USA/GLOBAL : +1-949-461-9292
EUROPE : +39-011-3052-794
CONTACTEZ-NOUS

Catégorie : Essais de tribologie

 

Fretting Wear Testing Tribologie

Évaluation de l'usure par frottement

ÉVALUATION DE L'USURE PAR FROTTEMENT

Évaluation de l'usure par frottement dans l'aviation

Auteur :

Duanjie Li, PhD

Révisé par

Jocelyn Esparza

Évaluation de l'usure par fretting dans les mines et la métallurgie

INTRODUCTION

L'usure par frottement est "un processus d'usure particulier qui se produit dans la zone de contact entre deux matériaux soumis à une charge et à un mouvement relatif minime sous l'effet de vibrations ou d'une autre force". Lorsque les machines sont en fonctionnement, des vibrations se produisent inévitablement dans les assemblages boulonnés ou goupillés, entre des composants qui ne sont pas destinés à bouger, ainsi que dans les accouplements et les roulements oscillants. L'amplitude de ce mouvement de glissement relatif est souvent de l'ordre du micromètre ou du millimètre. Ce mouvement répétitif de faible amplitude provoque une usure mécanique localisée importante et un transfert de matière à la surface, ce qui peut entraîner une réduction de l'efficacité de la production et des performances de la machine, voire l'endommager.

Importance de l'aspect quantitatif
Évaluation de l'usure par frottement

L'usure par frottement implique souvent plusieurs mécanismes d'usure complexes se produisant au niveau de la surface de contact, notamment l'abrasion à deux corps, l'adhérence et/ou l'usure par fatigue par frottement. Afin de comprendre le mécanisme d'usure par frottement et de sélectionner le meilleur matériau pour la protection contre l'usure par frottement, une évaluation fiable et quantitative de l'usure par frottement est nécessaire. Le comportement à l'usure par frottement est considérablement influencé par l'environnement de travail, tel que l'amplitude de déplacement, la charge normale, la corrosion, la température, l'humidité et la lubrification. Un polyvalent tribomètre capable de simuler différentes conditions de travail réalistes sera idéal pour l'évaluation de l'usure par fretting.

Steven R. Lampman, ASM Handbook : Volume 19 : Fatigue et Fracture
http://www.machinerylubrication.com/Read/693/fretting-wear

OBJECTIF DE MESURE

Dans cette étude, nous avons évalué les comportements d'usure par fretting d'un échantillon d'acier inoxydable SS304 à différentes vitesses d'oscillation et températures afin de mettre en évidence la capacité de l'acier inoxydable SS304 à résister à l'usure par fretting. NANOVÉA T50 Le tribomètre permet de simuler le processus d'usure par frottement du métal d'une manière bien contrôlée et surveillée.

NANOVEA

T50

CONDITIONS DE TEST

La résistance à l'usure par frottement d'un échantillon d'acier inoxydable SS304 a été évaluée par NANOVEA Tribomètre utilisant un module d'usure à mouvement alternatif linéaire. Une bille en WC (6 mm de diamètre) a été utilisée comme contre-matériau. La trace d'usure a été examinée à l'aide d'un NANOVEA Profileur 3D sans contact. 

L'essai de fretting a été réalisé à température ambiante (RT) et à 200 °C pour étudier l'effet de la haute température sur la résistance à l'usure par frottement de l'échantillon de SS304. Une plaque chauffante sur le plateau de l'échantillon a chauffé l'échantillon pendant l'essai de fretting à 200 °C. Le taux d'usure, Ka été évaluée à l'aide de la formule K=V/(F×s)V est le volume usé, F est la charge normale, et s est la distance de glissement.

Veuillez noter qu'une boule de WC comme contre-matériau a été utilisée comme exemple dans cette étude. Tout matériau solide de différentes formes et finitions de surface peut être appliqué à l'aide d'un dispositif de fixation personnalisé afin de simuler la situation d'application réelle.

PARAMÈTRES D'ESSAI

des mesures d'usure

RÉSULTATS ET DISCUSSION

Le profil 3D de la trace d'usure permet de déterminer directement et avec précision la perte de volume de la trace d'usure calculée par l'analyse de la trace d'usure. NANOVEA Logiciel d'analyse des montagnes. 

L'essai d'usure alternatif à faible vitesse de 100 tr/min et à température ambiante présente une petite trace d'usure de 0,014 mm.³. En comparaison, l'essai d'usure par frottement effectué à une vitesse élevée de 1000 tr/min crée une trace d'usure nettement plus importante, d'un volume de 0,12 mm.³. Ce processus d'usure accéléré peut être attribué à la chaleur élevée et aux vibrations intenses générées pendant l'essai d'usure par frottement, qui favorisent l'oxydation des débris métalliques et entraînent une forte abrasion des trois corps. L'essai d'usure par frottement à une température élevée de 200 °C forme une plus grande trace d'usure de 0,27 mm³.

L'essai d'usure par frottement à 1000 tr/min présente un taux d'usure de 1,5×10-4 mm³/Nm, soit près de neuf fois plus que lors d'un essai d'usure alternatif à 100 tr/min. L'essai d'usure par frottement à une température élevée accélère encore le taux d'usure à 3,4×10-4 mm³/Nm. Une différence aussi importante dans la résistance à l'usure mesurée à différentes vitesses et températures montre l'importance de simuler correctement l'usure de contact pour des applications réalistes.

Le comportement de l'usure peut changer radicalement lorsque de petites modifications des conditions d'essai sont introduites dans le tribosystème. La polyvalence de la NANOVEA Le tribomètre permet de mesurer l'usure dans diverses conditions, notamment la température élevée, la lubrification, la corrosion et autres. Le contrôle précis de la vitesse et de la position par le moteur avancé permet aux utilisateurs d'effectuer le test d'usure à des vitesses allant de 0,001 à 5000 tr/min, ce qui en fait un outil idéal pour les laboratoires de recherche et d'essai pour étudier l'usure de contact dans différentes conditions tribologiques.

Traces d'usure par frottement dans diverses conditions

sous le microscope optique

Traces d'usure par frottement dans différentes conditions au microscope optique

PROFILS 3D DES PISTES D'USAGE

fournir plus d'informations sur la compréhension fondamentale
du mécanisme d'usure par frottement

profils d'usure 3d - fretting

RÉSUMÉ DES RÉSULTATS DES TRACES D'USURE

mesurée à l'aide de différents paramètres d'essai

CONCLUSION

Dans cette étude, nous avons mis en évidence la capacité de la NANOVEA Tribomètre pour évaluer le comportement de l'usure de contact d'un échantillon d'acier inoxydable SS304 de manière bien contrôlée et quantitative. 

La vitesse et la température de l'essai jouent un rôle essentiel dans la résistance à l'usure par frottement des matériaux. La chaleur élevée et les vibrations intenses pendant l'usure par frottement ont entraîné une accélération substantielle de l'usure de l'échantillon de SS304, de près de neuf fois. La température élevée de 200 °C a encore augmenté le taux d'usure à 3,4×10-4 mm3/Nm. 

La polyvalence de la NANOVEA Le tribomètre est un outil idéal pour mesurer l'usure de contact dans diverses conditions, notamment la température élevée, la lubrification, la corrosion et autres.

