USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Catégorie : Profilométrie | Géométrie et formes

 

Dimensions et état de surface des tubes polymères

Importance de l'analyse dimensionnelle et de surface des tubes polymères

Les tubes fabriqués à partir de matériaux polymères sont couramment utilisés dans de nombreuses industries allant de l'automobile au médical, en passant par l'électricité et bien d'autres catégories. Dans cette étude, des cathéters médicaux fabriqués à partir de différents matériaux polymères ont été étudiés à l'aide du Nanovea Profilomètre 3D sans contact pour mesurer la rugosité, la morphologie et les dimensions de la surface. La rugosité de surface est cruciale pour les cathéters, car de nombreux problèmes liés aux cathéters, notamment les infections, les traumatismes physiques et les inflammations, peuvent être liés à la surface des cathéters. Les propriétés mécaniques, telles que le coefficient de friction, peuvent également être étudiées en observant les propriétés de la surface. Ces données quantifiables peuvent être obtenues pour s'assurer que le cathéter peut être utilisé pour des applications médicales.

Par rapport à la microscopie optique et à la microscopie électronique, la profilométrie 3D sans contact utilisant le chromatisme axial est hautement préférable pour caractériser les surfaces des cathéters en raison de sa capacité à mesurer les angles/courbures, de sa capacité à mesurer les surfaces des matériaux malgré la transparence ou la réflectivité, de la préparation minimale des échantillons et de sa nature non invasive. Contrairement à la microscopie optique conventionnelle, la hauteur de la surface peut être obtenue et utilisée pour une analyse computationnelle, par exemple pour trouver les dimensions et enlever la forme pour trouver la rugosité de la surface. La faible préparation de l'échantillon, contrairement à la microscopie électronique, et la nature sans contact permettent également une collecte rapide des données sans craindre la contamination et les erreurs liées à la préparation de l'échantillon.

Objectif de la mesure

Dans cette application, le profilomètre sans contact Nanovea 3D est utilisé pour scanner la surface de deux cathéters : l'un en TPE (élastomère thermoplastique) et l'autre en PVC (chlorure de polyvinyle). Les paramètres de morphologie, de dimension radiale et de hauteur des deux cathéters seront obtenus et comparés.

 

 

Résultats et discussion

Surface 3D

Malgré la courbure des tubes polymères, le profilomètre sans contact Nanovea 3D peut scanner la surface des cathéters. A partir du scan effectué, une image 3D peut être obtenue pour une inspection visuelle rapide et directe de la surface.

 
 

 

Analyse dimensionnelle 2D

La dimension radiale extérieure a été obtenue en extrayant un profil du scan original et en ajustant un arc au profil. Cela montre la capacité du profilomètre 3D sans contact à effectuer une analyse dimensionnelle rapide pour les applications de contrôle de la qualité. Il est également possible d'obtenir facilement plusieurs profils sur la longueur du cathéter.

 

 

Analyse de surface Rugosité

La dimension radiale extérieure a été obtenue en extrayant un profil du scan original et en ajustant un arc au profil. Cela montre la capacité du profilomètre 3D sans contact à effectuer une analyse dimensionnelle rapide pour les applications de contrôle de la qualité. Il est également possible d'obtenir facilement plusieurs profils sur la longueur du cathéter.

Conclusion

Dans cette application, nous avons montré comment le profilomètre sans contact Nanovea 3D peut être utilisé pour caractériser des tubes polymères. Plus précisément, la métrologie de surface, les dimensions radiales et la rugosité de surface ont été obtenues pour des cathéters médicaux. Le rayon extérieur du cathéter en TPE s'est avéré être de 2,40 mm alors que celui du cathéter en PVC était de 1,27 mm. La surface du cathéter en TPE s'est avérée plus rugueuse que celle du cathéter en PVC. Le Sa du TPE était de 0.9740µm comparé à 0.1791µm du PVC. Bien que des cathéters médicaux aient été utilisés pour cette application, la profilométrie 3D sans contact peut également être appliquée à une grande variété de surfaces. Les données et les calculs pouvant être obtenus ne se limitent pas à ce qui est montré.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Balayage à grande vitesse avec profilométrie sans contact

