USA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT US

Kategorie: Laboruntersuchungen

 

Einfluss von Luftfeuchtigkeit auf die Tribologie von DLC-Beschichtungen

Bedeutung der Abnutzungsbewertung von DLC bei Luftfeuchtigkeit

Beschichtungen aus diamantähnlichem Kohlenstoff (DLC) verfügen über verbesserte tribologische Eigenschaften, nämlich eine hervorragende Verschleißfestigkeit und einen sehr niedrigen Reibungskoeffizienten (COF). DLC-Beschichtungen verleihen Diamanteigenschaften, wenn sie auf verschiedenen Materialien abgeschieden werden. Aufgrund ihrer günstigen tribomechanischen Eigenschaften sind DLC-Beschichtungen in verschiedenen industriellen Anwendungen bevorzugt, beispielsweise für Teile in der Luft- und Raumfahrt, Rasierklingen, Metallschneidewerkzeuge, Lager, Motorradmotoren und medizinische Implantate.

DLC-Beschichtungen weisen unter Hochvakuum und trockenen Bedingungen einen sehr niedrigen COF (unter 0,1) gegenüber Stahlkugeln auf12. DLC-Beschichtungen reagieren jedoch empfindlich auf Veränderungen der Umweltbedingungen, insbesondere der relativen Luftfeuchtigkeit (RH).3. Umgebungen mit hoher Luftfeuchtigkeit und Sauerstoffkonzentration können zu einem erheblichen Anstieg der COF führen4. Zuverlässige Verschleißbewertung bei kontrollierter Luftfeuchtigkeit simuliert realistische Umgebungsbedingungen von DLC-Beschichtungen für tribologische Anwendungen. Benutzer wählen durch einen entsprechenden Vergleich die besten DLC-Beschichtungen für ihre Zielanwendungen aus
des DLC-Verschleißverhaltens bei unterschiedlicher Luftfeuchtigkeit.



Messung Zielsetzung

Diese Studie stellt den Nanovea vor Tribometer Ausgestattet mit einem Feuchtigkeitsregler ist das ideale Werkzeug zur Untersuchung des Verschleißverhaltens von DLC-Beschichtungen bei verschiedenen relativen Luftfeuchtigkeiten.

 

 



Testverfahren

Reibung und Verschleißfestigkeit von DLC-Beschichtungen wurden mit dem Nanovea Tribometer bewertet. Die Testparameter sind in Tabelle 1 zusammengefasst. Ein an der Tribokammer angebrachter Feuchtigkeitsregler regelte die relative Luftfeuchtigkeit (RH) präzise mit einer Genauigkeit von ±1%. Verschleißspuren auf DLC-Beschichtungen und Verschleißnarben auf SiN-Kugeln wurden nach Tests mit einem optischen Mikroskop untersucht.

Hinweis: Jedes feste Kugelmaterial kann verwendet werden, um die Leistung verschiedener Materialkopplungen unter Umgebungsbedingungen wie Schmiermittel oder hohen Temperaturen zu simulieren.







Ergebnisse und Diskussion

DLC-Beschichtungen sind aufgrund ihrer geringen Reibung und überlegenen Verschleißfestigkeit hervorragend für tribologische Anwendungen geeignet. Die Reibung der DLC-Beschichtung zeigt ein feuchtigkeitsabhängiges Verhalten, wie in Abbildung 2 dargestellt. Die DLC-Beschichtung zeigt einen sehr niedrigen COF von ~0,05 während des gesamten Verschleißtests unter relativ trockenen Bedingungen (10% RH). Die DLC-Beschichtung weist während des Tests einen konstanten COF von ~0,1 auf, wenn die RH auf 30% ansteigt. Die erste Einlaufphase der COF wird in den ersten 2000 Umdrehungen beobachtet, wenn die relative Luftfeuchtigkeit über 50% steigt. Die DLC-Beschichtung zeigt eine maximale COF von ~0,20, ~0,26 und ~0,33 bei einer relativen Luftfeuchtigkeit von 50, 70 bzw. 90%. Nach der Einlaufphase bleibt der COF der DLC-Beschichtung konstant bei ~0,11, 0,13 und 0,20 bei einer relativen Luftfeuchtigkeit von 50, 70 bzw. 90%.

 



In Abbildung 3 werden die Verschleißspuren der SiN-Kugel und in Abbildung 4 die Verschleißspuren der DLC-Beschichtung nach den Verschleißtests verglichen. Der Durchmesser der Verschleißnarbe war kleiner, wenn die DLC-Beschichtung einer Umgebung mit geringer Luftfeuchtigkeit ausgesetzt war. Während des wiederholten Gleitvorgangs an der Kontaktfläche sammelt sich eine DLC-Schicht auf der SiN-Kugeloberfläche an. In dieser Phase gleitet die DLC-Beschichtung gegen ihre eigene Transferschicht, die als effizientes Schmiermittel die Relativbewegung erleichtert und den durch Scherverformung verursachten weiteren Massenverlust eindämmt. In der Verschleißnarbe der SiN-Kugel wird in Umgebungen mit niedriger Luftfeuchtigkeit (z. B. 10% und 30%) ein Übertragungsfilm beobachtet, der zu einem verlangsamten Verschleißprozess der Kugel führt. Dieser Verschleißprozess spiegelt sich in der Morphologie der Verschleißspur der DLC-Beschichtung wider, wie in Abbildung 4 dargestellt. Die DLC-Beschichtung weist in trockenen Umgebungen eine kleinere Verschleißspur auf, was auf die Bildung eines stabilen DLC-Übertragungsfilms an der Kontaktfläche zurückzuführen ist, der die Reibung und die Verschleißrate erheblich verringert.