NANOVEA Les tribomètres offrent des tests d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. Notre gamme inégalée est une solution idéale pour déterminer l'ensemble des propriétés tribologiques des revêtements, films et substrats minces ou épais, souples ou durs.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Roulements à billes : étude de résistance à l'usure à haute force



INTRODUCTION

Un roulement à billes utilise des billes pour réduire le frottement de rotation et supporter les charges radiales et axiales. Les billes qui roulent entre les chemins de roulement produisent un coefficient de frottement (COF) bien inférieur à celui de deux surfaces planes glissant l'une contre l'autre. Les roulements à billes sont souvent exposés à des niveaux élevés de contraintes de contact, à l'usure et à des conditions environnementales extrêmes telles que des températures élevées. Par conséquent, la résistance à l'usure des billes sous des charges élevées et des conditions environnementales extrêmes est essentielle pour prolonger la durée de vie du roulement à billes et réduire les coûts et les délais de réparation et de remplacement.
Les roulements à billes peuvent être trouvés dans presque toutes les applications impliquant des pièces mobiles. Ils sont couramment utilisés dans les industries du transport telles que l'aérospatiale et l'automobile, ainsi que dans l'industrie du jouet qui fabrique des articles tels que des fidget spinner et des planches à roulettes.

ÉVALUATION DE L'USURE DES ROULEMENTS À BILLES À DES CHARGES ÉLEVÉES

Les roulements à billes peuvent être fabriqués à partir d’une longue liste de matériaux. Les matériaux couramment utilisés vont des métaux comme l'acier inoxydable et l'acier chromé ou des céramiques comme le carbure de tungstène (WC) et le nitrure de silicium (Si3n4). Pour garantir que les roulements à billes fabriqués possèdent la résistance à l'usure requise, idéale pour les conditions d'application données, des évaluations tribologiques fiables sous des charges élevées sont nécessaires. Les tests tribologiques aident à quantifier et à comparer les comportements à l'usure de différents roulements à billes de manière contrôlée et surveillée afin de sélectionner le meilleur candidat pour l'application ciblée.

OBJECTIF DE MESURE

Dans cette étude, nous présentons un Nanovea Tribomètre comme l'outil idéal pour comparer la résistance à l'usure de différents roulements à billes sous des charges élevées.

Figure 1 : Configuration du test de roulement.

PROCÉDURE DE TEST

Le coefficient de frottement, COF, et la résistance à l'usure des roulements à billes fabriqués dans différents matériaux ont été évalués par un tribomètre Nanovea. Du papier de verre grain P100 a été utilisé comme matériau de comptoir. Les traces d'usure des roulements à billes ont été examinées à l'aide d'un Nanovea Profileur 3D sans contact après la fin des tests d'usure. Les paramètres de test sont résumés dans le tableau 1. Le taux d'usure, Ka été évaluée à l'aide de la formule K=V/(F×s)V est le volume usé, F est la charge normale et s est la distance de glissement. Les cicatrices d'usure des billes ont été évaluées par un Nanovea Profileur 3D sans contact pour garantir une mesure précise du volume d'usure.
La fonction de positionnement radial motorisé automatisée permet au tribomètre de diminuer le rayon de la piste d'usure pendant la durée d'un test. Ce mode de test est appelé test en spirale et garantit que le roulement à billes glisse toujours sur une nouvelle surface du papier de verre (Figure 2). Il améliore considérablement la répétabilité du test de résistance à l’usure du ballon. L'encodeur avancé 20 bits pour le contrôle de vitesse interne et l'encodeur 16 bits pour le contrôle de position externe fournissent des informations précises sur la vitesse et la position en temps réel, permettant un ajustement continu de la vitesse de rotation pour obtenir une vitesse de glissement linéaire constante au niveau du contact.
Veuillez noter que le papier de verre P100 Grit a été utilisé pour simplifier le comportement à l'usure entre les différents matériaux de billes dans cette étude et peut être remplacé par n'importe quelle autre surface de matériau. N'importe quel matériau solide peut être remplacé pour simuler les performances d'une large gamme de raccords de matériaux dans des conditions d'application réelles, comme dans un liquide ou un lubrifiant.

Figure 2 : Illustration des passes en spirale du roulement à billes sur le papier de verre.
Tableau 1 : Paramètres d'essai des mesures d'usure.

 

RÉSULTATS ET DISCUSSION

Le taux d'usure est un facteur essentiel pour déterminer la durée de vie du roulement à billes, tandis qu'un faible COF est souhaitable pour améliorer les performances et l'efficacité du roulement. La figure 3 compare l'évolution du COF pour différents roulements à billes par rapport au papier de verre lors des tests. La bille en acier Cr présente un COF accru de ~0,4 lors du test d'usure, contre ~0,32 et ~0,28 pour les roulements à billes SS440 et Al2O3. En revanche, la boule WC présente un COF constant de ~0,2 tout au long du test d'usure. Une variation observable du COF peut être observée tout au long de chaque test, attribuée aux vibrations provoquées par le mouvement de glissement des roulements à billes contre la surface rugueuse du papier de verre.

 

Figure 3 : Evolution du COF lors des tests d'usure.

Les figures 4 et 5 comparent les cicatrices d'usure des roulements à billes après qu'elles ont été mesurées respectivement par un microscope optique et un profileur optique sans contact Nanovea, et le tableau 2 résume les résultats de l'analyse des traces d'usure. Le profileur Nanovea 3D détermine avec précision le volume d'usure des roulements à billes, permettant de calculer et de comparer les taux d'usure de différents roulements à billes. On peut observer que les billes en acier Cr et SS440 présentent des cicatrices d'usure aplaties beaucoup plus grandes que les billes en céramique, c'est-à-dire Al2O3 et WC après les tests d'usure. Les billes en acier Cr et SS440 ont des taux d'usure comparables de 3,7 × 10-3 et 3,2 × 10-3 m3/N m, respectivement. En comparaison, la bille Al2O3 présente une résistance à l’usure améliorée avec un taux d’usure de 7,2×10-4 m3/N·m. La boule WC présente à peine des rayures mineures sur la zone de piste d'usure peu profonde, ce qui entraîne un taux d'usure considérablement réduit de 3,3 × 10-6 mm3/N·m.

Figure 4 : Cicatrices d'usure des roulements à billes après les tests.

Figure 5 : Morphologie 3D des cicatrices d'usure sur les roulements à billes.

Tableau 2 : Analyse des cicatrices d'usure des roulements à billes.

La figure 6 montre des images au microscope des traces d'usure produites sur le papier de verre par les quatre roulements à billes. Il est évident que la boule WC produit la trace d'usure la plus sévère (éliminant presque toutes les particules de sable sur son passage) et possède la meilleure résistance à l'usure. En comparaison, les billes en acier Cr et SS440 ont laissé une grande quantité de débris métalliques sur la trace d'usure du papier de verre.
Ces observations démontrent en outre l’importance du bénéfice d’un test en spirale. Il garantit que le roulement à billes glisse toujours sur une nouvelle surface du papier de verre, ce qui améliore considérablement la répétabilité d'un test de résistance à l'usure.

Figure 6 : Usure des traces sur le papier de verre contre différents roulements à billes.

CONCLUSION

La résistance à l'usure des roulements à billes sous haute pression joue un rôle essentiel dans leurs performances en service. Les roulements à billes en céramique possèdent une résistance à l'usure considérablement améliorée dans des conditions de contraintes élevées et réduisent le temps et les coûts liés à la réparation ou au remplacement des roulements. Dans cette étude, le roulement à billes WC présente une résistance à l'usure nettement supérieure à celle des roulements en acier, ce qui en fait un candidat idéal pour les applications de roulements soumises à une usure importante.
Un tribomètre Nanovea est conçu avec des capacités de couple élevées pour des charges allant jusqu'à 2 000 N et un moteur précis et contrôlé pour des vitesses de rotation de 0,01 à 15 000 tr/min. Il propose des tests d'usure et de frottement reproductibles en utilisant les modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules d'usure et de lubrification à haute température en option disponibles dans un système pré-intégré. Cette gamme inégalée permet aux utilisateurs de simuler différents environnements de travail sévères des roulements à billes, notamment des contraintes élevées, l'usure et des températures élevées, etc. Elle constitue également un outil idéal pour évaluer quantitativement les comportements tribologiques de matériaux supérieurs résistants à l'usure sous des charges élevées.
Un profileur 3D sans contact Nanovea fournit des mesures précises du volume d'usure et agit comme un outil pour analyser la morphologie détaillée des traces d'usure, fournissant ainsi des informations supplémentaires sur la compréhension fondamentale des mécanismes d'usure.

