großflächigen Scan durchführte Berührungsloses 3D-Profilometer.

Klicken Sie hier, um mehr über die Oberflächenrauhigkeit von Papier!

Ein BESSERER Blick auf Polycarbonatlinsen

Ein BESSERER Blick auf Polycarbonatlinsen Mehr erfahren
 
Polycarbonatlinsen werden in vielen optischen Anwendungen eingesetzt. Ihre hohe Stoßfestigkeit, ihr geringes Gewicht und die günstigen Kosten für die Großserienproduktion machen sie für verschiedene Anwendungen praktischer als herkömmliches Glas [1]. Einige dieser Anwendungen erfordern Sicherheits- (z. B. Schutzbrillen), Komplexitäts- (z. B. Fresnel-Linse) oder Haltbarkeitskriterien (z. B. Ampel-Linse), die ohne den Einsatz von Kunststoffen nur schwer zu erfüllen sind. Kunststofflinsen zeichnen sich dadurch aus, dass sie viele Anforderungen kostengünstig erfüllen können und gleichzeitig ausreichende optische Eigenschaften aufweisen. Polycarbonatgläser haben aber auch ihre Grenzen. Die größte Sorge der Verbraucher ist, dass sie leicht zerkratzt werden können. Um dies zu kompensieren, kann eine zusätzliche Beschichtung gegen Kratzer aufgebracht werden. Nanovea wirft einen Blick auf einige wichtige Eigenschaften von Kunststoffgläsern, indem wir unsere drei Messinstrumente einsetzen: Profilometer, Tribometerund Mechanischer Tester.   Klicken Sie, um mehr zu lesen!

Kratztests an mehrschichtigen Dünnfilmen

Beschichtungen werden in zahlreichen Industriezweigen eingesetzt, um die darunter liegenden Schichten zu schützen, elektronische Geräte herzustellen oder die Oberflächeneigenschaften von Materialien zu verbessern. Aufgrund ihrer zahlreichen Verwendungszwecke werden Beschichtungen ausgiebig untersucht, aber ihre mechanischen Eigenschaften sind oft schwer zu verstehen. Das Versagen von Beschichtungen kann im Mikro-/Nanometerbereich durch Wechselwirkungen zwischen Oberfläche und Atmosphäre, kohäsives Versagen und schlechte Haftung zwischen Substrat und Oberfläche verursacht werden. Eine einheitliche Methode zur Prüfung von Beschichtungsfehlern ist die Kratzprüfung. Durch Aufbringen einer progressiv ansteigenden Last können kohäsive (z. B. Rissbildung) und adhäsive (z. B. Delamination) Schäden an Beschichtungen quantitativ verglichen werden.

Kratztests an mehrschichtigen Dünnfilmen