 


Schlussfolgerung




Luftfeuchtigkeit spielt eine entscheidende Rolle für die tribologische Leistung von DLC-Beschichtungen. Die DLC-Beschichtung verfügt über eine deutlich verbesserte Verschleißfestigkeit und eine überlegen niedrige Reibung unter trockenen Bedingungen aufgrund der Bildung einer stabilen Graphitschicht, die auf das gleitende Gegenstück (in dieser Studie eine SiN-Kugel) übertragen wird. Die DLC-Beschichtung gleitet auf ihrer eigenen Übertragungsschicht, die als effizientes Schmiermittel fungiert, um die Relativbewegung zu erleichtern und weiteren Massenverlust durch Scherverformung einzudämmen. Mit zunehmender relativer Luftfeuchtigkeit wird auf der SiN-Kugel kein Film beobachtet, was zu einer erhöhten Verschleißrate der SiN-Kugel und der DLC-Beschichtung führt.

Das Nanovea Tribometer bietet wiederholbare Verschleiß- und Reibungstests im ISO- und ASTM-konformen Rotations- und Linearmodus, wobei optionale Feuchtigkeitsmodule in einem vorintegrierten System verfügbar sind. Es ermöglicht Benutzern die Simulation der Arbeitsumgebung bei unterschiedlicher Luftfeuchtigkeit und bietet Benutzern ein ideales Werkzeug zur quantitativen Bewertung des tribologischen Verhaltens von Materialien unter verschiedenen Arbeitsbedingungen.



Erfahren Sie mehr über das Nanovea Tribometer und den Laborservice

1 C. Donnet, Surf. Coat. Technol. 100-101 (1998) 180.

2 K. Miyoshi, B. Pohlchuck, K.W. Street, J.S. Zabinski, J.H. Sanders, A.A. Voevodin, R.L.C. Wu, Wear 225-229 (1999) 65.

3 R. Gilmore, R. Hauert, Surf. Coat. Technol. 133-134 (2000) 437.

4 R. Memming, H.J. Tolle, P.E. Wierenga, Thin Solid Coatings 143 (1986) 31


UND NUN ZU IHRER BEWERBUNG

3D-Oberflächenanalyse eines Pennys mit berührungsloser Profilometrie

Bedeutung der berührungslosen Profilometrie für Münzen

Währungen haben in der modernen Gesellschaft einen hohen Stellenwert, da sie gegen Waren und Dienstleistungen eingetauscht werden. Münzen und Scheine zirkulieren in den Händen vieler Menschen. Der ständige Transfer physischer Währung führt zu einer Oberflächenverformung. Nanoveas 3D Profilometer scannt die Topographie von Münzen, die in verschiedenen Jahren geprägt wurden, um Oberflächenunterschiede zu untersuchen.

Münzmerkmale sind für die breite Öffentlichkeit leicht erkennbar, da es sich um alltägliche Gegenstände handelt. Ein Cent ist ideal, um die Stärken der Advanced Surface Analysis Software von Nanovea vorzustellen: Mountains 3D. Mit unserem 3D-Profilometer erfasste Oberflächendaten ermöglichen umfassende Analysen komplexer Geometrien mit Oberflächensubtraktion und 2D-Konturextraktion. Die Oberflächensubtraktion mit einer kontrollierten Maske, einem Stempel oder einer Form vergleicht die Qualität von Fertigungsprozessen, während die Konturextraktion Toleranzen mithilfe einer Dimensionsanalyse identifiziert. Die 3D-Profilometer- und Mountains-3D-Software von Nanovea untersucht die Submikrontopographie scheinbar einfacher Objekte wie Pennys.



Messung Zielsetzung

Die gesamte Oberseite von fünf Pfennigen wurde mit dem Hochgeschwindigkeits-Zeilensensor von Nanovea gescannt. Der innere und äußere Radius jedes Pennys wurde mit der Mountains Advanced Analysis Software gemessen. Eine Extraktion von jeder Pfennigoberfläche in einem Bereich von Interesse mit direkter Oberflächensubtraktion quantifizierte die Oberflächenverformung.

 



Ergebnisse und Diskussion

3D-Oberfläche

Das Nanovea HS2000-Profilometer benötigte nur 24 Sekunden, um 4 Millionen Punkte in einem 20 mm x 20 mm großen Bereich mit einer Schrittgröße von 10 um x 10 um zu scannen und die Oberfläche eines Pennys zu erfassen. Unten sehen Sie eine Höhenkarte und eine 3D-Visualisierung des Scans. Die 3D-Ansicht zeigt die Fähigkeit des High-Speed-Sensors, kleine Details zu erfassen, die mit dem Auge nicht wahrnehmbar sind. Auf der Oberfläche des Pennys sind viele kleine Kratzer zu erkennen. Textur und Rauheit der Münze in der 3D-Ansicht werden untersucht.

 










Dimensionale Analyse

Die Konturen des Pennys wurden extrahiert, und die Dimensionsanalyse ergab den Innen- und Außendurchmesser des Kantenmerkmals. Der Außenradius betrug durchschnittlich 9,500 mm ± 0,024, der Innenradius durchschnittlich 8,960 mm ± 0,032. Weitere dimensionale Analysen, die Mountains 3D mit 2D- und 3D-Datenquellen durchführen kann, sind Abstandsmessungen, Stufenhöhe, Ebenheit und Winkelberechnungen.







Oberflächen-Subtraktion

Abbildung 5 zeigt den Bereich, der für die Analyse der Oberflächensubtraktion von Interesse ist. Der Pfennig von 2007 wurde als Referenzoberfläche für die vier älteren Pfennige verwendet. Die Oberflächensubtraktion von der Oberfläche des Pfennigs von 2007 zeigt die Unterschiede zwischen den Pfennigen mit Löchern/Spitzen. Die Gesamtvolumendifferenz der Oberfläche ergibt sich aus der Addition der Volumina der Löcher/Spitzen. Der RMS-Fehler gibt an, wie gut die Oberflächen der Pfennige übereinstimmen.


 









Schlussfolgerung





Der High-Speed HS2000L von Nanovea scannte fünf Pfennige, die in verschiedenen Jahren geprägt wurden. Die Mountains 3D-Software verglich die Oberflächen der einzelnen Münzen mithilfe von Konturextraktion, Dimensionsanalyse und Oberflächensubtraktion. Die Analyse definiert eindeutig den inneren und äußeren Radius zwischen den Münzen und vergleicht direkt die Unterschiede zwischen den Oberflächenmerkmalen. Mit der Fähigkeit des Nanovea 3D-Profilometers, beliebige Oberflächen mit einer Auflösung im Nanometerbereich zu messen, in Kombination mit den 3D-Analysefähigkeiten von Mountains, sind die möglichen Anwendungen für Forschung und Qualitätskontrolle endlos.