Préparé par
Duanjie Li, Ph.D., Jonathan Thomas et Pierre Leroux

Essai d'usure du bloc sur la bague

IMPORTANCE DE L'ÉVALUATION DE L'USURE DU BLOC SUR LA BAGUE

L'usure par glissement est la perte progressive de matière qui résulte du glissement de deux matériaux l'un contre l'autre au niveau de la zone de contact sous charge. Elle se produit inévitablement dans une grande variété d'industries où des machines et des moteurs sont en fonctionnement, notamment dans l'automobile, l'aérospatiale, le pétrole et le gaz et bien d'autres encore. Ce mouvement de glissement provoque une usure mécanique importante et un transfert de matière à la surface, ce qui peut entraîner une réduction de l'efficacité de la production, des performances de la machine ou même des dommages à la machine.
 

 

L'usure par glissement implique souvent des mécanismes d'usure complexes se produisant au niveau de la surface de contact, tels que l'usure par adhérence, l'abrasion à deux corps, l'abrasion à trois corps et l'usure par fatigue. Le comportement à l'usure des matériaux est fortement influencé par l'environnement de travail, comme la charge normale, la vitesse, la corrosion et la lubrification. Un polyvalent tribomètre capable de simuler différentes conditions de travail réalistes sera idéal pour l’évaluation de l’usure.
Le test Block-on-Ring (ASTM G77) est une technique largement utilisée qui évalue les comportements d'usure par glissement des matériaux dans différentes conditions simulées et permet un classement fiable des couples de matériaux pour des applications tribologiques spécifiques.
 
 

 

OBJECTIF DE MESURE

Dans cette application, le testeur mécanique de Nanovea mesure l'YS et l'UTS d'échantillons d'acier inoxydable SS304 et d'alliage métallique d'aluminium Al6061. Les échantillons ont été choisis pour leurs valeurs YS et UTS communément reconnues, montrant la fiabilité des méthodes d'indentation de Nanovea.

 

Le comportement à l'usure par glissement d'un bloc H-30 sur un anneau S-10 a été évalué par le tribomètre de Nanovea utilisant le module Block-on-Ring. Le bloc H-30 est fabriqué en acier à outils 01 d'une dureté de 30HRC, tandis que l'anneau S-10 est en acier de type 4620 d'une dureté de surface de 58 à 63 HRC et d'un diamètre d'anneau d'environ 34,98 mm. Des tests Block-on-Ring ont été effectués dans des environnements secs et lubrifiés pour étudier l'effet sur le comportement à l'usure. Des tests de lubrification ont été effectués avec de l'huile minérale lourde USP. La trace d'usure a été examinée à l'aide du système Nanovea Profilomètre 3D sans contact. Les paramètres de test sont résumés dans le tableau 1. Le taux d'usure (K) a été évalué à l'aide de la formule K = V/(F × s), où V est le volume usé, F est la charge normale et s est la distance de glissement.

 

 

RÉSULTATS ET DISCUSSION

La figure 2 compare le coefficient de frottement (COF) des tests Block-on-Ring dans des environnements secs et lubrifiés. Le bloc présente nettement plus de friction dans un environnement sec que dans un environnement lubrifié. COF
fluctue pendant la période de rodage au cours des 50 premiers tours et atteint un COF constant d'environ 0,8 pour le reste de l'essai d'usure de 200 tours. En comparaison, le test Block-on-Ring effectué dans le cadre de la lubrification à l'huile minérale lourde USP présente un faible COF constant de 0,09 tout au long du test d'usure de 500 000 tours. Le lubrifiant réduit considérablement le COF entre les surfaces d'environ 90 fois.

 

Les figures 3 et 4 montrent les images optiques et les profils 2D en coupe transversale des traces d'usure sur les blocs après les essais d'usure à sec et lubrifiés. Les volumes des traces d'usure et les taux d'usure sont indiqués dans le tableau 2. Le bloc d'acier après l'essai d'usure à sec à une vitesse de rotation inférieure de 72 tr/min pendant 200 tours présente un grand volume de cicatrices d'usure de 9,45 mm˙. En comparaison, l'essai d'usure réalisé à une vitesse plus élevée de 197 rpm pour 500 000 révolutions dans le lubrifiant à base d'huile minérale crée un volume de traces d'usure sensiblement plus petit de 0,03 mm˙.

 


Les images de la ÿgure 3 montrent qu'une usure sévère a lieu pendant les tests dans les conditions sèches par rapport à l'usure légère du test d'usure lubrifié. La chaleur élevée et les vibrations intenses générées pendant le test d'usure à sec favorisent l'oxydation des débris métalliques, ce qui entraîne une abrasion sévère des trois corps. Dans l'essai lubrifié, l'huile minérale réduit la friction et refroidit la face de contact tout en transportant les débris abrasifs créés par l'usure. Cela conduit à une réduction signiÿcative du taux d'usure par un facteur de ~8×10ˆ. Une telle di˛erence substantielle dans la résistance à l'usure dans des environnements di˛erents montre l'importance d'une simulation appropriée de l'usure par glissement dans des conditions de service réalistes.

 


Le comportement de l'usure peut changer radicalement lorsque de petits changements sont introduits dans les conditions d'essai. La polyvalence du tribomètre de Nanovea permet de mesurer l'usure dans des conditions de haute température, de lubrification et de tribocorrosion. Le contrôle précis de la vitesse et de la position par le moteur avancé permet d'effectuer des tests d'usure à des vitesses allant de 0,001 à 5000 tr/min, ce qui en fait un outil idéal pour les laboratoires de recherche/essai pour étudier l'usure dans des conditions tribologiques di˛erentes.

 

L'état de surface des échantillons a été examiné par le proÿlomètre optique sans contact de Nanovea. La figure 5 montre la morphologie de la surface des anneaux après les tests d'usure. La forme cylindrique est enlevée pour mieux présenter la morphologie de la surface et la rugosité créée par le processus d'usure par glissement. Une rugosité de surface significative a eu lieu en raison du processus d'abrasion à trois corps pendant l'essai d'usure à sec de 200 tours. Le bloc et la bague après l'essai d'usure à sec présentent une rugosité Ra de 14,1 et 18,1 µm, respectivement, contre 5,7 et 9,1 µm pour l'essai d'usure lubrifié à long terme de 500 000 tours à une vitesse plus élevée. Ce test démontre l'importance d'une lubrification correcte du contact entre le piston et le cylindre. Une usure importante endommage rapidement la surface de contact sans lubrification et entraîne une détérioration irréversible de la qualité de service, voire la casse du moteur.

 

 

CONCLUSION

Dans cette étude, nous montrons comment le tribomètre de Nanovea est utilisé pour évaluer le comportement à l'usure par glissement d'un couple acier-métal à l'aide du module Block-on-Ring conforme à la norme ASTM G77. Le lubrifiant joue un rôle essentiel dans les propriétés d’usure du couple de matériaux. L'huile minérale réduit le taux d'usure du bloc H-30 d'un facteur d'environ 8 × 10 et le COF d'environ 90 fois. La polyvalence du tribomètre de Nanovea en fait un outil idéal pour mesurer le comportement à l'usure dans diverses conditions de lubrification, de température élevée et de tribocorrosion.

