USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Badanie zużycia powłoki szklanej w warunkach wilgotności za pomocą tribometru

Badanie zużycia powłoki szklanej w warunkach wilgotności za pomocą tribometru

Dowiedz się więcej

WILGOTNOŚĆ POWŁOKI SZKLANEJ

BADANIE ZUŻYCIA ZA POMOCĄ TRYBOMETRU

Przygotowane przez

DUANJIE LI, dr

WPROWADZENIE

Samoczyszcząca powłoka szklana tworzy łatwą do czyszczenia powierzchnię szklaną, która zapobiega gromadzeniu się brudu, zanieczyszczeń i plam. Jej cecha samoczyszczenia znacznie zmniejsza częstotliwość, czas, energię i koszty czyszczenia, co czyni ją atrakcyjnym wyborem dla różnych zastosowań mieszkaniowych i komercyjnych, takich jak fasady szklane, lustra, szyby prysznicowe, okna i szyby przednie.

ZNACZENIE ODPORNOŚCI NA ŚCIERANIE SAMOCZYSZCZĄCEJ POWŁOKI SZKLANEJ

Głównym zastosowaniem powłoki samoczyszczącej jest zewnętrzna powierzchnia szklanej fasady na wieżowcach. Powierzchnia szkła jest często atakowana przez szybkie cząstki przenoszone przez silne wiatry. Warunki pogodowe również odgrywają dużą rolę w żywotności powłoki szklanej. Obróbka powierzchniowa szkła i nakładanie nowej powłoki w przypadku awarii starej może być bardzo trudne i kosztowne. Dlatego też odporność na zużycie powłoki szklanej pod
różne warunki pogodowe są krytyczne.


W celu symulacji realistycznych warunków środowiskowych powłoki samoczyszczącej w różnych warunkach pogodowych, potrzebna jest powtarzalna ocena zużycia w kontrolowanej i monitorowanej wilgotności. Pozwala to użytkownikom na właściwe porównanie odporności na zużycie powłok samoczyszczących wystawionych na działanie różnych wilgotności i wybór najlepszego kandydata do docelowego zastosowania.

CEL POMIARU

W tym badaniu wykazaliśmy, że NANOVEA Tribometr T100 wyposażony w regulator wilgotności jest idealnym narzędziem do badania odporności na zużycie samoczyszczących powłok szklanych w różnej wilgotności.

NANOVEA

T100

PROCEDURY BADAWCZE

Szkiełka mikroskopowe ze szkła sodowo-wapniowego zostały pokryte samoczyszczącymi powłokami szklanymi przy użyciu dwóch różnych receptur obróbki. Te dwie powłoki są oznaczone jako Coating 1 i Coating 2. Dla porównania przetestowano również niepowlekane szkiełko bez powłoki.


NANOVEA Tribometr wyposażonego w moduł kontroli wilgotności, wykorzystano do oceny zachowania tribologicznego, np. współczynnika tarcia, współczynnika COF i odporności na zużycie samoczyszczących powłok szklanych. Na badane próbki nałożono końcówkę kulkową WC (o średnicy 6 mm). COF rejestrowano na miejscu. Zamontowany na trybokomorze regulator wilgotności precyzyjnie kontrolował wartość wilgotności względnej (RH) w zakresie ±1 %. Po badaniach zużycia zbadano morfologię śladów zużycia pod mikroskopem optycznym.

OBCIĄŻENIE MAKSYMALNE 40 mN
WYNIKI I DYSKUSJA

Badania zużycia pin-on-disk w różnych warunkach wilgotnościowych przeprowadzono na szkle powlekanym i niepowlekanym
próbki. COF był rejestrowany in situ podczas testów zużycia, jak pokazano w
RYSUNEK 1 a średni COF jest podsumowany w RYSUNEK 2. RYSUNEK 4 porównuje ślady zużycia po testach zużycia.


Jak pokazano w
RYSUNEK 1Szkło niepowlekane wykazuje wysoki współczynnik COF wynoszący ~0,45 po rozpoczęciu ruchu ślizgowego w teście 30% RH, który stopniowo wzrasta do ~0,6 pod koniec testu zużycia 300 obrotów. Dla porównania
Próbki szkła powlekanego Coating 1 i Coating 2 wykazują na początku badania niski współczynnik COF poniżej 0,2. Współczynnik COF
powłoki 2 stabilizuje się na poziomie ~0,25 przez resztę testu, podczas gdy powłoka 1 wykazuje gwałtowny wzrost COF przy
~250 obrotów, a COF osiąga wartość ~0,5. W przypadku przeprowadzania testów zużycia w RH 60%.
Szkło niepowlekane nadal wykazuje wyższy współczynnik COF wynoszący ~0,45 podczas całego testu zużycia. Powłoki 1 i 2 wykazują wartości COF odpowiednio 0,27 i 0,22. W przypadku 90% RH, szkło niepowlekane posiada wysoki współczynnik COF wynoszący ~0,5 pod koniec testu zużycia. Powłoki 1 i 2 wykazują porównywalny współczynnik COF na poziomie ~0,1 w momencie rozpoczęcia testu zużycia. Powłoka 1 utrzymuje względnie stabilny współczynnik COF na poziomie ~0,15. Natomiast powłoka 2 ulega uszkodzeniu przy ~100 obrotach, po czym następuje znaczny wzrost COF do ~0,5 pod koniec testu zużycia.