 


UND NUN ZU IHRER BEWERBUNG

Abmessungen und Oberflächenbeschaffenheit von Kunststoffrohren

Die Bedeutung der Dimensions- und Oberflächenanalyse von Polymerrohren

Rohre aus Polymermaterial werden häufig in vielen Branchen eingesetzt, von der Automobilindustrie über die Medizintechnik bis hin zur Elektrotechnik und vielen anderen Branchen. In dieser Studie wurden medizinische Katheter aus verschiedenen Polymermaterialien mit dem Nanovea untersucht Berührungsloses 3D-Profilometer zur Messung von Oberflächenrauhigkeit, Morphologie und Abmessungen. Die Oberflächenrauheit ist für Katheter von entscheidender Bedeutung, da viele Probleme mit Kathetern, einschließlich Infektionen, physischen Traumata und Entzündungen, mit der Katheteroberfläche in Verbindung gebracht werden können. Mechanische Eigenschaften, wie z. B. der Reibungskoeffizient, können ebenfalls durch Beobachtung der Oberflächeneigenschaften untersucht werden. Mit diesen quantifizierbaren Daten kann sichergestellt werden, dass der Katheter für medizinische Anwendungen verwendet werden kann.

Im Vergleich zur Lichtmikroskopie und Elektronenmikroskopie ist die berührungslose 3D-Profilometrie mit Axialchromatismus für die Charakterisierung von Katheteroberflächen äußerst vorteilhaft, da Winkel/Krümmung gemessen werden können, Materialoberflächen trotz Transparenz oder Reflektivität gemessen werden können, die Probenvorbereitung minimal ist und die Messung nicht invasiv ist. Anders als bei der konventionellen optischen Mikroskopie kann die Höhe der Oberfläche ermittelt und für rechnerische Analysen verwendet werden, z. B. zur Ermittlung der Abmessungen und zum Entfernen der Form, um die Oberflächenrauheit zu bestimmen. Die im Gegensatz zur Elektronenmikroskopie geringe Probenvorbereitung und die Berührungslosigkeit ermöglichen eine schnelle Datenerfassung, ohne Kontamination und Fehler bei der Probenvorbereitung befürchten zu müssen.

Messung Zielsetzung

In dieser Anwendung wird das Nanovea 3D Non-Contact Profilometer verwendet, um die Oberfläche von zwei Kathetern zu scannen: einer aus TPE (Thermoplastisches Elastomer) und der andere aus PVC (Polyvinylchlorid). Die Morphologie, die radiale Dimension und die Höhenparameter der beiden Katheter werden ermittelt und verglichen.

 

 

Ergebnisse und Diskussion

3D-Oberfläche

Trotz der Krümmung von Polymerschläuchen kann das berührungslose Nanovea 3D-Profilometer die Oberfläche der Katheter scannen. Aus dem Scan kann ein 3D-Bild für eine schnelle, direkte visuelle Inspektion der Oberfläche gewonnen werden.

 
 

 

2D-Dimensionale Analyse

Die radiale Außenabmessung wurde durch Extraktion eines Profils aus dem Originalscan und Anpassung eines Bogens an das Profil ermittelt. Dies zeigt die Fähigkeit des berührungslosen 3D-Profilometers, eine schnelle Dimensionsanalyse für Qualitätskontrollanwendungen durchzuführen. Es können auch problemlos mehrere Profile entlang der Länge des Katheters erstellt werden.

 

 

Oberflächenanalyse Rauhigkeit

Die radiale Außenabmessung wurde durch Extraktion eines Profils aus dem Originalscan und Anpassung eines Bogens an das Profil ermittelt. Dies zeigt die Fähigkeit des berührungslosen 3D-Profilometers, eine schnelle Dimensionsanalyse für Qualitätskontrollanwendungen durchzuführen. Es können auch problemlos mehrere Profile entlang der Länge des Katheters erstellt werden.

Schlussfolgerung

In dieser Anwendung haben wir gezeigt, wie das berührungslose Nanovea 3D-Profilometer zur Charakterisierung von Polymerschläuchen verwendet werden kann. Insbesondere wurden die Oberflächenmessung, die radialen Abmessungen und die Oberflächenrauhigkeit für medizinische Katheter ermittelt. Der Außenradius des TPE-Katheters betrug 2,40 mm, der des PVC-Katheters 1,27 mm. Die Oberfläche des TPE-Katheters erwies sich als rauer als die des PVC-Katheters. Der Sa-Wert von TPE betrug 0,9740µm im Vergleich zu 0,1791µm bei PVC. Obwohl für diese Anwendung medizinische Katheter verwendet wurden, kann die berührungslose 3D-Profilometrie auch auf eine Vielzahl anderer Oberflächen angewendet werden. Die erzielbaren Daten und Berechnungen sind nicht auf das Gezeigte beschränkt.

UND NUN ZU IHRER BEWERBUNG

Bewertung der Zahnhärte durch Nanoindentation

Bedeutung der Nanoindentation für Biomaterialien

 
Bei vielen traditionellen mechanischen Prüfungen (Härte, Haftung, Druck, Durchstoß, Streckgrenze usw.) erfordern die heutigen Qualitätskontrollumgebungen mit hochentwickelten, empfindlichen Materialien, von Gelen bis hin zu spröden Materialien, jetzt eine genauere und zuverlässigere Kontrolle. Herkömmliche mechanische Messgeräte bieten nicht die erforderliche empfindliche Laststeuerung und Auflösung; sie sind für die Verwendung von Schüttgut konzipiert. Da die Größe des zu prüfenden Materials immer interessanter wurde, wurde die Entwicklung von Nanoindentation eine zuverlässige Methode zur Gewinnung wesentlicher mechanischer Informationen über kleinere Oberflächen, wie sie in der Forschung mit Biomaterialien verwendet werden. Die besonderen Herausforderungen, die mit Biomaterialien verbunden sind, erforderten die Entwicklung mechanischer Tests, die eine genaue Laststeuerung bei extrem weichen bis spröden Materialien ermöglichen. Außerdem werden für die Durchführung verschiedener mechanischer Tests mehrere Instrumente benötigt, die jetzt mit einem einzigen System durchgeführt werden können. Die Nanoindentation bietet einen breiten Messbereich mit präziser Auflösung bei nanokontrollierten Belastungen für sensible Anwendungen.