Le tribomètre de Nanovea propose des tests d'usure et de friction précis et reproductibles en utilisant les modes rotatif et linéaire conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribocorrosion disponibles dans un système pré-intégré. La gamme inégalée de Nanovea est une solution idéale pour déterminer la gamme complète des propriétés tribologiques des revêtements, films et substrats fins ou épais, souples ou durs.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Évaluation de l'usure et des rayures d'un fil de cuivre traité en surface

Importance de l'évaluation de l'usure et de la rayure des fils de cuivre

Le cuivre a une longue histoire d'utilisation dans le câblage électrique depuis l'invention de l'électroaimant et du télégraphe. Les fils de cuivre sont utilisés dans une large gamme d'équipements électroniques tels que les panneaux, les compteurs, les ordinateurs, les machines commerciales et les appareils électroménagers, grâce à leur résistance à la corrosion, à leur soudabilité et à leurs performances à des températures élevées (jusqu'à 150 °C). Environ la moitié de tout le cuivre extrait est utilisé pour la fabrication de fils et de câbles électriques.

La qualité de la surface des fils de cuivre est essentielle pour les performances et la durée de vie des applications. Les micro-défauts des fils peuvent entraîner une usure excessive, l'apparition et la propagation de fissures, une diminution de la conductivité et une soudabilité inadéquate. Un traitement de surface approprié des fils de cuivre élimine les défauts de surface générés lors du tréfilage, améliorant ainsi la résistance à la corrosion, aux rayures et à l'usure. De nombreuses applications aérospatiales utilisant des fils de cuivre nécessitent un comportement contrôlé afin d'éviter une défaillance inattendue de l'équipement. Des mesures quantifiables et fiables sont nécessaires pour évaluer correctement la résistance à l'usure et aux rayures de la surface des fils de cuivre.

 
 

 

Objectif de la mesure

Dans cette application, nous simulons un processus d'usure contrôlée de différents traitements de surface de fils de cuivre. Essais par rayures mesure la charge nécessaire pour provoquer une rupture sur la couche de surface traitée. Cette étude présente le Nanovea Tribomètre et Testeur Méchanique comme outils idéaux pour l’évaluation et le contrôle qualité des fils électriques.

 

 

Procédure d'essai et procédures

Le coefficient de frottement (COF) et la résistance à l'usure de deux traitements de surface différents sur des fils de cuivre (fil A et fil B) ont été évalués par le tribomètre Nanovea à l'aide d'un module d'usure linéaire alternatif. Une bille d'Al₂O₃ (diamètre 6 mm) est le contre-matériau utilisé dans cette application. La trace d'usure a été examinée à l'aide du système Nanovea Profilomètre 3D sans contact. Les paramètres de test sont résumés dans le tableau 1.

Une bille lisse en Al₂O₃ comme contre-matériau a été utilisée comme exemple dans cette étude. Tout matériau solide de forme et de finition de surface différentes peut être appliqué à l'aide d'un dispositif de fixation personnalisé pour simuler la situation d'application réelle.

 

 

Le testeur mécanique de Nanovea équipé d'un stylet en diamant Rockwell C (rayon de 100 μm) a effectué des tests de rayure à charge progressive sur les fils revêtus en utilisant le mode micro-rayure. Les paramètres du test de rayure et la géométrie de la pointe sont indiqués dans le tableau 2.
 

 

 

 

Résultats et discussion

Usure du fil de cuivre :

La figure 2 montre l'évolution du COF des fils de cuivre pendant les tests d'usure. Le fil A présente un COF stable de ~0,4 tout au long de l'essai d'usure tandis que le fil B présente un COF de ~0,35 dans les 100 premiers tours et augmente progressivement jusqu'à ~0,4.

 

La figure 3 compare les traces d'usure des fils de cuivre après les tests. Le profilomètre 3D sans contact de Nanovea a offert une analyse supérieure de la morphologie détaillée des traces d'usure. Il permet une détermination directe et précise du volume des traces d'usure en fournissant une compréhension fondamentale du mécanisme d'usure. La surface du fil B présente des traces d'usure significatives après un test d'usure de 600 tours. La vue 3D du profilomètre montre que la couche traitée en surface du fil B a été complètement retirée, ce qui a considérablement accéléré le processus d'usure. Cela a laissé une trace d'usure aplatie sur le fil B, là où le substrat de cuivre est exposé. Cela peut entraîner une réduction significative de la durée de vie des équipements électriques dans lesquels le fil B est utilisé. En comparaison, le fil A présente une usure relativement faible, comme le montre une trace d'usure peu profonde sur la surface. La couche traitée en surface sur le fil A ne s'est pas retirée comme la couche sur le fil B dans les mêmes conditions.

Résistance à la rayure de la surface du fil de cuivre :

La figure 4 montre les traces de rayures sur les fils après les tests. La couche protectrice du fil A présente une très bonne résistance aux rayures. Elle se délamine à une charge de ~12,6 N. En comparaison, la couche protectrice du fil B s'est rompue à une charge de ~1,0 N. Une telle différence significative dans la résistance à la rayure de ces fils contribue à leur performance d'usure, où le fil A possède une résistance à l'usure considérablement améliorée. L'évolution de la force normale, du COF et de la profondeur au cours des tests de rayure illustrés à la Fig. 5 fournit un meilleur aperçu de la rupture du revêtement pendant les tests.

Conclusion

Dans cette étude contrôlée, nous avons présenté le tribomètre Nanovea qui effectue une évaluation quantitative de la résistance à l'usure des fils de cuivre traités en surface et le testeur mécanique Nanovea qui fournit une évaluation fiable de la résistance à la rayure des fils de cuivre. Le traitement de surface des fils joue un rôle essentiel dans les propriétés tribo-mécaniques pendant leur durée de vie. Le traitement de surface approprié du fil A a considérablement amélioré la résistance à l'usure et aux rayures, ce qui est essentiel pour la performance et la durée de vie des fils électriques dans des environnements difficiles.

Le tribomètre de Nanovea offre des tests d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. La gamme inégalée de Nanovea est une solution idéale pour déterminer la gamme complète des propriétés tribologiques des revêtements, films et substrats minces ou épais, souples ou durs.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Tribologie des charges dynamiques

Tribologie des charges dynamiques

Introduction

L'usure se produit dans pratiquement tous les secteurs industriels et impose des coûts de ~0,75% du PIB1. La recherche en tribologie est essentielle pour améliorer l'efficacité de la production, les performances des applications, ainsi que la conservation des matériaux, de l'énergie et de l'environnement. Les vibrations et les oscillations sont inévitables dans un large éventail d'applications tribologiques. Des vibrations externes excessives accélèrent le processus d'usure et réduisent les performances de service, ce qui entraîne des défaillances catastrophiques des pièces mécaniques.

Les tribomètres conventionnels à charge morte appliquent des charges normales par des poids de masse. Une telle technique de chargement limite non seulement les options de chargement à une charge constante, mais elle crée également des vibrations intenses et incontrôlées à des charges et des vitesses élevées, ce qui conduit à des évaluations limitées et incohérentes du comportement d'usure. Une évaluation fiable de l'effet des oscillations contrôlées sur le comportement d'usure des matériaux est souhaitable pour la R&D et le CQ dans différentes applications industrielles.

La charge élevée révolutionnaire de Nanovea tribomètre a une capacité de charge maximale de 2000 N avec un système de contrôle de charge dynamique. Le système avancé de chargement pneumatique à air comprimé permet aux utilisateurs d'évaluer le comportement tribologique d'un matériau sous des charges normales élevées avec l'avantage d'amortir les vibrations indésirables créées pendant le processus d'usure. Par conséquent, la charge est mesurée directement sans avoir besoin des ressorts tampons utilisés dans les conceptions plus anciennes. Un module de charge oscillant à électro-aimant parallèle applique une oscillation bien contrôlée d'amplitude souhaitée jusqu'à 20 N et de fréquence jusqu'à 150 Hz.

