USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Kategoria: Wgniecenie | Granica plastyczności i zmęczenie materiału

 

Granica plastyczności i wytrzymałość na rozciąganie stali i aluminium

Znaczenie pomiaru granicy plastyczności i wytrzymałości na rozciąganie metodą wgłębiania

Tradycyjnie, do badań wytrzymałości na rozciąganie i wytrzymałości na rozciąganie stosuje się duże maszyny wytrzymałościowe, wymagające użycia ogromnej siły do rozerwania próbek. Odpowiednie wykonanie wielu próbek materiału, który może być poddany tylko jednemu badaniu, jest kosztowne i czasochłonne. Małe defekty w próbce powodują zauważalne różnice w wynikach badań. Różne konfiguracje i ustawienia testerów do rozciągania dostępnych na rynku często powodują znaczne różnice w mechanice badań i wynikach.

Innowacyjna metoda wgłębiania Nanovea pozwala na uzyskanie wartości granicy plastyczności i wytrzymałości na rozciąganie porównywalnych do wartości mierzonych w konwencjonalnych próbach rozciągania. Pomiar ten otwiera nowe możliwości badawcze dla wszystkich gałęzi przemysłu. Prosta konfiguracja eksperymentu znacznie skraca czas przygotowania próbki i obniża koszty w porównaniu do skomplikowanych kształtów kuponów wymaganych w próbie rozciągania. Dzięki niewielkiemu rozmiarowi wgłębienia możliwe jest wykonanie wielu pomiarów na jednej próbce. Zapobiega to wpływowi defektów widocznych w kuponach do prób rozciągania, powstałych podczas obróbki próbek. Pomiary YS i UTS na małych próbkach w zlokalizowanym obszarze umożliwiają mapowanie i wykrywanie lokalnych defektów w rurociągach lub konstrukcjach samochodowych.
 
 

Cel pomiaru

W tym zastosowaniu Nanovea Tester mechaniczny mierzy granicę plastyczności i wytrzymałość na rozciąganie próbek stopu metalu ze stali nierdzewnej SS304 i aluminium Al6061. Próbki zostały wybrane ze względu na ich powszechnie uznane wartości granicy plastyczności i ostatecznej wytrzymałości na rozciąganie, pokazujące niezawodność metod wciskania firmy Nanovea.

Procedura badania i procedury

Testy granicy plastyczności i wytrzymałości na rozciąganie zostały przeprowadzone na urządzeniu Nanovea Mechanical Tester w urządzeniu Nanovea Mechanical Tester. Mikroindentacja tryb. W tym celu zastosowano cylindryczną płaską końcówkę diamentową o średnicy 200 μm. Stopy SS304 i Al6061 zostały wybrane ze względu na ich szerokie zastosowanie przemysłowe i powszechnie uznawane wartości granicy plastyczności i wytrzymałości na rozciąganie, aby pokazać duży potencjał i niezawodność metody wgłębiania. Próbki zostały mechanicznie wypolerowane do lustrzanego wykończenia przed badaniem, aby uniknąć wpływu chropowatości powierzchni lub defektów na wyniki testu. Warunki testowe wymieniono w tabeli 1. Na każdej próbce przeprowadzono ponad dziesięć testów, aby zapewnić powtarzalność wartości testowych.

Wyniki i dyskusja

Krzywe obciążenie-przemieszczenie próbek ze stopu SS304 i Al6061 pokazano na rysunku 3 z zaznaczonymi płaskimi odciskami wgłębnika na próbkach. Analiza krzywej obciążenia w kształcie litery "S" przy użyciu specjalnych algorytmów opracowanych przez Nanovea pozwala obliczyć granicę plastyczności i wytrzymałość na rozciąganie. Wartości są automatycznie obliczane przez oprogramowanie, co podsumowano w tabeli 1. Dla porównania podano wartości granicy plastyczności i wytrzymałości na rozciąganie uzyskane w konwencjonalnych próbach rozciągania.

 

Wniosek

W tym badaniu zaprezentowaliśmy możliwości testera mechanicznego Nanovea w ocenie granicy plastyczności i ostatecznej wytrzymałości na rozciąganie próbek blach ze stali nierdzewnej i stopów aluminium. Prosta konfiguracja eksperymentalna znacznie skraca czas i koszty przygotowania próbek wymaganych do prób rozciągania. Mały rozmiar wcięcia umożliwia wykonanie wielu pomiarów na jednej próbce. Metoda ta umożliwia pomiary YS/UTS na małych próbkach i zlokalizowanych obszarach, zapewniając rozwiązanie do mapowania YS/UTS i lokalnego wykrywania defektów rurociągów lub konstrukcji samochodowych.

Wszystkie moduły Nano, Micro i Macro testera mechanicznego Nanovea obejmują tryby testowania wcięć, zarysowań i zużycia zgodne z normami ISO i ASTM, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres testów dostępny w jednym systemie. Niezrównany asortyment Nanovea to idealne rozwiązanie do określania pełnego zakresu właściwości mechanicznych cienkich lub grubych, miękkich lub twardych powłok, folii i podłoży, w tym twardości, modułu Younga, odporności na pękanie, przyczepności, odporności na zużycie i wielu innych. Ponadto dostępny jest opcjonalny bezkontaktowy profiler 3D i moduł AFM do obrazowania 3D w wysokiej rozdzielczości wgnieceń, zarysowań i śladów zużycia, a także innych pomiarów powierzchni, takich jak chropowatość.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Cykliczny pomiar naprężeń i odkształceń metodą nanoindentacji

Cykliczny pomiar naprężeń i odkształceń metodą nanoindentacji

Dowiedz się więcej

 

Znaczenie nanoindentacji

Ciągłe pomiary sztywności (CSM) uzyskane przez nanoindentacja ujawnia zależność naprężenie-odkształcenie materiałów za pomocą minimalnie inwazyjnych metod. W przeciwieństwie do tradycyjnych metod badania wytrzymałości na rozciąganie, nanoindentacja dostarcza danych naprężenie-odkształcenie w nanoskali bez potrzeby stosowania dużego przyrządu. Krzywa naprężenie-odkształcenie dostarcza kluczowych informacji na temat progu między zachowaniem sprężystym a plastycznym, gdy próbka jest poddawana rosnącym obciążeniom. CSM daje możliwość określenia granicy plastyczności materiału bez użycia niebezpiecznego sprzętu.