 

 

Messung Zielsetzung

Bei dieser Anwendung wird das Nanovea Mechanischer TesterIm Nanoindentationsmodus werden die Härte und der Elastizitätsmodul des Dentins, der Karies und der Pulpa eines Zahns untersucht. Der kritischste Aspekt beim Nanoindentationstest ist die Sicherung der Probe. Hier haben wir einen geschnittenen Zahn genommen und ihn mit Epoxidharz beschichtet, so dass alle drei interessierenden Bereiche für den Test freigelegt wurden.

 

 

Ergebnisse und Diskussion

Dieser Abschnitt enthält eine zusammenfassende Tabelle, in der die wichtigsten numerischen Ergebnisse für die verschiedenen Proben verglichen werden, gefolgt von der Auflistung der vollständigen Ergebnisse, einschließlich aller durchgeführten Eindrücke, begleitet von mikroskopischen Bildern der Eindrücke, sofern verfügbar. Diese vollständigen Ergebnisse enthalten die gemessenen Werte der Härte und des Elastizitätsmoduls sowie die Eindringtiefe mit ihren Durchschnittswerten und Standardabweichungen. Es ist zu berücksichtigen, dass die Ergebnisse stark schwanken können, wenn die Oberflächenrauheit im gleichen Größenbereich wie der Eindruck liegt.

Zusammenfassende Tabelle der wichtigsten numerischen Ergebnisse:

 

 

Schlussfolgerung

Abschließend haben wir gezeigt, wie der Nanovea Mechanical Tester im Nanoindentationsmodus eine präzise Messung der mechanischen Eigenschaften eines Zahns ermöglicht. Die Daten können für die Entwicklung von Füllungen verwendet werden, die den mechanischen Eigenschaften eines echten Zahns besser entsprechen. Die Positionierungsfähigkeit des Nanovea Mechanical Tester ermöglicht eine vollständige Abbildung der Zahnhärte in den verschiedenen Zonen.

Mit demselben System ist es möglich, die Bruchzähigkeit von Zahnmaterialien bei höheren Belastungen bis zu 200N zu prüfen. Bei poröseren Materialien kann eine mehrzyklische Belastungsprüfung durchgeführt werden, um das verbleibende Elastizitätsniveau zu bewerten. Die Verwendung einer flachen zylindrischen Diamantspitze kann Informationen über die Streckgrenze in jeder Zone liefern. Darüber hinaus können mit der dynamisch-mechanischen Analyse (DMA) die viskoelastischen Eigenschaften, einschließlich Verlust- und Speichermoduli, bewertet werden.

Das Nanovea-Nanomodul eignet sich ideal für diese Tests, da es eine einzigartige Rückkopplung nutzt, um die aufgebrachte Last präzise zu steuern. Aus diesem Grund kann das Nanomodul auch für genaue Nano-Kratztests verwendet werden. Die Untersuchung der Kratz- und Verschleißfestigkeit von Zahn- und Füllungsmaterialien macht den Nutzen des Mechanik-Testers noch größer. Die Verwendung einer scharfen 2-Mikrometer-Spitze zum quantitativen Vergleich der Abnutzung von Füllungsmaterialien ermöglicht eine bessere Vorhersage des Verhaltens in realen Anwendungen. Mehrlagige Verschleißtests oder direkte Rotationsverschleißtests sind ebenfalls gängige Tests, die wichtige Informationen über die Langzeittauglichkeit liefern.

UND NUN ZU IHRER BEWERBUNG

Bewertung der Reibung bei extrem niedrigen Geschwindigkeiten

 

Die Bedeutung der Reibungsbewertung bei niedrigen Geschwindigkeiten

Reibung ist die Kraft, die der Relativbewegung von aneinander gleitenden festen Oberflächen entgegenwirkt. Bei der Relativbewegung dieser beiden Kontaktflächen wandelt die Reibung an der Grenzfläche die kinetische Energie in Wärme um. Ein solcher Prozess kann auch zu Materialverschleiß und damit zu einer Leistungsverschlechterung der verwendeten Teile führen.
Aufgrund seines großen Dehnungsverhältnisses, seiner hohen Elastizität sowie seiner hervorragenden Wasserdichtigkeit und Verschleißfestigkeit wird Gummi in einer Vielzahl von Anwendungen und Produkten eingesetzt, bei denen Reibung eine wichtige Rolle spielt, z. B. in Autoreifen, Scheibenwischerblättern, Schuhsohlen und vielen anderen. Je nach Art und Anforderung dieser Anwendungen wird entweder eine hohe oder eine niedrige Reibung gegenüber verschiedenen Materialien gewünscht. Folglich ist eine kontrollierte und zuverlässige Messung der Reibung von Gummi auf verschiedenen Oberflächen von entscheidender Bedeutung.



Messung Zielsetzung

Der Reibungskoeffizient (COF) von Gummi gegenüber verschiedenen Materialien wird mit dem Nanovea kontrolliert und überwacht Tribometer. In dieser Studie möchten wir die Fähigkeit des Nanovea Tribometers zur Messung des COF verschiedener Materialien bei extrem niedrigen Geschwindigkeiten demonstrieren.




Ergebnisse und Diskussion

Der Reibungskoeffizient (COF) von Gummikugeln (Ø 6 mm, RubberMill) auf drei Materialien (Edelstahl SS 316, Cu 110 und optional Acryl) wurde mit dem Nanovea Tribometer bewertet. Die getesteten Metallproben wurden vor der Messung mechanisch auf eine spiegelglatte Oberfläche poliert. Durch die leichte Verformung des Gummiballs unter der aufgebrachten Normallast entstand ein Flächenkontakt, der auch dazu beiträgt, die Auswirkungen von Unebenheiten oder Inhomogenitäten der Probenoberfläche auf die COF-Messungen zu verringern. Die Prüfparameter sind in Tabelle 1 zusammengefasst.