La friction est mesurée avec une grande précision directement à partir de la force latérale appliquée au support supérieur. Le déplacement est surveillé in situ, ce qui donne un aperçu de l'évolution du comportement à l'usure des échantillons d'essai. Le test d'usure sous charge d'oscillation contrôlée peut également être effectué dans des environnements de corrosion, de température élevée, d'humidité et de lubrification pour simuler les conditions de travail réelles pour les applications tribologiques. Un haut débit intégré profilomètre sans contact mesure automatiquement la morphologie des traces d'usure et le volume d'usure en quelques secondes.

Objectif de la mesure

Dans cette étude, nous démontrons la capacité du tribomètre à charge dynamique Nanovea T2000 à étudier le comportement tribologique de différents échantillons de revêtement et de métal dans des conditions de charge d'oscillation contrôlée.

 

Procédure d'essai

Le comportement tribologique, par exemple le coefficient de friction, COF, et la résistance à l'usure d'un revêtement résistant à l'usure de 300 µm d'épaisseur a été évalué et comparé par le tribomètre Nanovea T2000 avec un tribomètre conventionnel à charge morte utilisant une configuration broche sur disque selon ASTM G992.

Des échantillons séparés recouverts de Cu et de TiN contre une bille d'Al₂0₃ de 6 mm sous oscillation contrôlée ont été évalués par le mode de tribologie de charge dynamique du tribomètre Nanovea T2000.

Les paramètres de l'essai sont résumés dans le tableau 1.

Le profilomètre 3D intégré, équipé d'un capteur de ligne, scanne automatiquement la piste d'usure après les essais, fournissant ainsi la mesure la plus précise du volume d'usure en quelques secondes.

Résultats et discussion

 

Système de chargement pneumatique vs. système de chargement mort

 

Le comportement tribologique d'un revêtement résistant à l'usure en utilisant le tribomètre Nanovea T2000 est comparé à un tribomètre conventionnel à charge morte (DL). L'évolution du COF du revêtement est présentée à la Fig. 2. Nous observons que le revêtement présente une valeur COF comparable de ~0.6 pendant le test d'usure. Cependant, les 20 profils de section transversale à différents endroits de la piste d'usure de la Fig. 3 indiquent que le revêtement a subi une usure beaucoup plus sévère sous le système de charge morte.

Des vibrations intenses ont été générées par le processus d'usure du système de charge morte à charge et vitesse élevées. La pression massive concentrée au niveau de la face de contact, combinée à une vitesse de glissement élevée, crée des vibrations importantes au niveau du poids et de la structure, entraînant une usure accélérée. Le tribomètre conventionnel à charge morte applique la charge à l'aide de poids de masse. Cette méthode est fiable pour des charges de contact faibles dans des conditions d'usure légères ; cependant, dans des conditions d'usure agressives à des charges et des vitesses plus élevées, les vibrations importantes font rebondir les poids de manière répétée, ce qui donne une trace d'usure irrégulière et une évaluation tribologique peu fiable. Le taux d'usure calculé est de 8,0±2,4 x 10-4 mm3/N m, ce qui montre un taux d'usure élevé et un écart-type important.

Le tribomètre Nanovea T2000 est conçu avec un système de chargement à contrôle dynamique pour amortir les oscillations. Il applique la charge normale avec de l'air comprimé, ce qui minimise les vibrations indésirables créées pendant le processus d'usure. En outre, le contrôle actif de la charge en boucle fermée garantit qu'une charge constante est appliquée tout au long de l'essai d'usure et que le stylet suit le changement de profondeur de la trace d'usure. Un profil de piste d'usure nettement plus cohérent est mesuré, comme le montre la figure 3a, ce qui se traduit par un faible taux d'usure de 3,4±0,5 x 10-4 mm3/N m.

L'analyse de la trace d'usure présentée à la figure 4 confirme que l'essai d'usure effectué par le système de chargement pneumatique à air comprimé du tribomètre Nanovea T2000 crée une trace d'usure plus lisse et plus cohérente par rapport au tribomètre conventionnel à charge morte. En outre, le tribomètre Nanovea T2000 mesure le déplacement du stylet pendant le processus d'usure, ce qui donne un aperçu supplémentaire de la progression du comportement d'usure in situ.

 

 

Oscillation contrôlée sur l'usure de l'échantillon de Cu

Le module d'électroaimant de charge à oscillation parallèle du tribomètre Nanovea T2000 permet aux utilisateurs d'étudier l'effet des oscillations à amplitude et fréquence contrôlées sur le comportement d'usure des matériaux. Le COF des échantillons de Cu est enregistré in situ comme le montre la figure 6. L'échantillon de Cu présente un COF constant de ~0,3 pendant la première mesure de 330 révolutions, ce qui signifie la formation d'un contact stable à l'interface et une piste d'usure relativement lisse. Lorsque le test d'usure se poursuit, la variation du COF indique un changement dans le mécanisme d'usure. En comparaison, les essais d'usure sous une oscillation contrôlée par une amplitude de 5 N à 50 N présentent un comportement d'usure différent : le COF augmente rapidement au début du processus d'usure, et montre une variation significative tout au long de l'essai d'usure. Ce comportement du COF indique que l'oscillation imposée dans la charge normale joue un rôle dans l'état de glissement instable au niveau du contact.

La figure 7 compare la morphologie des traces d'usure mesurées par le profilomètre optique sans contact intégré. On peut observer que l'échantillon de Cu soumis à une amplitude d'oscillation contrôlée de 5 N présente une trace d'usure beaucoup plus grande avec un volume de 1,35 x 109 µm3, comparé à 5,03 x 108 µm3 sans oscillation imposée. L'oscillation contrôlée accélère significativement la vitesse d'usure par un facteur de ~2.7, montrant l'effet critique de l'oscillation sur le comportement d'usure.

 

Oscillation contrôlée sur l'usure du revêtement de TiN

Le COF et les traces d'usure de l'échantillon de revêtement TiN sont présentés à la Fig. 8. Le revêtement TiN présente des comportements d'usure très différents sous oscillation, comme l'indique l'évolution du COF pendant les tests. Le revêtement TiN présente un COF constant de ~0,3 après la période de rodage au début du test d'usure, en raison du contact glissant stable à l'interface entre le revêtement TiN et la bille en Al₂O₃. Cependant, lorsque le revêtement TiN commence à céder, la bille Al₂O₃ pénètre à travers le revêtement et glisse contre le substrat en acier frais situé en dessous. Une quantité importante de débris de revêtement TiN dur est générée dans la piste d'usure au même moment, transformant une usure par glissement stable à deux corps en une usure par abrasion à trois corps. Un tel changement des caractéristiques du couple de matériaux conduit à des variations accrues de l'évolution du COF. L'oscillation imposée de 5 N et 10 N accélère la rupture du revêtement TiN de ~400 révolutions à moins de 100 révolutions. Les traces d'usure plus importantes sur les échantillons de revêtement TiN après les tests d'usure sous oscillation contrôlée sont en accord avec un tel changement de COF.

Conclusion

Le système de chargement pneumatique avancé du tribomètre Nanovea T2000 possède un avantage intrinsèque en tant qu'amortisseur de vibrations naturellement rapide par rapport aux systèmes traditionnels de charge morte. Cet avantage technologique des systèmes pneumatiques est vrai par rapport aux systèmes à charge contrôlée qui utilisent une combinaison de servomoteurs et de ressorts pour appliquer la charge. Cette technologie garantit une évaluation fiable et mieux contrôlée de l'usure à des charges élevées, comme le démontre cette étude. En outre, le système de chargement actif en boucle fermée peut modifier la charge normale à une valeur souhaitée pendant les tests d'usure afin de simuler les applications réelles observées dans les systèmes de freinage.