Niskie tarcie powłoki szkła samoczyszczącego wynika z jej niskiej energii powierzchniowej. Tworzy ona bardzo wysoką statykę
kąt kontaktu z wodą i niski kąt zwijania. Prowadzi to do tworzenia się małych kropel wody na powierzchni powłoki w 90% RH, co widać pod mikroskopem w
RYSUNEK 3. Powoduje to również spadek średniego COF z ~0,23 do ~0,15 dla powłoki 2 w miarę wzrostu wartości RH z 30% do 90%.

RYSUNEK 1: Współczynnik tarcia podczas testów pin-on-disk w różnych wilgotnościach względnych.

RYSUNEK 2: Średni COF podczas testów pin-on-disk w różnych wilgotnościach względnych.

RYSUNEK 3: Tworzenie się małych kropelek wody na powierzchni powlekanego szkła.

RYSUNEK 4 porównuje ślady zużycia na powierzchni szkła po testach zużycia w różnych wilgotnościach. Powłoka 1 wykazuje oznaki łagodnego zużycia po testach zużycia w RH 30% i 60%. Posiada duży ślad zużycia po teście w wilgotności względnej 90%, co jest zgodne ze znacznym wzrostem COF podczas testu zużycia. Powłoka 2 nie wykazuje prawie żadnych oznak zużycia po testach zużycia zarówno w środowisku suchym jak i mokrym, a także wykazuje stały niski COF podczas testów zużycia w różnych wilgotnościach. Połączenie dobrych właściwości trybologicznych i niskiej energii powierzchniowej sprawia, że powłoka 2 jest dobrym kandydatem do zastosowania jako samoczyszcząca powłoka szklana w trudnych warunkach. Dla porównania, szkło niepowlekane wykazuje większe ślady zużycia i wyższy współczynnik COF w różnych wilgotnościach, co dowodzi konieczności zastosowania techniki powlekania samoczyszczącego.

RYSUNEK 4: Ślady zużycia po testach pin-on-disk w różnych wilgotnościach względnych (powiększenie 200x).

PODSUMOWANIE

NANOVEA Tribometr T100 jest doskonałym narzędziem do oceny i kontroli jakości samoczyszczących powłok szklanych o różnej wilgotności. Możliwość pomiaru COF in-situ pozwala użytkownikom skorelować różne etapy procesu zużycia z ewolucją COF, co jest kluczowe dla poprawy zrozumienia mechanizmu zużycia i charakterystyki trybologicznej powłok szklanych. Na podstawie kompleksowej analizy tribologicznej samoczyszczących powłok szklanych badanych w różnej wilgotności wykazaliśmy, że powłoka 2 charakteryzuje się stałym niskim COF i doskonałą odpornością na zużycie zarówno w środowisku suchym jak i mokrym, co czyni ją lepszym kandydatem do zastosowań w samoczyszczących powłokach szklanych narażonych na działanie różnych czynników atmosferycznych.


NANOVEA Tribometry oferują precyzyjne i powtarzalne badania zużycia i tarcia z wykorzystaniem trybów obrotowych i liniowych zgodnych z normami ISO i ASTM, z opcjonalnymi modułami do badań zużycia w wysokiej temperaturze, smarowania i tribo-korozji dostępnymi w jednym, wstępnie zintegrowanym systemie. Opcjonalny profiler bezkontaktowy 3D jest dostępny w celu zapewnienia wysokiej jakości badań.
obrazowanie w rozdzielczości 3D śladów zużycia jako uzupełnienie innych pomiarów powierzchni, takich jak chropowatość. 

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Odkształcanie pełzające polimerów metodą nanoindentacji

Odkształcanie pełzające polimerów metodą nanoindentacji

Dowiedz się więcej

ODKSZTAŁCENIE PEŁZAJĄCE

POLIMERÓW ZA POMOCĄ NANOINDENTACJI

Przygotowane przez

DUANJIE LI, dr

WPROWADZENIE

Jako materiały lepkosprężyste, polimery często ulegają deformacji zależnej od czasu pod wpływem określonego przyłożonego obciążenia, znanego również jako pełzanie. Pełzanie staje się czynnikiem krytycznym, gdy części polimerowe mają być narażone na ciągłe naprężenia, takie jak elementy konstrukcyjne, połączenia i złącza oraz hydrostatyczne zbiorniki ciśnieniowe.