 

Die COF eines Gummiballs gegen verschiedene Materialien bei vier verschiedenen Geschwindigkeiten ist in Abbildung 2 dargestellt. 2 dargestellt, und die von der Software automatisch berechneten durchschnittlichen COFs werden in Abbildung 3 zusammengefasst und verglichen. Interessant ist, dass die Metallproben (SS 316 und Cu 110) deutlich höhere COFs aufweisen, wenn die Drehgeschwindigkeit von einem sehr niedrigen Wert von 0,01 U/min auf 5 U/min ansteigt - der COF-Wert des Paares Gummi/SSS 316 steigt von 0,29 auf 0,8 und von 0,65 auf 1,1 für das Paar Gummi/Cu 110. Diese Feststellung stimmt mit den von mehreren Labors berichteten Ergebnissen überein. Wie von Grosch vorgeschlagen4 Die Reibung von Gummi wird hauptsächlich durch zwei Mechanismen bestimmt: (1) die Adhäsion zwischen Gummi und dem anderen Material und (2) die Energieverluste durch die Verformung des Gummis aufgrund von Oberflächenunebenheiten. Schallamach5 beobachtete Ablösungswellen von Gummi vom Gegenmaterial an der Schnittstelle zwischen weichen Gummikugeln und einer harten Oberfläche. Die Kraft, mit der sich Gummi von der Substratoberfläche ablöst, und die Geschwindigkeit der Ablösewellen können die unterschiedliche Reibung bei verschiedenen Geschwindigkeiten während des Tests erklären.

Im Vergleich dazu weist das Gummi-Acrylat-Materialpaar bei verschiedenen Drehzahlen einen hohen COF-Wert auf. Der COF-Wert steigt leicht von ~ 1,02 auf ~ 1,09, wenn die Drehzahl von 0,01 U/min auf 5 U/min ansteigt. Dieser hohe COF-Wert ist möglicherweise auf eine stärkere lokale chemische Bindung an der Kontaktfläche zurückzuführen, die sich während der Tests bildet.



 
 

 

 




Schlussfolgerung



In dieser Studie zeigen wir, dass Gummi bei extrem niedrigen Geschwindigkeiten ein eigentümliches Reibungsverhalten zeigt - seine Reibung gegen eine harte Oberfläche nimmt mit zunehmender Geschwindigkeit der Relativbewegung zu. Gummi zeigt unterschiedliche Reibung, wenn er auf verschiedenen Materialien gleitet. Mit dem Nanovea Tribometer können die Reibungseigenschaften von Materialien bei verschiedenen Geschwindigkeiten kontrolliert und überwacht werden. Dies ermöglicht es den Anwendern, das grundlegende Verständnis des Reibungsmechanismus der Materialien zu verbessern und die beste Materialpaarung für gezielte tribologische Anwendungen auszuwählen.

Das Nanovea Tribometer bietet präzise und wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi, mit optionalen Modulen für Hochtemperaturverschleiß, Schmierung und Tribokorrosion, die in einem vorintegrierten System erhältlich sind. Es ist in der Lage, die Rotationsstufe bei extrem niedrigen Geschwindigkeiten bis hinunter zu 0,01 U/min zu steuern und die Entwicklung der Reibung in situ zu überwachen. Das unübertroffene Angebot von Nanovea ist eine ideale Lösung für die Bestimmung des gesamten Spektrums der tribologischen Eigenschaften von dünnen oder dicken, weichen oder harten Beschichtungen, Filmen und Substraten.

UND NUN ZU IHRER BEWERBUNG

Tribologie der Polymere

Einführung

Polymere werden in einer Vielzahl von Anwendungen eingesetzt und sind aus dem täglichen Leben nicht mehr wegzudenken. Natürliche Polymere wie Bernstein, Seide und Naturkautschuk haben in der Geschichte der Menschheit eine wesentliche Rolle gespielt. Der Herstellungsprozess von synthetischen Polymeren kann optimiert werden, um einzigartige physikalische Eigenschaften wie Zähigkeit, Viskoelastizität, Selbstschmierung und viele andere zu erzielen.

Bedeutung des Verschleißes und der Reibung von Polymeren

Polymere werden in der Regel für tribologische Anwendungen wie Reifen, Lager und Förderbänder verwendet.
Je nach den mechanischen Eigenschaften des Polymers, den Kontaktbedingungen und den Eigenschaften des während des Verschleißvorgangs gebildeten Abriebs oder Transferfilms treten unterschiedliche Verschleißmechanismen auf. Um sicherzustellen, dass die Polymere unter den Einsatzbedingungen eine ausreichende Verschleißfestigkeit aufweisen, ist eine zuverlässige und quantifizierbare tribologische Bewertung erforderlich. Die tribologische Bewertung ermöglicht einen kontrollierten und überwachten quantitativen Vergleich des Verschleißverhaltens verschiedener Polymere, um das geeignete Material für die gewünschte Anwendung auszuwählen.

Das Nanovea Tribometer bietet wiederholbare Verschleiß- und Reibungstests mit ISO- und ASTM-konformen Rotations- und Linearmodi, mit optionalen Hochtemperatur-Verschleiß- und Schmiermodulen, die in einem vorintegrierten System erhältlich sind. Mit diesem unübertroffenen Angebot können Benutzer die verschiedenen Arbeitsumgebungen der Polymere simulieren, einschließlich konzentrierter Belastung, Verschleiß und hoher Temperatur usw.

MESSZIEL

In dieser Studie haben wir gezeigt, dass Nanovea Tribometer ist ein ideales Werkzeug, um die Reibungs- und Verschleißfestigkeit verschiedener Polymere kontrolliert und quantitativ zu vergleichen.

TESTVORGANG

Der Reibungskoeffizient (COF) und die Verschleißfestigkeit verschiedener gängiger Polymere wurden mit dem Nanovea Tribometer bewertet. Als Gegenmaterial (Stift, statische Probe) wurde eine Al2O3-Kugel verwendet. Die Verschleißspuren auf den Polymeren (dynamisch rotierende Proben) wurden mit a gemessen berührungsloses 3D-Profilometer und optisches Mikroskop nach Abschluss der Tests. Es ist zu beachten, dass optional ein berührungsloser endoskopischer Sensor zur Messung der Eindringtiefe des Stifts in die dynamische Probe während eines Verschleißtests verwendet werden kann. Die Testparameter sind in Tabelle 1 zusammengefasst. Die Verschleißrate K wurde mithilfe der Formel K=Vl(Fxs) bewertet, wobei V das abgenutzte Volumen, F die normale Belastung und s die Gleitstrecke ist.

Bitte beachten Sie, dass in dieser Studie Al2O3-Kugeln als Gegenmaterial verwendet wurden. Jedes feste Material kann ersetzt werden, um die Leistung von zwei Proben unter realen Anwendungsbedingungen besser zu simulieren.

ERGEBNISSE UND DISKUSSION

Die Verschleißrate ist ein wichtiger Faktor für die Bestimmung der Lebensdauer der Materialien, während die Reibung bei tribologischen Anwendungen eine entscheidende Rolle spielt. Abbildung 2 vergleicht die Entwicklung der COF für verschiedene Polymere gegen die Al2O3-Kugel während der Verschleißtests. Die COF dient als Indikator dafür, wann es zu Ausfällen kommt und der Verschleißprozess in eine neue Phase eintritt. Von den getesteten Polymeren weist HDPE die niedrigste konstante COF von ~0,15 während des gesamten Verschleißtests auf. Die gleichmäßige COF bedeutet, dass sich ein stabiler Tribokontakt bildet.

In Abbildung 3 und Abbildung 4 werden die Verschleißspuren der Polymerproben nach dem Test mit dem Lichtmikroskop gemessen. Das berührungslose In-situ-3D-Profilometer bestimmt präzise das Abnutzungsvolumen der Polymerproben und ermöglicht die genaue Berechnung von Abnutzungsraten von 0,0029, 0,0020 bzw. 0,0032m3/N m. Im Vergleich dazu zeigt die CPVC-Probe die höchste Verschleißrate von 0,1121 m3/N m. In der Verschleißspur von CPVC sind tiefe parallele Verschleißnarben vorhanden.

SCHLUSSFOLGERUNG

Die Verschleißfestigkeit der Polymere spielt eine entscheidende Rolle für ihre Einsatzfähigkeit. In dieser Studie haben wir gezeigt, dass das Nanovea Tribometer den Reibungskoeffizienten und die Verschleißrate verschiedener Polymere in einem
gut kontrollierten und quantitativen Weise. HDPE weist unter den getesteten Polymeren den niedrigsten COF von ~0,15 auf. HDPE-, Nylon 66- und Polypropylen-Proben weisen niedrige Verschleißraten von 0,0029, 0,0020 bzw. 0,0032 m3/N m auf. Die Kombination aus geringer Reibung und hoher Verschleißfestigkeit macht HDPE zu einem guten Kandidaten für tribologische Anwendungen von Polymeren.

Das berührungslose In-situ-3D-Profilometer ermöglicht eine präzise Messung des Verschleißvolumens und bietet ein Werkzeug zur Analyse der detaillierten Morphologie der Verschleißspuren, was einen besseren Einblick in das grundlegende Verständnis der Verschleißmechanismen ermöglicht.

UND NUN ZU IHRER BEWERBUNG

Oberflächenbeschaffenheit von Wabenplatten mit 3D-Profilometrie

EINFÜHRUNG


Rauheit, Porosität und Textur der Oberfläche von Wabenplatten sind für das endgültige Plattendesign von entscheidender Bedeutung. Diese Oberflächenqualitäten können direkt mit der Ästhetik und den funktionalen Eigenschaften der Plattenoberfläche korrelieren. Ein besseres Verständnis der Oberflächentextur und -porosität kann dazu beitragen, die Verarbeitung und Herstellbarkeit der Plattenoberfläche zu optimieren. Eine quantitative, präzise und zuverlässige Oberflächenmessung der Wabenplatte ist erforderlich, um die Oberflächenparameter für die Anwendung und die Lackieranforderungen zu kontrollieren. Die berührungslosen Nanovea 3D-Sensoren nutzen eine einzigartige chromatische Konfokaltechnologie, die eine präzise Messung dieser Plattenoberflächen ermöglicht.



MESSZIEL


In dieser Studie wurde die Nanovea HS2000-Plattform, die mit einem Hochgeschwindigkeits-Liniensensor ausgestattet ist, verwendet, um zwei Wabenplatten mit unterschiedlichen Oberflächenbeschaffenheiten zu messen und zu vergleichen. Wir präsentieren den Nanovea berührungsloses ProfilometerDie Fähigkeit des Unternehmens, schnelle und präzise 3D-Profilmessungen und eine umfassende, tiefgehende Analyse der Oberflächenbeschaffenheit durchzuführen.



ERGEBNISSE UND DISKUSSION

Die Oberfläche von zwei Wabenplattenmustern mit unterschiedlicher Oberflächenbeschaffenheit, nämlich Probe 1 und Probe 2, wurde gemessen. Die Falschfarben- und 3D-Ansicht der Oberflächen der Proben 1 und 2 sind in Abbildung 3 bzw. Abbildung 4 dargestellt. Die Rauheits- und Ebenheitswerte wurden mit einer fortschrittlichen Analysesoftware berechnet und werden in Tabelle 1 verglichen. Probe 2 weist im Vergleich zu Probe 1 eine porösere Oberfläche auf. Infolgedessen weist Probe 2 einen höheren Rauheitswert Sa von 14,7 µm auf, verglichen mit einem Sa-Wert von 4,27 µm für Probe 1.