Au lieu de subir l'influence de conditions de vibrations non contrôlées pendant les essais, nous avons montré que le tribomètre à charge dynamique Nanovea T2000 permet aux utilisateurs d'évaluer quantitativement les comportements tribologiques des matériaux dans différentes conditions d'oscillations contrôlées. Les vibrations jouent un rôle important dans le comportement d'usure des échantillons de revêtement en métal et en céramique.

Le module de chargement oscillant à électroaimant parallèle fournit des oscillations contrôlées avec précision à des amplitudes et des fréquences définies, permettant aux utilisateurs de simuler le processus d'usure dans des conditions réelles où les vibrations environnementales sont souvent un facteur important. En présence d'oscillations imposées pendant l'usure, les échantillons de revêtement en Cu et en TiN présentent tous deux un taux d'usure considérablement accru. L'évolution du coefficient de friction et le déplacement du stylet mesurés in situ sont des indicateurs importants de la performance du matériau pendant les applications tribologiques. Le profilomètre 3D sans contact intégré offre un outil permettant de mesurer précisément le volume d'usure et d'analyser la morphologie détaillée des traces d'usure en quelques secondes, ce qui permet de mieux comprendre les mécanismes fondamentaux de l'usure.

Le T2000 est équipé d'un moteur auto-réglable, de haute qualité et à couple élevé, avec une vitesse interne de 20 bits et un codeur de position externe de 16 bits. Il permet au tribomètre de fournir une gamme inégalée de vitesses de rotation de 0,01 à 5000 tr/min qui peuvent changer par bonds ou en continu. Contrairement aux systèmes qui utilisent un capteur de couple situé en bas, le tribomètre Nanovea utilise une cellule de charge de haute précision située en haut pour mesurer avec précision et séparément les forces de friction.

Les tribomètres Nanovea offrent des essais d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM (y compris les essais à 4 billes, à rondelle de butée et à bloc sur bague), avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. La gamme inégalée du Nanovea T2000 est une solution idéale pour déterminer la gamme complète des propriétés tribologiques des revêtements, films et substrats minces ou épais, mous ou durs.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Effet de l'humidité sur la tribologie des revêtements DLC

Importance de l'évaluation de l'usure du DLC dans l'humidité

Les revêtements en carbone de type diamant (DLC) possèdent des propriétés tribologiques améliorées, à savoir une excellente résistance à l'usure et un très faible coefficient de frottement (COF). Les revêtements DLC confèrent les caractéristiques du diamant lorsqu'ils sont déposés sur différents matériaux. Les propriétés tribo-mécaniques favorables rendent les revêtements DLC préférables dans diverses applications industrielles, telles que les pièces aérospatiales, les lames de rasoir, les outils de coupe de métal, les roulements, les moteurs de motos et les implants médicaux.

Les revêtements DLC présentent un très faible COF (inférieur à 0,1) contre les billes d'acier sous vide poussé et dans des conditions sèches.12. Cependant, les revêtements DLC sont sensibles aux changements de conditions environnementales, en particulier à l'humidité relative (HR).3. Les environnements à forte humidité et concentration d'oxygène peuvent entraîner une augmentation significative du COF4. Une évaluation fiable de l'usure dans une humidité contrôlée simule des conditions environnementales réalistes des revêtements DLC pour les applications tribologiques. Les utilisateurs sélectionnent les meilleurs revêtements DLC pour les applications cibles avec une comparaison appropriée
des comportements d'usure du DLC exposé à différentes humidités.



Objectif de la mesure

Cette étude présente le Nanovea Tribomètre équipé d'un contrôleur d'humidité, c'est l'outil idéal pour étudier le comportement à l'usure des revêtements DLC à diverses humidités relatives.

 

 



Procédure d'essai

La résistance au frottement et à l'usure des revêtements DLC a été évaluée par le tribomètre Nanovea. Les paramètres de test sont résumés dans le tableau 1. Un contrôleur d’humidité fixé à la tribo-chambre contrôlait avec précision l’humidité relative (HR) avec une précision de ± 1%. Après les tests, les traces d'usure sur les revêtements DLC et les cicatrices d'usure sur les billes de SiN ont été examinées à l'aide d'un microscope optique.

Remarque : N'importe quel matériau de bille solide peut être appliqué pour simuler les performances de différents couplages de matériaux dans des conditions environnementales telles que dans un lubrifiant ou à haute température.







Résultats et discussion

Les revêtements DLC sont parfaits pour les applications tribologiques en raison de leur faible friction et de leur résistance supérieure à l'usure. Le frottement du revêtement DLC présente un comportement dépendant de l'humidité, comme le montre la figure 2. Le revêtement DLC présente un COF très faible de ~0,05 tout au long du test d'usure dans des conditions relativement sèches (10% HR). Le revêtement DLC présente un COF constant de ~0,1 pendant l'essai lorsque l'humidité relative augmente à 30%. La phase initiale de rodage du COF est observée au cours des 2000 premiers tours lorsque l'humidité relative dépasse 50%. Le revêtement DLC présente un COF maximal de ~0,20, ~0,26 et ~0,33 pour des HR de 50, 70 et 90%, respectivement. Après la période de rodage, le COF du revêtement DLC reste constant à ~0,11, 0,13 et 0,20 pour des HR de 50, 70 et 90%, respectivement.

 



La figure 3 compare les cicatrices d'usure des billes SiN et la figure 4 compare les traces d'usure du revêtement DLC après les tests d'usure. Le diamètre de la cicatrice d'usure était plus petit lorsque le revêtement DLC était exposé à un environnement à faible humidité. La couche de transfert DLC s'accumule sur la surface de la bille SiN pendant le processus de glissement répétitif au niveau de la surface de contact. À ce stade, le revêtement DLC glisse contre sa propre couche de transfert qui agit comme un lubrifiant efficace pour faciliter le mouvement relatif et limiter la perte de masse supplémentaire causée par la déformation par cisaillement. Un film de transfert est observé dans la cicatrice d'usure de la bille en SiN dans des environnements à faible HR (par exemple 10% et 30%), ce qui entraîne un processus d'usure décéléré sur la bille. Ce processus d'usure se reflète sur la morphologie de la trace d'usure du revêtement DLC, comme le montre la figure 4. Le revêtement DLC présente une trace d'usure plus petite dans les environnements secs, en raison de la formation d'un film de transfert DLC stable à l'interface de contact, qui réduit considérablement la friction et le taux d'usure.


 


Conclusion




L'humidité joue un rôle essentiel dans les performances tribologiques des revêtements DLC. Le revêtement DLC possède une résistance à l'usure considérablement améliorée et un faible frottement supérieur dans des conditions sèches en raison de la formation d'une couche graphitique stable transférée sur la contrepartie coulissante (une bille de SiN dans cette étude). Le revêtement DLC glisse contre sa propre couche de transfert, qui agit comme un lubrifiant efficace pour faciliter le mouvement relatif et limiter la perte de masse supplémentaire causée par la déformation par cisaillement. Aucun film n'est observé sur la bille de SiN avec une humidité relative croissante, ce qui entraîne une augmentation du taux d'usure de la bille de SiN et du revêtement DLC.

Le tribomètre Nanovea propose des tests d'usure et de friction reproductibles en utilisant les modes rotatif et linéaire conformes aux normes ISO et ASTM, avec des modules d'humidité en option disponibles dans un système pré-intégré. Il permet aux utilisateurs de simuler l'environnement de travail à différentes humidités, offrant ainsi aux utilisateurs un outil idéal pour évaluer quantitativement les comportements tribologiques des matériaux dans différentes conditions de travail.