Introduction :

Les mesures de surface à configuration rapide et facile permettent d'économiser du temps et des efforts et sont essentielles pour le contrôle qualité, la recherche et le développement et les installations de production. La Nanovéa Profilomètre sans contact est capable d'effectuer des analyses de surface 3D et 2D pour mesurer des caractéristiques à l'échelle nanométrique à macro sur n'importe quelle surface, offrant ainsi une large gamme d'utilisation.

Cliquez ici pour lire !

Rugosité de la surface et caractéristiques d'une cellule solaire

Importance de l'essai des panneaux solaires

La maximisation de l'absorption d'énergie d'une cellule solaire est essentielle à la survie de la technologie en tant que ressource renouvelable. Les multiples couches de revêtement et de verre de protection permettent l'absorption, la transmission et la réflexion de la lumière nécessaires au fonctionnement des cellules photovoltaïques. Étant donné que la plupart des cellules solaires grand public ont un rendement de 15-18%, l'optimisation de leur rendement énergétique est une bataille permanente.


Des études ont montré que la rugosité de la surface joue un rôle essentiel dans la réflexion de la lumière. La première couche de verre doit être aussi lisse que possible pour atténuer la réflexion de la lumière, mais les couches suivantes ne suivent pas cette ligne directrice. Un certain degré de rugosité est nécessaire à l'interface de chaque revêtement pour augmenter la possibilité de diffusion de la lumière dans leurs zones d'appauvrissement respectives et augmenter l'absorption de la lumière dans la cellule1. L'optimisation de la rugosité de la surface dans ces régions permet à la cellule solaire de fonctionner au mieux de ses capacités. Avec le capteur Nanovea HS2000 High Speed Sensor, la mesure de la rugosité de la surface peut être effectuée rapidement et avec précision.



Objectif de la mesure

Dans cette étude, nous montrerons les capacités du système Nanovea Profilomètre HS2000 avec High Speed Sensor en mesurant la rugosité de la surface et les caractéristiques géométriques d'une cellule photovoltaïque. Pour cette démonstration, une cellule solaire monocristalline sans protection en verre sera mesurée, mais la méthodologie peut être utilisée pour diverses autres applications.




Procédure d'essai et procédures

Les paramètres de test suivants ont été utilisés pour mesurer la surface de la cellule solaire.




Résultats et discussion

La vue 2D en fausses couleurs de la cellule solaire et une extraction de la surface avec ses paramètres de hauteur respectifs sont représentées ci-dessous. Un filtre gaussien a été appliqué aux deux surfaces et un indice plus agressif a été utilisé pour aplanir la zone extraite. Cela exclut les formes (ou ondulations) supérieures à l'indice de coupure, laissant derrière elles des caractéristiques qui représentent la rugosité de la cellule solaire.











Un profil a été pris perpendiculairement à l'orientation des lignes de grille pour mesurer leurs caractéristiques géométriques, comme le montre le graphique ci-dessous. La largeur de la ligne de grille, la hauteur du pas et le pas peuvent être mesurés pour n'importe quel endroit spécifique de la cellule solaire.









Conclusion





Dans cette étude, nous avons pu montrer la capacité du capteur linéaire Nanovea HS2000 à mesurer la rugosité et les caractéristiques de surface d'une cellule photovoltaïque monocristalline. Avec la possibilité d'automatiser des mesures précises de plusieurs échantillons et de fixer des limites de réussite et d'échec, le capteur linéaire Nanovea HS2000 est un choix parfait pour les inspections de contrôle de la qualité.