Die 2D-Profile der Wabenplattenoberflächen wurden in Abbildung 5 verglichen, um dem Benutzer einen visuellen Vergleich der Höhenänderung an verschiedenen Stellen der Probenoberfläche zu ermöglichen. Wir können feststellen, dass Probe 1 eine Höhenvariation von ~25 µm zwischen der höchsten Spitze und der niedrigsten Talstelle aufweist. Andererseits weist Probe 2 mehrere tiefe Poren im gesamten 2D-Profil auf. Die fortschrittliche Analysesoftware ist in der Lage, die Tiefe von sechs relativ tiefen Poren automatisch zu lokalisieren und zu messen, wie in der Tabelle in Abbildung 4.b Probe 2 dargestellt. Die tiefste der sechs Poren weist eine maximale Tiefe von fast 90 µm auf (Schritt 4).

Um die Porengröße und -verteilung von Probe 2 weiter zu untersuchen, wurde eine Porositätsbewertung durchgeführt, die im folgenden Abschnitt erläutert wird. Die Schnittansicht ist in Abbildung 5 dargestellt und die Ergebnisse sind in Tabelle 2 zusammengefasst. Wir können feststellen, dass die Poren, die in Abbildung 5 blau markiert sind, eine relativ homogene Verteilung auf der Probenoberfläche aufweisen. Die projizierte Fläche der Poren macht 18,9% der gesamten Probenoberfläche aus. Das Volumen pro mm² der gesamten Poren beträgt ~0,06 mm³. Die Poren haben eine durchschnittliche Tiefe von 42,2 µm, und die maximale Tiefe beträgt 108,1 µm.

SCHLUSSFOLGERUNG



In dieser Anwendung haben wir gezeigt, dass die Nanovea HS2000 Plattform, die mit einem Hochgeschwindigkeits-Zeilensensor ausgestattet ist, ein ideales Werkzeug für die schnelle und genaue Analyse und den Vergleich der Oberflächenbeschaffenheit von Wabenplattenproben ist. Die hochauflösenden profilometrischen Scans in Verbindung mit einer fortschrittlichen Analysesoftware ermöglichen eine umfassende und quantitative Bewertung der Oberflächenbeschaffenheit von Wabenplattenproben.

Die hier gezeigten Daten stellen nur einen kleinen Teil der in der Analysesoftware verfügbaren Berechnungen dar. Nanovea Profilometer messen praktisch jede Oberfläche für eine Vielzahl von Anwendungen in der Halbleiter-, Mikroelektronik-, Solar-, Faseroptik-, Automobil-, Luft- und Raumfahrt-, Metallurgie-, Bearbeitungs-, Beschichtungs-, Pharma-, Biomedizin-, Umwelt- und vielen anderen Branchen.

UND NUN ZU IHRER BEWERBUNG

Messung der Spannungsrelaxation mittels Nanoindentation

EINFÜHRUNG

Viskoelastische Materialien sind dadurch gekennzeichnet, dass sie sowohl viskose als auch elastische Materialeigenschaften aufweisen. Diese Materialien unterliegen einem zeitabhängigen Spannungsabbau (Spannungsrelaxation") unter konstanter Belastung, was zu einem erheblichen Verlust der anfänglichen Kontaktkraft führt. Die Spannungsrelaxation ist abhängig von der Art des Materials, der Textur, der Temperatur, der Anfangsspannung und der Zeit. Das Verständnis der Spannungsrelaxation ist entscheidend für die Auswahl optimaler Materialien, die die für bestimmte Anwendungen erforderliche Festigkeit und Flexibilität (Relaxation) aufweisen.

Bedeutung der Entspannungsmessung

Gemäß ASTM E328i, „Standard Test Methods for Stress Relaxation for Materials and Structures“, wird zunächst mit einem Eindringkörper eine äußere Kraft auf ein Material oder eine Struktur ausgeübt, bis eine vorgegebene Maximalkraft erreicht ist. Sobald die maximale Kraft erreicht ist, wird die Position des Eindringkörpers in dieser Tiefe konstant gehalten. Dann wird die Änderung der äußeren Kraft, die erforderlich ist, um die Position des Eindringkörpers beizubehalten, als Funktion der Zeit gemessen. Die Schwierigkeit bei Spannungsrelaxationstests besteht darin, die Tiefe konstant zu halten. Der mechanische Tester von Nanovea Nanoindentation Das Modul misst die Spannungsrelaxation genau, indem es eine geschlossene (Feedback-)Regelung der Tiefe mit einem piezoelektrischen Aktuator anwendet. Der Aktuator reagiert in Echtzeit, um die Tiefe konstant zu halten, während die Laständerung von einem hochempfindlichen Lastsensor gemessen und aufgezeichnet wird. Dieser Test kann an praktisch allen Arten von Materialien durchgeführt werden, ohne dass strenge Anforderungen an die Probenabmessungen erforderlich sind. Darüber hinaus können mehrere Tests an einer einzelnen flachen Probe durchgeführt werden, um die Wiederholbarkeit der Tests sicherzustellen

MESSZIEL

In dieser Anwendung misst das Nanoindentationsmodul des Nanovea Mechanical Tester das Spannungsrelaxationsverhalten einer Acryl- und Kupferprobe. Wir zeigen, dass der Nanovea Mechanischer Tester ist ein ideales Werkzeug zur Bewertung des zeitabhängigen viskoelastischen Verhaltens von Polymer- und Metallmaterialien.

TESTBEDINGUNGEN

Die Spannungsrelaxation einer Acryl- und einer Kupferprobe wurde mit dem Nanoindentationsmodul des Nanovea Mechanical Testers gemessen. Es wurden verschiedene Belastungsraten zwischen 1 und 10 µm/min angewandt. Die Relaxation wurde bei einer festen Tiefe gemessen, sobald die angestrebte maximale Belastung erreicht war. Bei einer festen Tiefe wurde eine Haltezeit von 100 Sekunden eingeführt, und die Veränderung der Belastung wurde nach Ablauf der Haltezeit aufgezeichnet. Alle Tests wurden bei Umgebungsbedingungen (Raumtemperatur von 23 °C) durchgeführt, und die Parameter der Eindringtests sind in Tabelle 1 zusammengefasst.