En savoir plus sur le tribomètre Nanovea et le service de laboratoire

1 C. Donnet, Surf. Coat. Technol. 100-101 (1998) 180.

2 K. Miyoshi, B. Pohlchuck, K.W. Street, J.S. Zabinski, J.H. Sanders, A.A. Voevodin, R.L.C. Wu, Wear 225-229 (1999) 65.

3 R. Gilmore, R. Hauert, Surf. Coat. Technol. 133-134 (2000) 437.

4 R. Memming, H.J. Tolle, P.E. Wierenga, Thin Solid Coatings 143 (1986) 31


MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Évaluation du frottement à des vitesses extrêmement basses

 

Importance de l'évaluation du frottement à faible vitesse

Le frottement est la force qui s'oppose au mouvement relatif de surfaces solides glissant l'une contre l'autre. Lorsque le mouvement relatif de ces deux surfaces de contact a lieu, le frottement à l'interface convertit l'énergie cinétique en chaleur. Un tel processus peut également entraîner une usure du matériau et donc une dégradation des performances des pièces utilisées.
Grâce à son taux d'étirement élevé, sa grande résilience, ses excellentes propriétés d'étanchéité et sa résistance à l'usure, le caoutchouc est largement utilisé dans une variété d'applications et de produits dans lesquels la friction joue un rôle important, tels que les pneus de voiture, les balais d'essuie-glace, les semelles de chaussures et bien d'autres. Selon la nature et les exigences de ces applications, une friction élevée ou faible contre différents matériaux est souhaitée. Par conséquent, une mesure contrôlée et fiable du frottement du caoutchouc contre diverses surfaces devient essentielle.



Objectif de la mesure

Le coefficient de frottement (COF) du caoutchouc contre différents matériaux est mesuré de manière contrôlée et surveillée à l'aide du Nanovea. Tribomètre. Dans cette étude, nous souhaitons mettre en valeur la capacité du tribomètre Nanovea à mesurer le COF de différents matériaux à des vitesses extrêmement faibles.




Résultats et discussion

Le coefficient de friction (COF) des billes de caoutchouc (6 mm de diamètre, RubberMill) sur trois matériaux (acier inoxydable SS 316, Cu 110 et acrylique en option) a été évalué par le tribomètre Nanovea. Les échantillons de métal testés ont été polis mécaniquement pour obtenir une finition de surface miroir avant la mesure. La légère déformation de la balle en caoutchouc sous la charge normale appliquée a créé une surface de contact, ce qui permet également de réduire l'impact des aspérités ou de l'inhomogénéité de la finition de surface de l'échantillon sur les mesures du COF. Les paramètres de l'essai sont résumés dans le tableau 1.


 

Le COF d'une balle en caoutchouc contre différents matériaux à quatre vitesses différentes est illustré à la Figure. 2, et les COF moyens calculés automatiquement par le logiciel sont résumés et comparés dans la Figure 3. Il est intéressant de constater que les échantillons métalliques (SS 316 et Cu 110) présentent des COF nettement plus élevés lorsque la vitesse de rotation augmente d'une valeur très faible de 0,01 tr/min à 5 tr/min - la valeur du COF du couple caoutchouc/SS 316 passe de 0,29 à 0,8, et de 0,65 à 1,1 pour le couple caoutchouc/Cu 110. Cette constatation est en accord avec les résultats rapportés par plusieurs laboratoires. Comme proposé par Grosch4 Le frottement du caoutchouc est principalement déterminé par deux mécanismes : (1) l'adhésion entre le caoutchouc et l'autre matériau, et (2) les pertes d'énergie dues à la déformation du caoutchouc causée par les aspérités de la surface. Schallamach5 a observé des vagues de détachement du caoutchouc du contre-matériau à travers l'interface entre des sphères de caoutchouc souple et une surface dure. La force de décollement du caoutchouc de la surface du substrat et la vitesse des vagues de décollement peuvent expliquer la différence de friction à différentes vitesses pendant le test.

En comparaison, le couple caoutchouc/acrylique présente un COF élevé à différentes vitesses de rotation. La valeur du COF augmente légèrement de ~ 1,02 à ~ 1,09 lorsque la vitesse de rotation passe de 0,01 tr/min à 5 tr/min. Ce COF élevé est probablement attribué à une liaison chimique locale plus forte au niveau de la face de contact formée pendant les tests.



 
 

 

 




Conclusion



Dans cette étude, nous montrons qu'à des vitesses extrêmement faibles, le caoutchouc présente un comportement de friction particulier - sa friction contre une surface dure augmente avec la vitesse du mouvement relatif. Le caoutchouc présente une friction différente lorsqu'il glisse sur différents matériaux. Le tribomètre Nanovea peut évaluer les propriétés de friction des matériaux de manière contrôlée et surveillée à différentes vitesses, permettant aux utilisateurs d'améliorer la compréhension fondamentale du mécanisme de friction des matériaux et de sélectionner le meilleur couple de matériaux pour des applications ciblées d'ingénierie tribologique.

Le tribomètre Nanovea offre des tests d'usure et de friction précis et répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure à haute température, de lubrification et de tribo-corrosion disponibles dans un système pré-intégré. Il est capable de contrôler l'étage rotatif à des vitesses extrêmement faibles, jusqu'à 0,01 tr/min, et de suivre l'évolution de la friction in situ. La gamme inégalée de Nanovea est une solution idéale pour déterminer la gamme complète des propriétés tribologiques des revêtements, films et substrats minces ou épais, mous ou durs.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Tribologie des polymères

Introduction

Les polymères ont été largement utilisés dans une grande variété d'applications et sont devenus un élément indispensable de la vie quotidienne. Les polymères naturels tels que l'ambre, la soie et le caoutchouc naturel ont joué un rôle essentiel dans l'histoire de l'humanité. Le processus de fabrication des polymères synthétiques peut être optimisé pour obtenir des propriétés physiques uniques telles que la résistance, la viscoélasticité, l'autolubrification et bien d'autres encore.

Importance de l'usure et de la friction des polymères

Les polymères sont couramment utilisés pour des applications tribologiques, comme les pneus, les roulements et les bandes transporteuses.
Différents mécanismes d'usure se produisent en fonction des propriétés mécaniques du polymère, des conditions de contact et des propriétés des débris ou du film de transfert formés au cours du processus d'usure. Pour s'assurer que les polymères possèdent une résistance à l'usure suffisante dans les conditions de service, une évaluation tribologique fiable et quantifiable est nécessaire. L'évaluation tribologique nous permet de comparer quantitativement les comportements d'usure de différents polymères de manière contrôlée et surveillée afin de sélectionner le matériau candidat pour l'application visée.

Le tribomètre Nanovea offre des tests d'usure et de friction répétables en utilisant des modes rotatifs et linéaires conformes aux normes ISO et ASTM, avec des modules optionnels d'usure et de lubrification à haute température disponibles dans un système pré-intégré. Cette gamme inégalée permet aux utilisateurs de simuler les différents environnements de travail des polymères, y compris les contraintes concentrées, l'usure et les hautes températures, etc.

OBJECTIF DE MESURE

Dans cette étude, nous avons montré que le Nanovea Tribomètre est un outil idéal pour comparer le frottement et la résistance à l’usure de différents polymères de manière bien contrôlée et quantitative.

PROCÉDURE DE TEST

Le coefficient de frottement (COF) et la résistance à l'usure de différents polymères courants ont été évalués par le Tribomètre Nanovea. Une bille d'Al2O3 a été utilisée comme contre-matériau (broche, échantillon statique). Les traces d'usure sur les polymères (échantillons en rotation dynamique) ont été mesurées à l'aide d'un profilomètre 3D sans contact et microscope optique une fois les tests terminés. Il convient de noter qu’un capteur endoscopique sans contact peut être utilisé en option pour mesurer la profondeur de pénétration de la broche dans l’échantillon dynamique lors d’un test d’usure. Les paramètres de test sont résumés dans le tableau 1. Le taux d'usure, K, a été évalué à l'aide de la formule K = Vl (Fxs), où V est le volume usé, F est la charge normale et s est la distance de glissement.

Veuillez noter que des billes d'Al2O3 ont été utilisées comme contre-matériau dans cette étude. Tout matériau solide peut être substitué pour simuler plus fidèlement les performances de deux spécimens dans des conditions d'application réelles.

RÉSULTATS ET DISCUSSION

La vitesse d'usure est un facteur vital pour déterminer la durée de vie des matériaux, tandis que le frottement joue un rôle critique dans les applications tribologiques. La figure 2 compare l'évolution du COF pour différents polymères contre la bille en Al2O3 pendant les tests d'usure. Le COF fonctionne comme un indicateur du moment où les défaillances se produisent et où le processus d'usure entre dans une nouvelle phase. Parmi les polymères testés, le PEHD maintient le COF constant le plus bas de ~0,15 tout au long du test d'usure. Le COF régulier implique qu'un tribo-contact stable est formé.

Les figures 3 et 4 comparent les traces d'usure des échantillons de polymère après leur mesure au microscope optique. Le profilomètre 3D sans contact in situ détermine précisément le volume d'usure des échantillons de polymère, ce qui permet de calculer avec exactitude des taux d'usure de 0,0029, 0,0020 et 0,0032m3/N m, respectivement. En comparaison, l'échantillon de CPVC présente le taux d'usure le plus élevé de 0,1121m3/N m. De profondes cicatrices d'usure parallèles sont présentes dans la trace d'usure du CPVC.

CONCLUSION

La résistance à l'usure des polymères joue un rôle essentiel dans leur performance de service. Dans cette étude, nous avons montré que le tribomètre Nanovea évalue le coefficient de frottement et le taux d'usure de différents polymères dans un environnement de travail.
de manière bien contrôlée et quantitative. Le HDPE montre le COF le plus bas de ~0.15 parmi les polymères testés. Les échantillons de PEHD, de Nylon 66 et de polypropylène possèdent de faibles taux d'usure de 0,0029, 0,0020 et 0,0032 m3/N m, respectivement. La combinaison d'une faible friction et d'une grande résistance à l'usure fait du HDPE un bon candidat pour les applications tribologiques des polymères.

Le profilomètre 3D sans contact in situ permet de mesurer avec précision le volume d'usure et offre un outil pour analyser la morphologie détaillée des traces d'usure, ce qui permet de mieux comprendre les mécanismes fondamentaux de l'usure.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE

Mesure continue de la courbe Stribeck à l'aide d'un tribomètre Pin-on-Disk

Introduction :

Lorsque la lubrification est appliquée pour réduire l'usure/frottement des surfaces mobiles, le contact de lubrification à l'interface peut passer de plusieurs régimes tels que la lubrification limite, mixte et hydrodynamique. L'épaisseur du film fluide joue un rôle majeur dans ce processus, principalement déterminé par la viscosité du fluide, la charge appliquée à l'interface et la vitesse relative entre les deux surfaces. La façon dont les régimes de lubrification réagissent au frottement est illustrée par ce que l'on appelle une courbe de Stribeck [1-4].

Dans cette étude, nous démontrons pour la première fois la capacité de mesurer une courbe de Stribeck continue. Utiliser le Nanovea Tribomètre contrôle avancé de la vitesse sans étape, de 15 000 à 0,01 tr/min, en 10 minutes, le logiciel fournit directement une courbe de Stribeck complète. La configuration initiale simple nécessite uniquement que les utilisateurs sélectionnent le mode rampe exponentielle et saisissent les vitesses initiales et finales, plutôt que d'avoir à effectuer plusieurs tests ou à programmer une procédure par étapes à différentes vitesses nécessitant l'assemblage de données pour les mesures conventionnelles de la courbe de Stribeck. Cette avancée fournit des données précises tout au long de l’évaluation du régime lubrifiant et réduit considérablement le temps et les coûts. Le test montre un grand potentiel d’utilisation dans différentes applications d’ingénierie industrielle.

 

Cliquez pour en savoir plus !

Comparaison de gouttes ophtalmiques lubrifiantes à l'aide du tribomètre Nanovea T50

Importance de tester les solutions de gouttes oculaires

Les solutions de gouttes oculaires sont utilisées pour soulager les symptômes causés par une série de problèmes oculaires. Par exemple, elles peuvent être utilisées pour traiter une irritation oculaire mineure (sécheresse et rougeur), retarder l'apparition d'un glaucome ou traiter des infections. Les solutions de gouttes ophtalmiques en vente libre sont principalement utilisées pour traiter la sécheresse. Leur efficacité à lubrifier l'œil peut être comparée et mesurée à l'aide d'un test de coefficient de friction.
 
La sécheresse oculaire peut être causée par un grand nombre de facteurs, par exemple la fatigue oculaire due à l'utilisation d'un ordinateur ou le fait d'être à l'extérieur dans des conditions climatiques extrêmes. Un bon collyre lubrifiant aide à maintenir et à compléter l'humidité de la surface externe des yeux. Cela permet d'atténuer l'inconfort, la sensation de brûlure ou l'irritation et la rougeur associés à la sécheresse oculaire. La mesure du coefficient de friction (COF) d'un collyre permet de déterminer son efficacité lubrifiante et de la comparer à celle d'autres solutions.

Objectif de la mesure

Dans cette étude, le coefficient de friction (COF) de trois solutions lubrifiantes différentes de gouttes ophtalmiques a été mesuré en utilisant la configuration "pin-on-disk" sur le tribomètre Nanovea T50.

Procédure d'essai et procédures

Une tige sphérique de 6 mm de diamètre en alumine a été appliquée sur une lame de verre, chaque solution de collyre servant de lubrifiant entre les deux surfaces. Les paramètres d'essai utilisés pour toutes les expériences sont résumés dans le tableau 1 ci-dessous.

Résultats et discussion

Les valeurs maximales, minimales et moyennes du coefficient de friction pour les trois solutions de collyre testées sont présentées dans le tableau 2 ci-dessous. Les graphiques du COF en fonction du nombre de tours pour chaque solution de gouttes ophtalmiques sont illustrés aux figures 2 à 4. Le COF de chaque test est resté relativement constant pendant la majeure partie de la durée totale du test. L'échantillon A avait le COF moyen le plus bas, ce qui indique qu'il avait les meilleures propriétés de lubrification.

 

Conclusion

Dans cette étude, nous démontrons la capacité du tribomètre Nanovea T50 à mesurer le coefficient de friction de trois solutions de gouttes ophtalmiques. Sur la base de ces valeurs, nous montrons que l'échantillon A a un coefficient de friction plus faible et présente donc une meilleure lubrification par rapport aux deux autres échantillons.

Nanovea Tribomètres propose des tests d'usure et de friction précis et reproductibles à l'aide de modules rotatifs et linéaires conformes aux normes ISO et ASTM. Il fournit également des modules optionnels d’usure à haute température, de lubrification et de tribocorrosion disponibles dans un système pré-intégré. Une telle polyvalence permet aux utilisateurs de mieux simuler l’environnement d’application réel et d’améliorer la compréhension fondamentale du mécanisme d’usure et des caractéristiques tribologiques de divers matériaux.

MAINTENANT, PARLONS DE VOTRE CANDIDATURE