ZNACZENIE POMIARU PEŁZANIA DLA POLIMERÓW

Naturalna natura lepkosprężystości odgrywa kluczową rolę w działaniu polimerów i bezpośrednio wpływa na ich niezawodność działania. Warunki środowiskowe, takie jak obciążenie i temperatura, wpływają na zachowanie pełzania polimerów. Awarie związane z pełzaniem często występują z powodu braku czujności w zakresie zależnego od czasu zachowania pełzania materiałów polimerowych stosowanych w określonych warunkach pracy. W rezultacie ważne jest opracowanie wiarygodnego i ilościowego testu lepkosprężystego zachowania mechanicznego polimerów. Moduł Nano NANOVEA Testery mechaniczne przykłada obciążenie za pomocą precyzyjnego piezoelektrycznego czujnika i bezpośrednio mierzy ewolucję siły i przemieszczenia na miejscu. Połączenie dokładności i powtarzalności sprawia, że jest to idealne narzędzie do pomiaru pełzania.

CEL POMIARU

W tej aplikacji pokazaliśmy, że
Tester mechaniczny NANOVEA PB1000
w Nanoindentacja Tryb jest idealnym narzędziem
do badania lepkosprężystych właściwości mechanicznych
w tym twardość, moduł Younga
i pełzanie materiałów polimerowych.

NANOVEA

PB1000

WARUNKI BADANIA

Osiem różnych próbek polimerowych badano techniką nanoindentacji przy użyciu testera mechanicznego NANOVEA PB1000. W miarę liniowego wzrostu obciążenia od 0 do 40 mN, głębokość wgłębienia stopniowo wzrastała podczas etapu obciążania. Pełzanie mierzono następnie na podstawie zmiany głębokości wgniecenia przy maksymalnym obciążeniu 40 mN przez 30 s.

OBCIĄŻENIE MAKSYMALNE 40 mN
PRĘDKOŚĆ ZAŁADUNKU
80 mN/min
PRĘDKOŚĆ ROZŁADUNKU 80 mN/min
CREEP TIME
30 s

TYP INDENTER

Berkovich

Diament

*konfiguracja badania metodą nanoindentacji

WYNIKI I DYSKUSJA

Wykres zależności obciążenia od przemieszczenia w badaniach nanoindentacji różnych próbek polimerowych przedstawiono na RYSUNKU 1, a krzywe pełzania porównano na RYSUNKU 2. Twardość i moduł Younga są podsumowane na RYSUNKU 3, a głębokość pełzania jest pokazana na RYSUNKU 4. Jako przykłady na RYSUNKU 1, części AB, BC i CD krzywej obciążenie-przemieszczenie dla pomiaru nanoindentacji reprezentują odpowiednio procesy ładowania, pełzania i rozładowania.

Delrin i PVC wykazują najwyższą twardość odpowiednio 0,23 i 0,22 GPa, podczas gdy LDPE posiada najniższą twardość 0,026 GPa wśród badanych polimerów. Ogólnie rzecz biorąc, twardsze polimery wykazują mniejszą szybkość pełzania. Najbardziej miękki LDPE ma największą głębokość pełzania 798 nm, w porównaniu do ~120 nm dla Delrinu.

Właściwości pełzania polimerów są krytyczne, gdy są one stosowane w częściach konstrukcyjnych. Poprzez precyzyjny pomiar twardości i pełzania polimerów, można uzyskać lepsze zrozumienie niezawodności polimerów w zależności od czasu. Pełzanie, zmiana przemieszczenia przy danym obciążeniu, może być również mierzone w różnych podwyższonych temperaturach i wilgotności przy użyciu testera mechanicznego NANOVEA PB1000, zapewniając idealne narzędzie do ilościowego i wiarygodnego pomiaru lepkosprężystych zachowań mechanicznych polimerów.
w symulowanym realistycznym środowisku aplikacji.

RYSUNEK 1: Wykresy zależności obciążenia od przemieszczenia
różnych polimerów.

RYSUNEK 2: Pełzanie przy maksymalnym obciążeniu 40 mN przez 30 s.

RYSUNEK 3: Twardość i moduł Younga polimerów.

RYSUNEK 4: Głębokość pełzania polimerów.

PODSUMOWANIE

W tym badaniu wykazaliśmy, że NANOVEA PB1000
Mechanical Tester mierzy właściwości mechaniczne różnych polimerów, w tym twardość, moduł Younga i pełzanie. Takie właściwości mechaniczne są niezbędne przy wyborze odpowiedniego materiału polimerowego do planowanych zastosowań. Derlin i PVC wykazują najwyższą twardość odpowiednio 0,23 i 0,22 GPa, podczas gdy LDPE posiada najniższą twardość 0,026 GPa wśród badanych polimerów. Ogólnie rzecz biorąc, twardsze polimery wykazują mniejszą szybkość pełzania. Najbardziej miękki LDPE wykazuje największą głębokość pełzania 798 nm, w porównaniu do ~120 nm dla Derlinu.

Testery mechaniczne NANOVEA zapewniają niezrównaną wielofunkcyjność modułów Nano i Micro na jednej platformie. Zarówno moduły Nano jak i Micro zawierają tryby testera zarysowań, testera twardości oraz testera zużycia, zapewniając najdzikszy i najbardziej przyjazny dla użytkownika zakres badań dostępny w jednym systemie.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI