USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Kategorie: Profilometrie | Textur und Maserung

 

Konturmessung mit Profilometer von NANOVEA

Messung der Gummilaufflächenkontur

Messung der Gummilaufflächenkontur

Mehr erfahren

 

 

 

 

 

 

 

 

 

 

 

 

 

MESSUNG DER GUMMILAUFFLÄCHENKONTUR

VERWENDUNG EINES OPTISCHEN 3D-PROFILERS

Messung der Gummilaufflächenkontur - NANOVEA Profiler

Vorbereitet von

ANDREA HERRMANN

EINFÜHRUNG

Wie bei allen Materialien hängt der Reibungskoeffizient von Gummi mit folgenden Faktoren zusammen zum Teil auf seine Oberflächenrauheit zurückzuführen. Bei der Verwendung von Fahrzeugreifen ist die Traktion auf der Straße sehr wichtig. Dabei spielen sowohl die Oberflächenrauhigkeit als auch die Lauffläche des Reifens eine Rolle. In dieser Studie werden die Rauheit und die Abmessungen der Gummioberfläche und der Lauffläche analysiert.

* DAS MUSTER

WICHTIG

DER BERÜHRUNGSLOSEN 3D-PROFILOMETRIE

FÜR GUMMISTUDIEN

Im Gegensatz zu anderen Techniken wie Berührungssonden oder Interferometrie sind NANOVEAs Berührungslose optische 3D-Profiler Verwenden Sie den axialen Chromatismus, um nahezu jede Oberfläche zu messen. 

Das offene Staging des Profiler-Systems ermöglicht eine große Vielfalt an Probengrößen und erfordert keine Probenvorbereitung. Merkmale im Nano- bis Makrobereich können während eines einzigen Scans ohne Beeinflussung durch Probenreflexion oder -absorption erfasst werden. Darüber hinaus verfügen diese Profiler über die fortschrittliche Fähigkeit, große Oberflächenwinkel zu messen, ohne dass eine Softwaremanipulation der Ergebnisse erforderlich ist.

Messen Sie einfach jedes Material: transparent, undurchsichtig, spiegelnd, diffus, poliert, rau usw. Die Messtechnik der berührungslosen NANOVEA 3D-Profiler bietet eine ideale, umfassende und benutzerfreundliche Möglichkeit zur Maximierung von Oberflächenstudien zusammen mit den Vorteilen der kombinierten 2D- und 3D-Fähigkeit.

MESSZIEL

In dieser Anwendung stellen wir den NANOVEA ST400 vor, ein berührungslos messender optischer 3D-Profiler die Oberfläche und die Laufflächen eines Gummireifens.

Eine Probenoberfläche, die groß genug ist, um die die gesamte Reifenoberfläche wurde nach dem Zufallsprinzip ausgewählt für diese Studie. 

Um die Eigenschaften des Gummis zu quantifizieren, haben wir die NANOVEA Ultra 3D-Analyse-Software, um Messen Sie die Konturmaße und die Tiefe, Rauheit und entwickelte Fläche der Oberfläche.

NANOVEA

ST400

ANALYSE: REIFENFADEN

Die 3D-Ansicht und die Falschfarbenansicht der Trittflächen zeigen den Wert der Abbildung von 3D-Oberflächendesigns. Sie bieten den Nutzern ein einfaches Werkzeug, um die Größe und Form der Laufflächen aus verschiedenen Blickwinkeln direkt zu betrachten. Die erweiterte Konturanalyse und die Stufenhöhenanalyse sind beides äußerst leistungsfähige Werkzeuge zur Messung der genauen Abmessungen von Musterformen und -designs.

ERWEITERTE KONTURANALYSE

STUFENHÖHENANALYSE

ANALYSE: GUMMI OBERFLÄCHE

Die Gummioberfläche kann mit Hilfe integrierter Software-Tools auf vielfältige Weise quantifiziert werden, wie die folgenden Abbildungen als Beispiele zeigen. Es ist zu erkennen, dass die Oberflächenrauheit 2,688 μm beträgt und die entwickelte Fläche im Vergleich zur projizierten Fläche 9,410 mm² bzw. 8,997 mm² beträgt. Anhand dieser Informationen können wir die Beziehung zwischen der Oberflächenbeschaffenheit und der Traktion verschiedener Gummimischungen oder sogar von Gummi mit unterschiedlichem Grad an Oberflächenverschleiß untersuchen.

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, wie die NANOVEA Der berührungslose optische 3D-Profiler kann die Oberflächenrauhigkeit und die Laufflächenabmessungen von Gummi genau charakterisieren.

Die Daten zeigen eine Oberflächenrauheit von 2,69 µm und eine entwickelte Fläche von 9,41 mm² mit einer projizierten Fläche von 9 mm². Verschiedene Abmessungen und Radien der Gummilaufflächen wurden auch gemessen.

Die in dieser Studie präsentierten Informationen können dazu verwendet werden, die Leistung von Gummireifen mit unterschiedlichen Profildesigns, Formulierungen oder unterschiedlichen Abnutzungsgraden zu vergleichen. Die hier gezeigten Daten stellen nur einen Teil der Berechnungen, die in der Ultra 3D-Analysesoftware verfügbar sind.

UND NUN ZU IHRER BEWERBUNG

Topographie der Fresnel-Linse

FRESNEL-LINSE

ABMESSUNGEN MITTELS 3D-PROFILOMETRIE

Vorbereitet von

Duanjie Li & Benjamin Mell

EINFÜHRUNG

Eine Linse ist ein optisches Gerät mit axialer Symmetrie, das Licht durchlässt und bricht. Eine einfache Linse besteht aus einer einzigen optischen Komponente zur Konvergenz oder Divergenz des Lichts. Obwohl kugelförmige Oberflächen nicht die ideale Form für die Herstellung einer Linse sind, werden sie häufig als einfachste Form verwendet, zu der Glas geschliffen und poliert werden kann.

Eine Fresnel-Linse besteht aus einer Reihe von konzentrischen Ringen, die dünne Teile einer einfachen Linse mit einer Breite von nur wenigen tausendstel Zoll sind. Fresnel-Linsen haben eine große Öffnung und eine kurze Brennweite, wobei die kompakte Bauweise das Gewicht und das benötigte Materialvolumen im Vergleich zu herkömmlichen Linsen mit den gleichen optischen Eigenschaften reduziert. Aufgrund der dünnen Geometrie der Fresnel-Linse geht nur ein sehr geringer Teil des Lichts durch Absorption verloren.

BEDEUTUNG DER BERÜHRUNGSLOSEN 3D-PROFILOMETRIE FÜR DIE PRÜFUNG VON FRESNELLINSEN

Fresnel-Linsen werden häufig in der Automobilindustrie, in Leuchttürmen, in der Solarenergie und in optischen Landesystemen für Flugzeugträger eingesetzt. Das Formen oder Stanzen der Linsen aus transparentem Kunststoff kann ihre Herstellung kostengünstiger machen. Die Servicequalität von Fresnel-Linsen hängt hauptsächlich von der Präzision und Oberflächenqualität ihres konzentrischen Rings ab. Im Gegensatz zu einer Touch-Probe-Technik bietet NANOVEA Optische Profiler Führen Sie 3D-Oberflächenmessungen durch, ohne die Oberfläche zu berühren, und vermeiden Sie so das Risiko neuer Kratzer. Die Chromatic Light-Technik eignet sich ideal zum präzisen Scannen komplexer Formen, beispielsweise von Linsen unterschiedlicher Geometrie.

SCHEMA EINER FRESNEL-LINSE

Transparente Fresnel-Linsen aus Kunststoff können durch Gießen oder Stanzen hergestellt werden. Eine genaue und effiziente Qualitätskontrolle ist von entscheidender Bedeutung, um fehlerhafte Produktionsformen oder -stempel zu erkennen. Durch Messung der Höhe und des Abstands der konzentrischen Ringe können Produktionsabweichungen festgestellt werden, indem die gemessenen Werte mit den vom Hersteller der Linse angegebenen Spezifikationswerten verglichen werden.

Durch die genaue Messung des Linsenprofils wird sichergestellt, dass die Formen oder Stempel entsprechend den Spezifikationen des Herstellers bearbeitet werden. Außerdem kann sich der Stempel im Laufe der Zeit abnutzen, so dass er seine ursprüngliche Form verliert. Eine ständige Abweichung von den Spezifikationen des Glasherstellers ist ein eindeutiges Indiz dafür, dass die Form ersetzt werden muss.

MESSZIEL

In dieser Anwendung präsentieren wir NANOVEA ST400, einen berührungslosen 3D-Profiler mit einem Hochgeschwindigkeitssensor, der eine umfassende 3D-Profilanalyse eines optischen Bauteils mit komplexer Form ermöglicht.Um die bemerkenswerten Fähigkeiten unserer Chromatic Light-Technologie zu demonstrieren, wird die Konturanalyse an einer Fresnellinse durchgeführt.

NANOVEA

ST400

Die für diese Studie verwendete 2,3" x 2,3" Acryl-Fresnel-Linse besteht aus 

eine Reihe von konzentrischen Ringen und ein komplexes, gezacktes Querschnittsprofil. 

Es hat eine Brennweite von 1,5" und einen effektiven Durchmesser von 2,0", 

125 Rillen pro Zoll und einem Brechungsindex von 1,49.

Der NANOVEA ST400-Scan der Fresnellinse zeigt eine deutliche Zunahme der Höhe der konzentrischen Ringe, die sich vom Zentrum nach außen bewegen.

2D FALSCH FARBE

Darstellung der Höhe

3D-ANSICHT

EXTRAHIERTES PROFIL

GIPFEL & TAL

Dimensionale Analyse des Profils

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, dass der berührungslose optische Profiler NANOVEA ST400 die Oberflächentopographie von Fresnel-Linsen genau misst. 

Mit der NANOVEA-Analysesoftware können die Abmessungen der Höhe und der Teilung anhand des komplexen gezackten Profils genau bestimmt werden. Benutzer können die Qualität der Produktionsformen oder Stempel effektiv prüfen, indem sie die Ringhöhe und -teilung der hergestellten Linsen mit der idealen Ringspezifikation vergleichen.

Die hier gezeigten Daten stellen nur einen Teil der in der Analysesoftware verfügbaren Berechnungen dar. 

NANOVEA Optical Profilers messen praktisch jede Oberfläche in Bereichen wie Halbleiter, Mikroelektronik, Solar, Faseroptik, Automobil, Luft- und Raumfahrt, Metallurgie, Bearbeitung, Beschichtungen, Pharmazeutik, Biomedizin, Umwelt und vielen anderen.

 

UND NUN ZU IHRER BEWERBUNG

Pharmazeutische Tabletten Oberflächenrauhigkeitsprüfung

Pharmazeutische Tabletten

Prüfung der Rauheit mit 3d-Profilometern

Autor:

Jocelyn Esparza

Einführung

Pharmazeutische Tabletten sind heute die am häufigsten verwendeten medizinischen Darreichungsformen. Jede Tablette besteht aus einer Kombination von Wirkstoffen (den chemischen Stoffen, die eine pharmakologische Wirkung haben) und inaktiven Stoffen (Sprengstoff, Bindemittel, Gleitmittel, Verdünnungsmittel - meist in Form von Pulver). Die aktiven und inaktiven Substanzen werden dann komprimiert oder zu einem Feststoff geformt. Anschließend werden die Tabletten je nach Herstellerangaben entweder überzogen oder nicht überzogen.

Um wirksam zu sein, müssen Tablettenüberzüge den feinen Konturen der eingeprägten Logos oder Schriftzeichen auf den Tabletten folgen, sie müssen stabil und robust genug sein, um die Handhabung der Tablette zu überstehen, und sie dürfen nicht dazu führen, dass die Tabletten während des Beschichtungsprozesses aneinander kleben. Derzeitige Tabletten haben in der Regel einen Überzug auf Polysaccharid- und Polymerbasis, der Stoffe wie Pigmente und Weichmacher enthält. Die beiden gängigsten Arten von Tablettenüberzügen sind Filmüberzüge und Zuckerüberzüge. Im Vergleich zu Zuckerüberzügen sind Filmüberzüge weniger sperrig, haltbarer und weniger zeitaufwändig in der Herstellung und Anwendung. Allerdings ist es für Filmüberzüge schwieriger, das Aussehen der Tabletten zu verbergen.

Tablettenüberzüge sind wichtig für den Schutz vor Feuchtigkeit, die Maskierung des Geschmacks der Inhaltsstoffe und die Erleichterung des Schluckens der Tabletten. Noch wichtiger ist, dass der Tablettenüberzug den Ort und die Geschwindigkeit der Freisetzung des Arzneimittels steuert.

MESSZIEL

In dieser Anwendung verwenden wir die NANOVEA Optischer Profiler und fortschrittlicher Mountains-Software zur Messung und Quantifizierung der Topografie verschiedener gepresster Markenpillen (1 beschichtete und 2 unbeschichtete), um deren Oberflächenrauheit zu vergleichen.

Es wird davon ausgegangen, dass Advil (beschichtet) aufgrund der Schutzschicht die geringste Oberflächenrauhigkeit aufweist.

NANOVEA

HS2000

Testbedingungen

Drei Chargen gepresster pharmazeutischer Markentabletten wurden mit dem Nanovea HS2000 gescannt.
mit Hochgeschwindigkeits-Zeilensensor zur Messung verschiedener Oberflächenrauheitsparameter nach ISO 25178.

Scanbereich

2 x 2 mm

Auflösung des seitlichen Scans

5 x 5 μm

Scan-Zeit

4 Sekunden

Proben

Ergebnisse und Diskussion

Nach dem Scannen der Tabletten wurde eine Untersuchung der Oberflächenrauheit mit der fortschrittlichen Mountains-Analysesoftware durchgeführt, um den Oberflächendurchschnitt, den quadratischen Mittelwert und die maximale Höhe jeder Tablette zu berechnen.

Die berechneten Werte stützen die Annahme, dass Advil aufgrund des Schutzüberzugs, der die Inhaltsstoffe umschließt, eine geringere Oberflächenrauheit aufweist. Tylenol weist von allen drei gemessenen Tabletten die höchste Oberflächenrauhigkeit auf.

Es wurde eine 2D- und 3D-Höhenkarte der Oberflächentopografie jeder Tablette erstellt, die die gemessenen Höhenverteilungen zeigt. Von den fünf Tabletten wurde eine ausgewählt, um die Höhenkarten für jede Marke darzustellen. Diese Höhenkarten sind ein hervorragendes Werkzeug für die visuelle Erkennung von abstehenden Oberflächenmerkmalen wie Vertiefungen oder Erhebungen.

Schlussfolgerung

In dieser Studie haben wir die Oberflächenrauheit von drei gepressten pharmazeutischen Markentabletten analysiert und verglichen: Advil, Tylenol und Excedrin. Advil wies die geringste durchschnittliche Oberflächenrauheit auf. Dies ist auf die orangefarbene Beschichtung zurückzuführen, die das Medikament umgibt. Bei Excedrin und Tylenol hingegen fehlt die Beschichtung, dennoch unterscheiden sich die Oberflächenrauhigkeiten voneinander. Tylenol wies von allen untersuchten Tabletten die höchste durchschnittliche Oberflächenrauigkeit auf.

Die Verwendung des NANOVEA HS2000 mit Hochgeschwindigkeits-Zeilensensor konnten wir 5 Tabletten in weniger als 1 Minute messen. Dies kann sich bei der Qualitätskontrolle von Hunderten von Tabletten in der heutigen Produktion als nützlich erweisen.

UND NUN ZU IHRER BEWERBUNG

Inline-Rauhigkeitsprüfung

Sofortige Fehlererkennung mit In-Line-Profilern

Mehr erfahren

BEDEUTUNG DES BERÜHRUNGSLOSEN PROFILERS FÜR DIE INLINE-RAUHEITSPRÜFUNG

Oberflächenfehler entstehen durch Materialverarbeitung und Produktherstellung. Die Inline-Oberflächenqualitätsprüfung gewährleistet eine strengste Qualitätskontrolle der Endprodukte. Der Nanovea Berührungslose 3D-Profilometer nutzen die chromatische Konfokaltechnologie mit der einzigartigen Fähigkeit, die Rauheit einer Probe berührungslos zu bestimmen. Es können mehrere Profilsensoren installiert werden, um die Rauheit und Textur verschiedener Bereiche des Produkts gleichzeitig zu überwachen. Der von der Analysesoftware in Echtzeit berechnete Rauheitsschwellenwert dient als schnelles und zuverlässiges Pass/Fail-Tool.

MESSZIEL

In dieser Studie wird das mit einem Punktsensor ausgestattete Nanovea-Förderbandsystem für die Rauheitsprüfung von Acryl- und Sandpapierproben eingesetzt. Wir zeigen die Fähigkeit des berührungslosen Nanovea-Profilometers, eine schnelle und zuverlässige Inline-Rauheitsinspektion in einer Produktionslinie in Echtzeit durchzuführen.

ERGEBNISSE UND DISKUSSION

Das Bandprofilometersystem kann in zwei Betriebsarten arbeiten, nämlich im Auslösemodus und im Dauermodus. Wie in Abbildung 2 dargestellt, wird im Auslösemodus die Oberflächenrauheit der Proben gemessen, wenn sie unter den optischen Profilmessköpfen hindurchlaufen. Im Vergleich dazu ermöglicht der Dauermodus die kontinuierliche Messung der Oberflächenrauheit auf einer kontinuierlichen Probe, wie z. B. Metallblech und Gewebe. Es können mehrere optische Profiler-Sensoren installiert werden, um die Rauheit verschiedener Probenbereiche zu überwachen und aufzuzeichnen.

 

Während der Echtzeit-Rauheitsmessung werden in den Softwarefenstern die Warnungen "bestanden" und "nicht bestanden" angezeigt, wie in Abbildung 4 und Abbildung 5 dargestellt. Wenn der Rauheitswert innerhalb der vorgegebenen Schwellenwerte liegt, wird der gemessene Rauheitswert grün hervorgehoben. Die Markierung wird jedoch rot, wenn die gemessene Oberflächenrauheit außerhalb des Bereichs der festgelegten Schwellenwerte liegt. Damit steht dem Benutzer ein Werkzeug zur Verfügung, mit dem er die Qualität der Oberflächenbeschaffenheit eines Produkts bestimmen kann.

In den folgenden Abschnitten werden zwei Arten von Proben, z. B. Acryl und Sandpapier, verwendet, um den Auslösemodus und den kontinuierlichen Modus des Inspektionssystems zu demonstrieren.

Auslösemodus: Oberflächeninspektion der Acrylprobe

Eine Reihe von Acrylproben werden auf dem Förderband ausgerichtet und unter dem optischen Profilierkopf hindurchbewegt, wie in Abbildung 1 dargestellt. Die Falschfarbenansicht in Abbildung 6 zeigt die Veränderung der Oberflächenhöhe. Einige der spiegelglatten Acrylproben wurden geschliffen, um eine raue Oberflächenstruktur zu erzeugen (siehe Abbildung 6b).

Während sich die Acrylproben mit konstanter Geschwindigkeit unter dem optischen Profilierkopf bewegen, wird das Oberflächenprofil gemessen, wie in Abbildung 7 und Abbildung 8 dargestellt. Der Rauheitswert des gemessenen Profils wird gleichzeitig berechnet und mit den Schwellenwerten verglichen. Wenn der Rauheitswert über dem eingestellten Schwellenwert liegt, wird ein roter Fehleralarm ausgelöst, so dass der Benutzer das fehlerhafte Produkt in der Produktionslinie sofort erkennen und lokalisieren kann.

Kontinuierlicher Modus: Oberflächeninspektion der Schleifpapierprobe

Oberflächenhöhenkarte, Rauheitsverteilungskarte und Pass/Fail-Rauheitsschwellenkarte der Oberfläche der Sandpapierprobe, wie in Abbildung 9 dargestellt. Die Sandpapierprobe hat einige höhere Spitzen in dem verwendeten Teil, wie in der Oberflächenhöhenkarte dargestellt. Die verschiedenen Farben in der Palette von Abbildung 9C stellen den Rauheitswert der lokalen Oberfläche dar. Die Rauheitskarte zeigt eine homogene Rauheit im intakten Bereich der Sandpapierprobe, während der benutzte Bereich in dunkelblauer Farbe hervorgehoben ist, was auf den geringeren Rauheitswert in diesem Bereich hinweist. Ein Schwellenwert für die Pass/Fail-Rauheit kann eingerichtet werden, um solche Regionen zu lokalisieren, wie in Abbildung 9D gezeigt.

Während das Schleifpapier kontinuierlich unter dem Inline-Profiler-Sensor hindurchläuft, wird der lokale Rauheitswert in Echtzeit berechnet und aufgezeichnet, wie in Abbildung 10 dargestellt. Die Pass/Fail-Warnungen werden auf dem Softwarebildschirm auf der Grundlage der eingestellten Rauheitsschwellenwerte angezeigt und dienen als schnelles und zuverlässiges Werkzeug für die Qualitätskontrolle. Die Qualität der Produktoberfläche in der Produktionslinie wird vor Ort geprüft, um fehlerhafte Bereiche rechtzeitig zu entdecken.

SCHLUSSFOLGERUNG

In dieser Anwendung haben wir gezeigt, dass das Nanovea Conveyor Profilometer, ausgestattet mit einem optischen, berührungslosen Profilsensor, als zuverlässiges Inline-Qualitätskontrollinstrument effektiv und effizient arbeitet.

Das Inspektionssystem kann in der Produktionslinie installiert werden, um die Oberflächenqualität der Produkte an Ort und Stelle zu überwachen. Der Rauheitsschwellenwert dient als zuverlässiges Kriterium zur Bestimmung der Oberflächenqualität der Produkte und ermöglicht es dem Benutzer, fehlerhafte Produkte rechtzeitig zu erkennen. Zwei Inspektionsmodi, nämlich der Auslösemodus und der Dauermodus, werden angeboten, um die Anforderungen an die Inspektion verschiedener Produkttypen zu erfüllen.

Die hier gezeigten Daten stellen nur einen Teil der in der Analysesoftware verfügbaren Berechnungen dar. Nanovea Profilometer messen praktisch jede Oberfläche in Bereichen wie Halbleiter, Mikroelektronik, Solar, Glasfaser, Optik, Automobil, Luft- und Raumfahrt, Metallurgie, Bearbeitung, Beschichtungen, Pharmazeutik, Biomedizin, Umwelt und vielen anderen.

UND NUN ZU IHRER BEWERBUNG

Block-On-Ring-Verschleißtest

BEDEUTUNG DER BEWERTUNG DES BLOCK-AUF-RING-VERSCHLEISSES

Gleitverschleiß ist der fortschreitende Materialverlust, der dadurch entsteht, dass zwei Werkstoffe unter Belastung an der Kontaktfläche gegeneinander gleiten. Er tritt unweigerlich in einer Vielzahl von Branchen auf, in denen Maschinen und Motoren in Betrieb sind, darunter die Automobilindustrie, die Luft- und Raumfahrt, die Öl- und Gasindustrie und viele andere. Eine solche Gleitbewegung führt zu ernsthaftem mechanischem Verschleiß und Materialtransfer an der Oberfläche, was zu einer verringerten Produktionseffizienz, Maschinenleistung oder sogar zu Schäden an der Maschine führen kann.
 

 

Beim Gleitverschleiß treten häufig komplexe Verschleißmechanismen an der Kontaktfläche auf, wie z. B. Adhäsionsverschleiß, Zweikörperabrieb, Dreikörperabrieb und Ermüdungsverschleiß. Das Verschleißverhalten von Werkstoffen wird maßgeblich von der Arbeitsumgebung wie Normalbelastung, Geschwindigkeit, Korrosion und Schmierung beeinflusst. Ein vielseitiges Tribometer die verschiedene realistische Arbeitsbedingungen simulieren können, sind ideal für die Verschleißbewertung.
Der Block-on-Ring-Test (ASTM G77) ist eine weit verbreitete Technik, die das Gleitverschleißverhalten von Materialien unter verschiedenen simulierten Bedingungen bewertet und eine zuverlässige Einstufung von Materialpaaren für bestimmte tribologische Anwendungen ermöglicht.
 
 

 

MESSZIEL

In dieser Anwendung misst der Nanovea Mechanical Tester die YS- und UTS-Werte von Proben aus rostfreiem Stahl SS304 und Aluminiumlegierung Al6061. Die Proben wurden aufgrund ihrer allgemein anerkannten YS- und UTS-Werte ausgewählt, die die Zuverlässigkeit der Eindringmethoden von Nanovea belegen.

 

Das Gleitverschleißverhalten eines H-30-Blocks auf einem S-10-Ring wurde mit dem Tribometer von Nanovea unter Verwendung des Block-on-Ring-Moduls bewertet. Der H-30-Block besteht aus 01-Werkzeugstahl mit einer Härte von 30 HRC, während der S-10-Ring aus Stahl des Typs 4620 mit einer Oberflächenhärte von 58 bis 63 HRC und einem Ringdurchmesser von ~34,98 mm besteht. Um die Auswirkung auf das Verschleißverhalten zu untersuchen, wurden Block-on-Ring-Tests in trockenen und geschmierten Umgebungen durchgeführt. Schmierungstests wurden in USP-Schwermineralöl durchgeführt. Die Verschleißspur wurde mit Nanovea untersucht Berührungsloses 3D-Profilometer. Die Testparameter sind in Tabelle 1 zusammengefasst. Die Verschleißrate (K) wurde anhand der Formel K=V/(F×s) bewertet, wobei V das abgenutzte Volumen, F die normale Belastung und s die Gleitstrecke ist.

 

 

ERGEBNISSE UND DISKUSSION

Abbildung 2 vergleicht den Reibungskoeffizienten (COF) der Block-auf-Ring-Tests in trockenen und geschmierten Umgebungen. Der Block hat in einer trockenen Umgebung deutlich mehr Reibung als in einer geschmierten Umgebung. COF
schwankt während der Einlaufphase in den ersten 50 Umdrehungen und erreicht für den Rest des 200-Umdrehungen-Verschleißtests einen konstanten COF von ~0,8. Im Vergleich dazu zeigt der Block-on-Ring-Test, der mit der USP-Schwermineralölschmierung durchgeführt wurde, einen konstant niedrigen COF von 0,09 während des gesamten Verschleißtests mit 500.000 Umdrehungen. Das Schmiermittel reduziert den COF zwischen den Oberflächen deutlich um das ~90-fache.

 

Die Abbildungen 3 und 4 zeigen die optischen Bilder und 2D-Querschnittsprofile der Verschleißnarben auf den Blöcken nach trockenen und geschmierten Verschleißtests. Das Volumen der Verschleißspuren und die Verschleißraten sind in Tabelle 2 aufgeführt. Der Stahlblock nach dem Trockenverschleißtest bei einer niedrigeren Drehzahl von 72 U/min für 200 Umdrehungen weist ein großes Verschleißspurenvolumen von 9,45 mm˙ auf. Im Vergleich dazu erzeugt der Verschleißtest, der bei einer höheren Drehzahl von 197 U/min für 500.000 Umdrehungen im Mineralölschmierstoff durchgeführt wird, ein wesentlich kleineres Verschleißspurvolumen von 0,03 mm˙.

 


Die Bilder in Abbildung 3 zeigen, dass bei den Tests unter trockenen Bedingungen ein starker Verschleiß auftritt, verglichen mit dem geringen Verschleiß bei den Tests mit geschmiertem Verschleiß. Die hohe Hitze und die starken Vibrationen, die während des Trockenverschleißtests erzeugt werden, fördern die Oxidation der metallischen Ablagerungen, was zu einem starken Dreikörperabrieb führt. Bei der geschmierten Prüfung reduziert das Mineralöl die Reibung und kühlt die Kontaktfläche, während es gleichzeitig die beim Verschleiß entstehenden Abriebpartikel abtransportiert. Dies führt zu einer erheblichen Reduzierung der Verschleißrate um einen Faktor von ~8×10ˆ. Ein solch erheblicher Unterschied in der Verschleißfestigkeit in unterschiedlichen Umgebungen zeigt, wie wichtig eine korrekte Simulation des Gleitverschleißes unter realistischen Betriebsbedingungen ist.

 


Das Verschleißverhalten kann sich drastisch ändern, wenn kleine Änderungen der Testbedingungen eingeführt werden. Die Vielseitigkeit des Tribometers von Nanovea ermöglicht Verschleißmessungen bei hohen Temperaturen, bei Schmierung und unter Tribokorrosionsbedingungen. Dank der präzisen Geschwindigkeits- und Positionssteuerung durch den fortschrittlichen Motor können Verschleißtests bei Geschwindigkeiten von 0,001 bis 5000 U/min durchgeführt werden, was es zu einem idealen Werkzeug für Forschungs-/Testlabors macht, um den Verschleiß unter verschiedenen tribologischen Bedingungen zu untersuchen.

 

Der Oberflächenzustand der Proben wurde mit dem berührungslosen optischen Proÿlometer von Nanovea untersucht. Abbildung 5 zeigt die Oberflächenmorphologie der Ringe nach den Verschleißtests. Die Zylinderform ist entfernt, um die Oberflächenmorphologie und -rauheit, die durch den Gleitverschleißprozess entstanden ist, besser darstellen zu können. Während des Trockenverschleißtests mit 200 Umdrehungen kam es zu einer deutlichen Aufrauung der Oberfläche durch den Dreikörperabrieb. Der Block und der Ring weisen nach dem Trockenverschleißtest eine Rauheit Ra von 14,1 bzw. 18,1 µm auf, verglichen mit 5,7 und 9,1 µm beim Langzeitverschleißtest mit Schmierung und 500.000 Umdrehungen bei einer höheren Drehzahl. Dieser Test zeigt, wie wichtig die richtige Schmierung des Kolbenring-Zylinder-Kontakts ist. Starker Verschleiß beschädigt ohne Schmierung schnell die Kontaktfläche und führt zu einer irreversiblen Verschlechterung der Betriebsqualität und sogar zum Ausfall des Motors.

 

 

SCHLUSSFOLGERUNG

In dieser Studie zeigen wir, wie das Tribometer von Nanovea zur Bewertung des Gleitverschleißverhaltens eines Stahl-Metall-Paares mithilfe des Block-on-Ring-Moduls nach dem ASTM G77-Standard verwendet wird. Der Schmierstoff spielt eine entscheidende Rolle für die Verschleißeigenschaften des Werkstoffpaares. Das Mineralöl reduziert die Verschleißrate des H-30-Blocks um den Faktor ~8×10ˆ und den COF um das ~90-fache. Die Vielseitigkeit des Tribometers von Nanovea macht es zu einem idealen Werkzeug zur Messung des Verschleißverhaltens unter verschiedenen Schmier-, Hochtemperatur- und Tribokorrosionsbedingungen.

Das Tribometer von Nanovea bietet präzise und wiederholbare Verschleiß- und Reibungstests im ISO- und ASTM-konformen Rotations- und Linearmodus, mit optionalen Modulen für Hochtemperaturverschleiß, Schmierung und Tribokorrosion, die in einem vorintegrierten System verfügbar sind. Das unübertroffene Sortiment von Nanovea ist eine ideale Lösung zur Bestimmung des gesamten Spektrums tribologischer Eigenschaften dünner oder dicker, weicher oder harter Beschichtungen, Filme und Substrate.

UND NUN ZU IHRER BEWERBUNG

Analyse von Verbundwerkstoffen mit 3D-Profilometrie

Die Bedeutung der berührungslosen Profilometrie für Verbundwerkstoffe

Es ist von entscheidender Bedeutung, dass Defekte minimiert werden, damit die Verbundwerkstoffe bei Verstärkungsanwendungen so stark wie möglich sind. Da es sich um ein anisotropes Material handelt, ist es von entscheidender Bedeutung, dass die Geweberichtung konsistent ist, um eine hohe Leistungsvorhersage zu gewährleisten. Verbundwerkstoffe haben eines der höchsten Festigkeits-Gewichts-Verhältnisse und sind daher in einigen Fällen stärker als Stahl. Es ist wichtig, die exponierte Oberfläche von Verbundwerkstoffen zu begrenzen, um die chemische Anfälligkeit und die Auswirkungen der Wärmeausdehnung zu minimieren. Die profilometrische Oberflächenprüfung ist für die Qualitätskontrolle bei der Herstellung von Verbundwerkstoffen von entscheidender Bedeutung, um eine hohe Leistungsfähigkeit über eine lange Nutzungsdauer zu gewährleisten.

Nanoveas Berührungsloses 3D-Profilometer unterscheidet sich von anderen Oberflächenmesstechniken wie Tastsonden oder Interferometrie. Unsere Profilometer verwenden axialen Chromatismus, um nahezu jede Oberfläche zu messen, und die offene Lagerung ermöglicht Proben jeder Größe, ohne dass eine Vorbereitung erforderlich ist. Nano- bis Makromessungen werden während der Oberflächenprofilmessung ohne Einfluss des Probenreflexionsvermögens oder der Probenabsorption erzielt. Unsere Profilometer messen problemlos jedes Material: transparent, undurchsichtig, spiegelnd, diffusiv, poliert und rau, mit der erweiterten Fähigkeit, große Oberflächenwinkel ohne Softwaremanipulation zu messen. Die berührungslose Profilometertechnik bietet die ideale und benutzerfreundliche Möglichkeit, die Oberflächenuntersuchungen von Verbundwerkstoffen zu maximieren. zusammen mit den Vorteilen der kombinierten 2D- und 3D-Fähigkeit.

Messung Zielsetzung

Das Nanovea HS2000L Profilometer, das in dieser Anwendung verwendet wird, misst die Oberfläche von zwei Geweben aus Kohlefaserverbundwerkstoffen. Oberflächenrauhigkeit, Gewebelänge, Isotropie, Fraktalanalyse und andere Oberflächenparameter werden zur Charakterisierung der Verbundwerkstoffe verwendet. Der gemessene Bereich wurde nach dem Zufallsprinzip ausgewählt und als groß genug angenommen, damit die Eigenschaftswerte mit der leistungsstarken Oberflächenanalyse-Software von Nanovea verglichen werden können.

Ergebnisse und Diskussion

Oberflächenanalyse

 
 
 
Die Höhenparameter bestimmen, wie rau Verbundwerkstoffteile mit einem geringen Faser-Matrix-Verhältnis sein werden. Unsere Ergebnisse vergleichen verschiedene Gewebetypen und Gewebe zur Bestimmung der Oberflächengüte nach der Verarbeitung. Die Oberflächenbeschaffenheit wird bei Anwendungen kritisch, bei denen die Aerodynamik eine Rolle spielen kann.
 
Isotropie

Isotropie zeigt die Richtungsabhängigkeit des Gewebes, um die erwarteten Eigenschaftswerte zu bestimmen. Unsere Studie zeigt, dass der bidirektionale Verbundwerkstoff wie erwartet ~60% isotrop ist. In der Zwischenzeit ist der unidirektionale Verbundwerkstoff ~13% isotrop, was auf die starke Einzelfaserrichtung der Faser zurückzuführen ist.

Webart-Analyse
 

Die Größe des Gewebes bestimmt die Konsistenz der Packung und die Breite der im Verbundstoff verwendeten Fasern. Unsere Studie zeigt, wie einfach es ist, die Gewebegröße bis auf den Mikrometer genau zu messen, um die Qualität der Teile sicherzustellen.

Textur-Analyse

Die Texturanalyse der dominanten Wellenlänge deutet darauf hin, dass die Strähnengröße bei beiden Verbundwerkstoffen 4,27 Mikrometer dick ist. Die Analyse der fraktalen Dimension der Faseroberfläche bestimmt die Glätte, um herauszufinden, wie leicht sich die Fasern in einer Matrix verfestigen. Die fraktale Dimension der unidirektionalen Faser ist höher als die der bidirektionalen Faser, was sich auf die Verarbeitung der Verbundwerkstoffe auswirken kann.

Schlussfolgerung

In dieser Anwendung haben wir gezeigt, dass das berührungslose Profilometer Nanovea HS2000L die faserige Oberfläche von Verbundwerkstoffen präzise charakterisiert. Wir haben Unterschiede zwischen den Gewebetypen von Kohlenstofffasern mit Höhenparametern, Isotropie, Texturanalyse und Abstandsmessungen und vieles mehr unterschieden.

Unsere Profilometer-Oberflächenmessungen mildern präzise und schnell Schäden an Verbundwerkstoffen, wodurch Defekte in Teilen verringert und die Leistungsfähigkeit von Verbundwerkstoffen maximiert werden. Die Geschwindigkeit der 3D-Profilometer von Nanovea reicht von <1mm/s bis 500mm/s und eignet sich für Forschungsanwendungen ebenso wie für die Anforderungen der Hochgeschwindigkeitsinspektion. Das Nanovea-Profilometer ist die Lösung
für jeden Bedarf an zusammengesetzten Messungen.

UND NUN ZU IHRER BEWERBUNG

Bewertung der Abnutzung und des Kratzens von oberflächenbehandeltem Kupferdraht

Bedeutung der Bewertung von Verschleiß und Kratzern bei Kupferdraht

Kupfer wird seit der Erfindung des Elektromagneten und des Telegrafen seit langem für die elektrische Verdrahtung verwendet. Kupferdrähte werden dank ihrer Korrosionsbeständigkeit, ihrer Lötbarkeit und ihrer Leistungsfähigkeit bei hohen Temperaturen von bis zu 150 °C in einer Vielzahl elektronischer Geräte wie Schalttafeln, Messgeräten, Computern, Geschäftsmaschinen und Haushaltsgeräten eingesetzt. Ungefähr die Hälfte des gesamten geförderten Kupfers wird für die Herstellung von elektrischen Drähten und Kabeln verwendet.

Die Oberflächenqualität von Kupferdrähten ist entscheidend für die Leistungsfähigkeit und Lebensdauer der Anwendung. Mikrodefekte in Drähten können zu übermäßigem Verschleiß, Rissentstehung und -ausbreitung, verminderter Leitfähigkeit und unzureichender Lötbarkeit führen. Eine ordnungsgemäße Oberflächenbehandlung von Kupferdrähten beseitigt die beim Drahtziehen entstandenen Oberflächenfehler und verbessert die Korrosions-, Kratz- und Verschleißfestigkeit. Viele Anwendungen in der Luft- und Raumfahrt mit Kupferdrähten erfordern ein kontrolliertes Verhalten, um unerwartete Ausfälle zu vermeiden. Um die Verschleiß- und Kratzfestigkeit der Kupferdrahtoberfläche richtig zu bewerten, sind quantifizierbare und zuverlässige Messungen erforderlich.

 
 

 

Messung Zielsetzung

In dieser Anwendung simulieren wir einen kontrollierten Verschleißprozess verschiedener Kupferdrahtoberflächenbehandlungen. Kratztests misst die Last, die erforderlich ist, um einen Ausfall der behandelten Oberflächenschicht zu verursachen. Diese Studie stellt den Nanovea vor Tribometer und Mechanischer Tester als ideale Werkzeuge zur Bewertung und Qualitätskontrolle elektrischer Leitungen.

 

 

Testverfahren und -abläufe

Der Reibungskoeffizient (COF) und die Verschleißfestigkeit von zwei verschiedenen Oberflächenbehandlungen auf Kupferdrähten (Draht A und Draht B) wurden mit dem Nanovea-Tribometer unter Verwendung eines linear hin- und hergehenden Verschleißmoduls bewertet. Als Gegenmaterial kommt bei dieser Anwendung eine Al₂O₃-Kugel (6 mm Durchmesser) zum Einsatz. Die Verschleißspur wurde mit Nanovea untersucht Berührungsloses 3D-Profilometer. Die Testparameter sind in Tabelle 1 zusammengefasst.

Eine glatte Al₂O₃-Kugel als Gegenmaterial wurde in dieser Studie als Beispiel verwendet. Jedes feste Material mit unterschiedlicher Form und Oberflächenbeschaffenheit kann mit einer kundenspezifischen Vorrichtung aufgebracht werden, um die tatsächliche Anwendungssituation zu simulieren.

 

 

Mit dem mechanischen Prüfgerät von Nanovea, das mit einer Rockwell-C-Diamantnadel (Radius 100 μm) ausgestattet ist, wurden Kratztests mit progressiver Belastung an den beschichteten Drähten im Mikrokratzmodus durchgeführt. Die Parameter des Kratztests und die Geometrie der Spitze sind in Tabelle 2 aufgeführt.
 

 

 

 

Ergebnisse und Diskussion

Abnutzung von Kupferdraht:

Abbildung 2 zeigt die COF-Entwicklung der Kupferdrähte während der Verschleißtests. Draht A zeigt während des gesamten Verschleißtests einen stabilen COF von ~0,4, während Draht B in den ersten 100 Umdrehungen einen COF von ~0,35 aufweist, der dann schrittweise auf ~0,4 ansteigt.

 

Abbildung 3 vergleicht die Verschleißspuren der Kupferdrähte nach den Tests. Das berührungslose 3D-Profilometer von Nanovea bietet eine hervorragende Analyse der detaillierten Morphologie der Verschleißspuren. Es ermöglicht eine direkte und genaue Bestimmung des Volumens der Verschleißspuren, indem es ein grundlegendes Verständnis für den Verschleißmechanismus liefert. Die Oberfläche von Draht B weist nach einem Verschleißtest mit 600 Umdrehungen erhebliche Verschleißspurenschäden auf. Die 3D-Ansicht des Profilometers zeigt, dass die oberflächenbehandelte Schicht von Draht B vollständig entfernt wurde, was den Verschleißprozess erheblich beschleunigte. Dies hinterließ eine abgeflachte Verschleißspur auf Draht B, wo das Kupfersubstrat freiliegt. Dies kann zu einer erheblich verkürzten Lebensdauer von elektrischen Geräten führen, in denen Draht B verwendet wird. Im Vergleich dazu weist Draht A einen relativ geringen Verschleiß auf, der sich in einer flachen Verschleißspur auf der Oberfläche zeigt. Die oberflächenbehandelte Schicht auf Draht A ließ sich nicht wie die Schicht auf Draht B unter denselben Bedingungen abtragen.

Kratzfestigkeit der Kupferdrahtoberfläche:

Abbildung 4 zeigt die Kratzspuren auf den Drähten nach der Prüfung. Die Schutzschicht von Draht A weist eine sehr gute Kratzfestigkeit auf. Sie delaminiert bei einer Belastung von ~12,6 N. Im Vergleich dazu versagt die Schutzschicht von Draht B bei einer Belastung von ~1,0 N. Ein solch signifikanter Unterschied in der Kratzfestigkeit dieser Drähte trägt zu ihrer Verschleißleistung bei, wobei Draht A eine wesentlich höhere Verschleißfestigkeit aufweist. Die Entwicklung der Normalkraft, des COF und der Tiefe während der Kratztests, die in Abb. 5 dargestellt sind, geben weitere Einblicke in das Versagen der Beschichtung während der Tests.

Schlussfolgerung

In dieser kontrollierten Studie stellten wir das Tribometer von Nanovea vor, das eine quantitative Bewertung der Verschleißfestigkeit von oberflächenbehandelten Kupferdrähten durchführt, und den mechanischen Tester von Nanovea, der eine zuverlässige Beurteilung der Kratzfestigkeit von Kupferdrähten ermöglicht. Die Oberflächenbehandlung von Drähten spielt eine entscheidende Rolle für die tribomechanischen Eigenschaften während ihrer Lebensdauer. Durch die richtige Oberflächenbehandlung von Drähten wird die Verschleiß- und Kratzfestigkeit erheblich verbessert, was für die Leistung und Lebensdauer elektrischer Drähte in rauen Umgebungen von entscheidender Bedeutung ist.

Das Tribometer von Nanovea bietet präzise und wiederholbare Verschleiß- und Reibungstests im ISO- und ASTM-konformen Rotations- und Linearmodus, mit optionalen Modulen für Hochtemperaturverschleiß, Schmierung und Tribokorrosion, die in einem vorintegrierten System verfügbar sind. Das unübertroffene Sortiment von Nanovea ist eine ideale Lösung zur Bestimmung des gesamten Spektrums tribologischer Eigenschaften dünner oder dicker, weicher oder harter Beschichtungen, Filme und Substrate.

UND NUN ZU IHRER BEWERBUNG

Analyse der Textur von Orangenschalen mit 3D-Profilometrie

Analyse der Textur von Orangenschalen mit 3D-Profilometrie

Einführung

Die Größe und Häufigkeit von Oberflächenstrukturen auf Substraten wirken sich auf die Qualität von Glanzlacken aus. Die Orangenschalentextur, die nach ihrem Aussehen benannt ist, kann sich durch den Einfluss des Substrats und der Lackauftragungstechnik entwickeln. Texturprobleme werden in der Regel anhand der Welligkeit, der Wellenlänge und der visuellen Wirkung, die sie auf Glanzlacke haben, quantifiziert. Kleinste Texturen führen zu einer Glanzminderung, während größere Texturen zu sichtbaren Wellen auf der beschichteten Oberfläche führen. Für die Qualitätskontrolle ist es wichtig, die Entwicklung dieser Texturen und ihre Beziehung zu Substraten und Techniken zu verstehen.

Die Bedeutung der Profilometrie für die Texturmessung

Im Gegensatz zu herkömmlichen 2D-Instrumenten zur Messung der Glanztextur liefert die berührungslose 3D-Messung schnell ein 3D-Bild, das zum Verständnis von Oberflächeneigenschaften verwendet wird, mit der zusätzlichen Möglichkeit, interessierende Bereiche schnell zu untersuchen. Ohne Geschwindigkeit und 3D-Überprüfung würde sich eine Qualitätskontrollumgebung ausschließlich auf 2D-Informationen verlassen, die kaum eine Vorhersagbarkeit der gesamten Oberfläche ermöglichen. Das Verständnis von Texturen in 3D ermöglicht die beste Auswahl von Verarbeitungs- und Kontrollmaßnahmen. Die Gewährleistung der Qualitätskontrolle solcher Parameter hängt in hohem Maße von quantifizierbaren, reproduzierbaren und zuverlässigen Inspektionen ab. Nanovea 3D berührungslos Profilometer nutzen die chromatische Konfokaltechnologie, um die einzigartige Fähigkeit zu haben, die steilen Winkel zu messen, die bei schnellen Messungen auftreten. Nanovea-Profilometer sind dort erfolgreich, wo andere Techniken aufgrund von Sondenkontakt, Oberflächenvariation, Winkel oder Reflexionsvermögen keine zuverlässigen Daten liefern können.

Messung Zielsetzung

In dieser Anwendung misst der Nanovea HS2000L die Orangenschalentextur eines Glanzlacks. Aus dem 3D-Oberflächenscan werden automatisch unzählige Oberflächenparameter berechnet. Hier analysieren wir eine gescannte 3D-Oberfläche, indem wir die Merkmale der Orangenschalentextur quantifizieren.

Ergebnisse und Diskussion

Mit dem Nanovea HS2000L wurden die Isotropie- und Höhenparameter der Orangenschalenfarbe quantifiziert. Die Orangenschalentextur quantifizierte die Richtung des Zufallsmusters mit 94,4% Isotropie. Die Höhenparameter quantifizieren die Textur mit einer Höhendifferenz von 24,84µm.

Die Kurve des Lagerungsverhältnisses in Abbildung 4 ist eine grafische Darstellung der Tiefenverteilung. Dabei handelt es sich um eine interaktive Funktion innerhalb der Software, die es dem Benutzer ermöglicht, Verteilungen und Prozentsätze in verschiedenen Tiefen anzuzeigen. Ein extrahiertes Profil in Abbildung 5 liefert nützliche Rauheitswerte für die Orangenschalentextur. Die Extraktion von Spitzenwerten oberhalb eines Schwellenwerts von 144 Mikrometern zeigt die Orangenschalentextur an. Diese Parameter können leicht an andere Bereiche oder Parameter von Interesse angepasst werden.

Schlussfolgerung

In dieser Anwendung charakterisiert das berührungslose 3D-Profilometer Nanovea HS2000L sowohl die Topografie als auch die Nanometer-Details der Orangenhauttextur auf einer glänzenden Beschichtung präzise. Interessante Bereiche aus 3D-Oberflächenmessungen werden schnell identifiziert und mit vielen nützlichen Messungen analysiert (Dimension, Rauheit, Oberflächenstruktur, Formtopographie, Ebenheit, Verzug, Planarität, Volumenbereich, Stufenhöhe usw.). Schnell ausgewählte 2D-Querschnitte bieten einen vollständigen Satz von Oberflächenmessressourcen zur Glanztextur. Spezielle Bereiche von Interesse können mit einem integrierten AFM-Modul weiter analysiert werden. Die Geschwindigkeit des Nanovea 3D Profilometers reicht von <1 mm/s bis 500 mm/s und eignet sich damit für Forschungsanwendungen ebenso wie für Hochgeschwindigkeitsinspektionen. Die Nanovea 3D-Profilometer verfügen über eine breite Palette von Konfigurationen, die für Ihre Anwendung geeignet sind.

UND NUN ZU IHRER BEWERBUNG

3D-Oberflächenanalyse eines Pennys mit berührungsloser Profilometrie

Bedeutung der berührungslosen Profilometrie für Münzen

Währungen haben in der modernen Gesellschaft einen hohen Stellenwert, da sie gegen Waren und Dienstleistungen eingetauscht werden. Münzen und Scheine zirkulieren in den Händen vieler Menschen. Der ständige Transfer physischer Währung führt zu einer Oberflächenverformung. Nanoveas 3D Profilometer scannt die Topographie von Münzen, die in verschiedenen Jahren geprägt wurden, um Oberflächenunterschiede zu untersuchen.

Münzmerkmale sind für die breite Öffentlichkeit leicht erkennbar, da es sich um alltägliche Gegenstände handelt. Ein Cent ist ideal, um die Stärken der Advanced Surface Analysis Software von Nanovea vorzustellen: Mountains 3D. Mit unserem 3D-Profilometer erfasste Oberflächendaten ermöglichen umfassende Analysen komplexer Geometrien mit Oberflächensubtraktion und 2D-Konturextraktion. Die Oberflächensubtraktion mit einer kontrollierten Maske, einem Stempel oder einer Form vergleicht die Qualität von Fertigungsprozessen, während die Konturextraktion Toleranzen mithilfe einer Dimensionsanalyse identifiziert. Die 3D-Profilometer- und Mountains-3D-Software von Nanovea untersucht die Submikrontopographie scheinbar einfacher Objekte wie Pennys.



Messung Zielsetzung

Die gesamte Oberseite von fünf Pfennigen wurde mit dem Hochgeschwindigkeits-Zeilensensor von Nanovea gescannt. Der innere und äußere Radius jedes Pennys wurde mit der Mountains Advanced Analysis Software gemessen. Eine Extraktion von jeder Pfennigoberfläche in einem Bereich von Interesse mit direkter Oberflächensubtraktion quantifizierte die Oberflächenverformung.

 



Ergebnisse und Diskussion

3D-Oberfläche

Das Nanovea HS2000-Profilometer benötigte nur 24 Sekunden, um 4 Millionen Punkte in einem 20 mm x 20 mm großen Bereich mit einer Schrittgröße von 10 um x 10 um zu scannen und die Oberfläche eines Pennys zu erfassen. Unten sehen Sie eine Höhenkarte und eine 3D-Visualisierung des Scans. Die 3D-Ansicht zeigt die Fähigkeit des High-Speed-Sensors, kleine Details zu erfassen, die mit dem Auge nicht wahrnehmbar sind. Auf der Oberfläche des Pennys sind viele kleine Kratzer zu erkennen. Textur und Rauheit der Münze in der 3D-Ansicht werden untersucht.

 










Dimensionale Analyse

Die Konturen des Pennys wurden extrahiert, und die Dimensionsanalyse ergab den Innen- und Außendurchmesser des Kantenmerkmals. Der Außenradius betrug durchschnittlich 9,500 mm ± 0,024, der Innenradius durchschnittlich 8,960 mm ± 0,032. Weitere dimensionale Analysen, die Mountains 3D mit 2D- und 3D-Datenquellen durchführen kann, sind Abstandsmessungen, Stufenhöhe, Ebenheit und Winkelberechnungen.







Oberflächen-Subtraktion

Abbildung 5 zeigt den Bereich, der für die Analyse der Oberflächensubtraktion von Interesse ist. Der Pfennig von 2007 wurde als Referenzoberfläche für die vier älteren Pfennige verwendet. Die Oberflächensubtraktion von der Oberfläche des Pfennigs von 2007 zeigt die Unterschiede zwischen den Pfennigen mit Löchern/Spitzen. Die Gesamtvolumendifferenz der Oberfläche ergibt sich aus der Addition der Volumina der Löcher/Spitzen. Der RMS-Fehler gibt an, wie gut die Oberflächen der Pfennige übereinstimmen.


 









Schlussfolgerung





Der High-Speed HS2000L von Nanovea scannte fünf Pfennige, die in verschiedenen Jahren geprägt wurden. Die Mountains 3D-Software verglich die Oberflächen der einzelnen Münzen mithilfe von Konturextraktion, Dimensionsanalyse und Oberflächensubtraktion. Die Analyse definiert eindeutig den inneren und äußeren Radius zwischen den Münzen und vergleicht direkt die Unterschiede zwischen den Oberflächenmerkmalen. Mit der Fähigkeit des Nanovea 3D-Profilometers, beliebige Oberflächen mit einer Auflösung im Nanometerbereich zu messen, in Kombination mit den 3D-Analysefähigkeiten von Mountains, sind die möglichen Anwendungen für Forschung und Qualitätskontrolle endlos.

 


UND NUN ZU IHRER BEWERBUNG

Vergleich der Abriebfestigkeit von Denim

Einführung

Die Form und Funktion eines Stoffes wird durch seine Qualität und Haltbarkeit bestimmt. Durch den täglichen Gebrauch von Stoffen kommt es zu Abnutzungserscheinungen, wie z. B. Knötchenbildung, Ausfransen und Verfärbung des Materials. Eine minderwertige Stoffqualität bei Kleidung führt oft zu Unzufriedenheit beim Verbraucher und schadet der Marke.

Der Versuch, die mechanischen Eigenschaften von Geweben zu quantifizieren, kann viele Herausforderungen mit sich bringen. Die Garnstruktur und sogar die Fabrik, in der es hergestellt wurde, können zu einer schlechten Reproduzierbarkeit der Testergebnisse führen. Dies erschwert den Vergleich von Testergebnissen aus verschiedenen Labors. Die Messung des Verschleißverhaltens von Stoffen ist für die Hersteller, Verteiler und Einzelhändler in der Textilproduktionskette von entscheidender Bedeutung. Eine gut kontrollierte und reproduzierbare Messung der Verschleißfestigkeit ist entscheidend für eine zuverlässige Qualitätskontrolle des Gewebes.

Klicken Sie hier, um den vollständigen Anwendungshinweis zu lesen!