ERGEBNISSE UND DISKUSSION

Abbildung 2 zeigt die Entwicklung von Verschiebung und Belastung als Funktion der Zeit während der Spannungsrelaxationsmessung einer Acrylprobe und einer Belastungsrate von 3 µm/min als Beispiel. Die Gesamtheit dieses Tests kann in drei Phasen unterteilt werden: Belastung, Relaxation und Entlastung. Während der Belastungsphase nahm die Tiefe linear zu, während die Last schrittweise erhöht wurde. Die Entspannungsphase wurde eingeleitet, sobald die maximale Belastung erreicht war. Während dieser Phase wurde eine konstante Tiefe für 100 Sekunden beibehalten, indem die geschlossene Rückkopplungsschleife der Tiefenkontrolle des Geräts verwendet wurde. Der gesamte Test wurde mit einer Entlastungsphase abgeschlossen, um den Eindringkörper von der Acrylprobe zu entfernen.

Zusätzliche Eindringtests wurden mit denselben Belastungsraten durchgeführt, jedoch ohne eine Relaxationsphase (Kriechen). Bei diesen Tests wurden Kraft-Weg-Diagramme erstellt und in den Diagrammen in Abbildung 3 für die Acryl- und Kupferproben kombiniert. Als die Belastungsrate des Eindringkörpers von 10 auf 1 µm/min sank, verschob sich die Belastungs-Verschiebungskurve sowohl für Acryl als auch für Kupfer zunehmend in Richtung größerer Eindringtiefen. Eine solche zeitabhängige Zunahme der Dehnung ist auf den viskoelastischen Kriecheffekt der Materialien zurückzuführen. Eine geringere Belastungsrate gibt einem viskoelastischen Material mehr Zeit, auf die äußere Belastung zu reagieren und sich entsprechend zu verformen...

Die Entwicklung der Belastung bei einer konstanten Dehnung unter Verwendung verschiedener Belastungsgeschwindigkeiten wurde in Abbildung 4 für beide getesteten Materialien aufgezeichnet. Die Belastung nahm in den frühen Stadien der Entspannungsphase (100 Sekunden Haltezeit) der Tests mit einer höheren Rate ab und verlangsamte sich, sobald die Haltezeit ~50 Sekunden erreichte. Viskoelastische Materialien, wie Polymere und Metalle, weisen eine höhere Lastverlustrate auf, wenn sie einer höheren Eindringbelastung ausgesetzt sind. Die Lastverlustrate während der Relaxation stieg von 51,5 auf 103,2 mN für Acryl bzw. von 15,0 auf 27,4 mN für Kupfer, wenn die Eindringgeschwindigkeit von 1 auf 10 µm/min anstieg, wie in Abbildung 5.

Wie in der ASTM-Norm E328ii erwähnt, besteht das Hauptproblem bei Spannungsrelaxationstests darin, dass ein Gerät nicht in der Lage ist, eine konstante Dehnung/Tiefe aufrechtzuerhalten. Der Nanovea Mechanical Tester liefert exzellente, genaue Messungen der Spannungsrelaxation, da er eine geschlossene Rückkopplungsschleife zwischen dem schnell wirkenden piezoelektrischen Aktuator und dem unabhängigen Kondensator-Tiefensensor anwendet. Während der Entspannungsphase stellt der piezoelektrische Aktuator den Eindringkörper so ein, dass er seine konstante Tiefenbegrenzung in Echtzeit beibehält, während die Änderung der Belastung von einem unabhängigen hochpräzisen Belastungssensor gemessen und aufgezeichnet wird.

SCHLUSSFOLGERUNG

Die Spannungsrelaxation einer Acryl- und einer Kupferprobe wurde mit dem Nanoindentationsmodul des Nanovea-Mechanik-Testers bei unterschiedlichen Belastungsraten gemessen. Aufgrund des Kriecheffekts des Materials während der Belastung wird eine größere maximale Tiefe erreicht, wenn die Eindrücke bei niedrigeren Belastungsraten durchgeführt werden. Sowohl die Acryl- als auch die Kupferprobe weisen ein Spannungsrelaxationsverhalten auf, wenn die Position des Eindringkörpers bei einer angestrebten maximalen Belastung konstant gehalten wird. Größere Veränderungen des Lastverlusts während der Entspannungsphase wurden bei den Versuchen mit höheren Belastungsraten des Eindrucks beobachtet.

Der Spannungsrelaxationstest des Nanovea Mechanical Tester zeigt, dass das Gerät in der Lage ist, das zeitabhängige viskoelastische Verhalten von Polymer- und Metallmaterialien zu quantifizieren und zuverlässig zu messen. Es verfügt über ein unübertroffenes Multifunktions-Nano- und -Mikro-Modul auf einer einzigen Plattform. Module zur Feuchte- und Temperaturkontrolle können mit diesen Instrumenten kombiniert werden, um Umwelttests in einer Vielzahl von Branchen durchzuführen. Sowohl das Nano- als auch das Mikromodul verfügen über Modi für Kratz-, Härte- und Verschleißprüfungen und bieten damit das breiteste und benutzerfreundlichste Spektrum an mechanischen Prüfmöglichkeiten in einem einzigen System.

UND NUN ZU IHRER BEWERBUNG

Verständnis von Beschichtungsfehlern durch Kratztests

Einleitung:

Die Oberflächentechnik von Werkstoffen spielt eine wichtige Rolle bei einer Vielzahl von funktionellen Anwendungen, die vom dekorativen Aussehen bis zum Schutz der Substrate vor Verschleiß, Korrosion und anderen Angriffen reichen. Ein wichtiger und übergeordneter Faktor, der die Qualität und Lebensdauer der Beschichtungen bestimmt, ist ihre Kohäsions- und Haftfestigkeit.

Zum Lesen hier klicken!

Hochgeschwindigkeits-Scannen mit berührungsloser Profilometrie

Einleitung:

Schnell und einfach einzurichtende Oberflächenmessungen sparen Zeit und Aufwand und sind für die Qualitätskontrolle, Forschung und Entwicklung sowie Produktionsanlagen unerlässlich. Der Nanovea Berührungsloses Profilometer ist in der Lage, sowohl 3D- als auch 2D-Oberflächenscans durchzuführen, um Merkmale im Nano- bis Makromaßstab auf jeder Oberfläche zu messen und bietet so eine breite Einsatzmöglichkeit.

Zum Lesen hier klicken!