Référence

1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. " Influence de la rugosité de surface sur les caractéristiques optiques des cellules solaires multicouches " Advances in Electrical and Electronic Engineering, vol. 12, no. 6, 2014, pp. 631-638.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Portabilité et flexibilité du profilomètre 3D sans contact Jr25

Comprendre et quantifier la surface d'un échantillon est crucial pour de nombreuses applications, notamment le contrôle qualité et la recherche. Pour étudier les surfaces, les profilomètres sont souvent utilisés pour numériser et imager des échantillons. Un gros problème avec les instruments de profilométrie conventionnels est l’incapacité à prendre en charge des échantillons non conventionnels. Des difficultés lors de la mesure d'échantillons non conventionnels peuvent survenir en raison de la taille de l'échantillon, de sa géométrie, de l'incapacité de déplacer l'échantillon ou d'autres préparations d'échantillon peu pratiques. Le portable de Nanovea Profilomètres 3D sans contact, la série JR, est capable de résoudre la plupart de ces problèmes grâce à sa capacité à numériser des surfaces d'échantillons sous différents angles et à sa portabilité.

Découvrez le profilomètre sans contact Jr25 !

Analyse de la qualité des métaux usinés par électroérosion

L'usinage par électroérosion, ou EDM, est un procédé de fabrication qui consiste à enlever de la matière par l'intermédiaire de l'électricité.
décharges [1]. Ce procédé d'usinage est généralement utilisé pour les métaux conducteurs qui seraient difficiles à usiner.
à usiner avec les méthodes conventionnelles.

Comme pour tous les processus d'usinage, la précision et l'exactitude doivent être élevées afin d'atteindre un niveau acceptable.
les niveaux de tolérance. Dans cette note d'application, la qualité des métaux usinés sera évaluée à l'aide d'une
Nanovea Profilomètre 3D sans contact.

Cliquez pour lire !

Un meilleur regard sur les verres en polycarbonate

Un meilleur regard sur les verres en polycarbonate En savoir plus
 
Les lentilles en polycarbonate sont couramment utilisées dans de nombreuses applications optiques. Leur grande résistance aux chocs, leur faible poids et le coût peu élevé de leur production en grande série les rendent plus pratiques que le verre traditionnel dans diverses applications [1]. Certaines de ces applications exigent des critères de sécurité (par exemple, les lunettes de sécurité), de complexité (par exemple, la lentille de Fresnel) ou de durabilité (par exemple, la lentille des feux de signalisation) qui sont difficiles à satisfaire sans l'utilisation de plastiques. Sa capacité à répondre à bon marché à de nombreuses exigences tout en conservant des qualités optiques suffisantes fait que les verres en plastique se distinguent dans son domaine. Les lentilles en polycarbonate ont également des limites. La principale préoccupation des consommateurs est la facilité avec laquelle ils peuvent être rayés. Pour compenser cela, des processus supplémentaires peuvent être réalisés pour appliquer un revêtement anti-rayures. Nanovea examine certaines propriétés importantes des lentilles en plastique à l'aide de nos trois instruments de métrologie : Profilomètre, Tribomètreet Testeur Méchanique.   Cliquez pour en savoir plus !

Profilométrie automatisée de grande surface de PCB

La mise à l'échelle des processus de fabrication est nécessaire pour que les industries se développent et répondent à des demandes en constante augmentation. Les outils utilisés pour le contrôle de la qualité doivent également être adaptés à l'évolution des processus de fabrication. Ces outils doivent être rapides pour suivre le rythme de production, tout en maintenant une grande précision pour respecter les limites de tolérance des produits. Ici, le Nanovea HS2000 Profilomètre, avec Line Sensor, démontre sa valeur en tant qu'instrument de contrôle de la qualité grâce à ses capacités de profilométrie rapide, automatisée et à haute résolution sur de grandes surfaces.

Clip vidéo ou App Note : Profilométrie automatisée de grande surface de PCB