 

Nanoindentacja zapewnia niezawodną i przyjazną dla użytkownika metodę szybkiego badania danych naprężenie-odkształcenie. Co więcej, pomiar zachowania naprężenie-odkształcenie w nanoskali umożliwia badanie ważnych właściwości małych powłok i cząstek w materiałach, gdy stają się one bardziej zaawansowane. Nanoindentacja dostarcza informacji na temat granicy sprężystości i granicy plastyczności, a także twardości, modułu sprężystości, pełzania, odporności na pękanie itp. dzięki czemu jest wszechstronnym narzędziem metrologicznym.

Dane naprężenie-odkształcenie dostarczone przez nanoindentację w tym badaniu identyfikują granicę sprężystości materiału, wchodząc tylko 1,2 mikrona w głąb powierzchni. Używamy CSM do określenia, w jaki sposób właściwości mechaniczne materiałów rozwijają się, gdy wgłębnik wnika głębiej w powierzchnię. Jest to szczególnie przydatne w zastosowaniach cienkowarstwowych, gdzie właściwości mogą zależeć od głębokości. Nanoindentacja to minimalnie inwazyjna metoda potwierdzania właściwości materiałów w badanych próbkach.

Test CSM jest przydatny do pomiaru właściwości materiału w zależności od głębokości. Testy cykliczne mogą być wykonywane przy stałym obciążeniu w celu określenia bardziej złożonych właściwości materiału. Może to być przydatne do badania zmęczenia lub wyeliminowania wpływu porowatości w celu uzyskania rzeczywistego modułu sprężystości.

Cel pomiaru

W tej aplikacji tester mechaniczny Nanovea wykorzystuje CSM do badania twardości i modułu sprężystości w funkcji głębokości oraz danych naprężenie-odkształcenie na standardowej próbce stali. Stal została wybrana ze względu na jej powszechnie uznaną charakterystykę, aby pokazać kontrolę i dokładność danych naprężenie-odkształcenie w nanoskali. Sferyczna końcówka o promieniu 5 mikronów została użyta do osiągnięcia wystarczająco wysokich naprężeń przekraczających granicę sprężystości stali.

 

Warunki i procedury testowe

Zastosowano następujące parametry wcięcia:

Wyniki:

 

Wzrost obciążenia podczas oscylacji zapewnia następującą krzywą głębokości w funkcji obciążenia. Podczas obciążenia przeprowadzono ponad 100 oscylacji, aby znaleźć dane naprężenie-odkształcenie, gdy wgłębnik penetruje materiał.

 

Określiliśmy naprężenie i odkształcenie na podstawie informacji uzyskanych w każdym cyklu. Maksymalne obciążenie i głębokość w każdym cyklu pozwalają nam obliczyć maksymalne naprężenie przyłożone w każdym cyklu do materiału. Odkształcenie jest obliczane na podstawie głębokości resztkowej w każdym cyklu od częściowego rozładowania. Pozwala nam to obliczyć promień pozostałego odcisku poprzez podzielenie promienia końcówki w celu uzyskania współczynnika odkształcenia. Wykres zależności naprężenia od odkształcenia dla materiału pokazuje strefy sprężyste i plastyczne z odpowiadającym im naprężeniem granicznym sprężystości. Nasze testy wykazały, że przejście między strefą sprężystą i plastyczną materiału wynosi około 0,076 odkształcenia przy granicy sprężystości 1,45 GPa.

Każdy cykl działa jak pojedyncze wgłębienie, więc w miarę zwiększania obciążenia przeprowadzamy testy na różnych kontrolowanych głębokościach w stali. Twardość i moduł sprężystości w zależności od głębokości można więc wykreślić bezpośrednio z danych uzyskanych dla każdego cyklu.

Gdy wgłębnik przemieszcza się w głąb materiału, obserwujemy wzrost twardości i spadek modułu sprężystości.

Wniosek

Wykazaliśmy, że tester mechaniczny Nanovea zapewnia wiarygodne dane naprężenie-odkształcenie. Zastosowanie kulistej końcówki z wgłębieniem CSM pozwala na pomiar właściwości materiału przy zwiększonym naprężeniu. Obciążenie i promień wgłębnika można zmieniać w celu testowania różnych materiałów na kontrolowanych głębokościach. Testery mechaniczne Nanovea zapewniają testy wgłębień w zakresie od poniżej mN do 400N.

 

Próba zginania 3-punktowego z zastosowaniem mikroindentacji

W tym zastosowaniu Nanovea Tester mechaniczny, W Mikroindentacja Tryb ten jest używany do pomiaru wytrzymałości na zginanie (przy użyciu 3-punktowego zginania) próbek prętów o różnych rozmiarach (makaronów) w celu pokazania zakresu danych. Wybrano 2 różne średnice, aby zademonstrować zarówno właściwości sprężyste, jak i kruche. Używając wgłębnika z płaską końcówką do przyłożenia obciążenia punktowego, określamy sztywność (moduł Younga) i identyfikujemy obciążenia krytyczne, przy których próbka pęknie.

Próba zginania 3-punktowego z zastosowaniem mikroindentacji