Kategoria: Wgniecenie | Granica plastyczności i zmęczenie materiału
Granica plastyczności i wytrzymałość na rozciąganie stali i aluminium
Znaczenie pomiaru granicy plastyczności i wytrzymałości na rozciąganie metodą wgłębiania
Tradycyjnie, do badań wytrzymałości na rozciąganie i wytrzymałości na rozciąganie stosuje się duże maszyny wytrzymałościowe, wymagające użycia ogromnej siły do rozerwania próbek. Odpowiednie wykonanie wielu próbek materiału, który może być poddany tylko jednemu badaniu, jest kosztowne i czasochłonne. Małe defekty w próbce powodują zauważalne różnice w wynikach badań. Różne konfiguracje i ustawienia testerów do rozciągania dostępnych na rynku często powodują znaczne różnice w mechanice badań i wynikach.
Cel pomiaru
W tym zastosowaniu Nanovea Tester mechaniczny mierzy granicę plastyczności i wytrzymałość na rozciąganie próbek stopu metalu ze stali nierdzewnej SS304 i aluminium Al6061. Próbki zostały wybrane ze względu na ich powszechnie uznane wartości granicy plastyczności i ostatecznej wytrzymałości na rozciąganie, pokazujące niezawodność metod wciskania firmy Nanovea.
Procedura badania i procedury
Testy granicy plastyczności i wytrzymałości na rozciąganie zostały przeprowadzone na urządzeniu Nanovea Mechanical Tester w urządzeniu Nanovea Mechanical Tester. Mikroindentacja tryb. W tym celu zastosowano cylindryczną płaską końcówkę diamentową o średnicy 200 μm. Stopy SS304 i Al6061 zostały wybrane ze względu na ich szerokie zastosowanie przemysłowe i powszechnie uznawane wartości granicy plastyczności i wytrzymałości na rozciąganie, aby pokazać duży potencjał i niezawodność metody wgłębiania. Próbki zostały mechanicznie wypolerowane do lustrzanego wykończenia przed badaniem, aby uniknąć wpływu chropowatości powierzchni lub defektów na wyniki testu. Warunki testowe wymieniono w tabeli 1. Na każdej próbce przeprowadzono ponad dziesięć testów, aby zapewnić powtarzalność wartości testowych.
Wyniki i dyskusja
Krzywe obciążenie-przemieszczenie próbek ze stopu SS304 i Al6061 pokazano na rysunku 3 z zaznaczonymi płaskimi odciskami wgłębnika na próbkach. Analiza krzywej obciążenia w kształcie litery "S" przy użyciu specjalnych algorytmów opracowanych przez Nanovea pozwala obliczyć granicę plastyczności i wytrzymałość na rozciąganie. Wartości są automatycznie obliczane przez oprogramowanie, co podsumowano w tabeli 1. Dla porównania podano wartości granicy plastyczności i wytrzymałości na rozciąganie uzyskane w konwencjonalnych próbach rozciągania.
Wniosek
W tym badaniu zaprezentowaliśmy możliwości testera mechanicznego Nanovea w ocenie granicy plastyczności i ostatecznej wytrzymałości na rozciąganie próbek blach ze stali nierdzewnej i stopów aluminium. Prosta konfiguracja eksperymentalna znacznie skraca czas i koszty przygotowania próbek wymaganych do prób rozciągania. Mały rozmiar wcięcia umożliwia wykonanie wielu pomiarów na jednej próbce. Metoda ta umożliwia pomiary YS/UTS na małych próbkach i zlokalizowanych obszarach, zapewniając rozwiązanie do mapowania YS/UTS i lokalnego wykrywania defektów rurociągów lub konstrukcji samochodowych.
Wszystkie moduły Nano, Micro i Macro testera mechanicznego Nanovea obejmują tryby testowania wcięć, zarysowań i zużycia zgodne z normami ISO i ASTM, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres testów dostępny w jednym systemie. Niezrównany asortyment Nanovea to idealne rozwiązanie do określania pełnego zakresu właściwości mechanicznych cienkich lub grubych, miękkich lub twardych powłok, folii i podłoży, w tym twardości, modułu Younga, odporności na pękanie, przyczepności, odporności na zużycie i wielu innych. Ponadto dostępny jest opcjonalny bezkontaktowy profiler 3D i moduł AFM do obrazowania 3D w wysokiej rozdzielczości wgnieceń, zarysowań i śladów zużycia, a także innych pomiarów powierzchni, takich jak chropowatość.
TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI
Cykliczny pomiar naprężeń i odkształceń metodą nanoindentacji
Cykliczny pomiar naprężeń i odkształceń metodą nanoindentacji
Dowiedz się więcej
Znaczenie nanoindentacji
Ciągłe pomiary sztywności (CSM) uzyskane przez nanoindentacja ujawnia zależność naprężenie-odkształcenie materiałów za pomocą minimalnie inwazyjnych metod. W przeciwieństwie do tradycyjnych metod badania wytrzymałości na rozciąganie, nanoindentacja dostarcza danych naprężenie-odkształcenie w nanoskali bez potrzeby stosowania dużego przyrządu. Krzywa naprężenie-odkształcenie dostarcza kluczowych informacji na temat progu między zachowaniem sprężystym a plastycznym, gdy próbka jest poddawana rosnącym obciążeniom. CSM daje możliwość określenia granicy plastyczności materiału bez użycia niebezpiecznego sprzętu.
Nanoindentacja zapewnia niezawodną i przyjazną dla użytkownika metodę szybkiego badania danych naprężenie-odkształcenie. Co więcej, pomiar zachowania naprężenie-odkształcenie w nanoskali umożliwia badanie ważnych właściwości małych powłok i cząstek w materiałach, gdy stają się one bardziej zaawansowane. Nanoindentacja dostarcza informacji na temat granicy sprężystości i granicy plastyczności, a także twardości, modułu sprężystości, pełzania, odporności na pękanie itp. dzięki czemu jest wszechstronnym narzędziem metrologicznym.
Dane naprężenie-odkształcenie dostarczone przez nanoindentację w tym badaniu identyfikują granicę sprężystości materiału, wchodząc tylko 1,2 mikrona w głąb powierzchni. Używamy CSM do określenia, w jaki sposób właściwości mechaniczne materiałów rozwijają się, gdy wgłębnik wnika głębiej w powierzchnię. Jest to szczególnie przydatne w zastosowaniach cienkowarstwowych, gdzie właściwości mogą zależeć od głębokości. Nanoindentacja to minimalnie inwazyjna metoda potwierdzania właściwości materiałów w badanych próbkach.
Test CSM jest przydatny do pomiaru właściwości materiału w zależności od głębokości. Testy cykliczne mogą być wykonywane przy stałym obciążeniu w celu określenia bardziej złożonych właściwości materiału. Może to być przydatne do badania zmęczenia lub wyeliminowania wpływu porowatości w celu uzyskania rzeczywistego modułu sprężystości.
Cel pomiaru
W tej aplikacji tester mechaniczny Nanovea wykorzystuje CSM do badania twardości i modułu sprężystości w funkcji głębokości oraz danych naprężenie-odkształcenie na standardowej próbce stali. Stal została wybrana ze względu na jej powszechnie uznaną charakterystykę, aby pokazać kontrolę i dokładność danych naprężenie-odkształcenie w nanoskali. Sferyczna końcówka o promieniu 5 mikronów została użyta do osiągnięcia wystarczająco wysokich naprężeń przekraczających granicę sprężystości stali.
Warunki i procedury testowe
Zastosowano następujące parametry wcięcia:
Wyniki:
Wzrost obciążenia podczas oscylacji zapewnia następującą krzywą głębokości w funkcji obciążenia. Podczas obciążenia przeprowadzono ponad 100 oscylacji, aby znaleźć dane naprężenie-odkształcenie, gdy wgłębnik penetruje materiał.
Określiliśmy naprężenie i odkształcenie na podstawie informacji uzyskanych w każdym cyklu. Maksymalne obciążenie i głębokość w każdym cyklu pozwalają nam obliczyć maksymalne naprężenie przyłożone w każdym cyklu do materiału. Odkształcenie jest obliczane na podstawie głębokości resztkowej w każdym cyklu od częściowego rozładowania. Pozwala nam to obliczyć promień pozostałego odcisku poprzez podzielenie promienia końcówki w celu uzyskania współczynnika odkształcenia. Wykres zależności naprężenia od odkształcenia dla materiału pokazuje strefy sprężyste i plastyczne z odpowiadającym im naprężeniem granicznym sprężystości. Nasze testy wykazały, że przejście między strefą sprężystą i plastyczną materiału wynosi około 0,076 odkształcenia przy granicy sprężystości 1,45 GPa.
Każdy cykl działa jak pojedyncze wgłębienie, więc w miarę zwiększania obciążenia przeprowadzamy testy na różnych kontrolowanych głębokościach w stali. Twardość i moduł sprężystości w zależności od głębokości można więc wykreślić bezpośrednio z danych uzyskanych dla każdego cyklu.
Gdy wgłębnik przemieszcza się w głąb materiału, obserwujemy wzrost twardości i spadek modułu sprężystości.
Wniosek
Wykazaliśmy, że tester mechaniczny Nanovea zapewnia wiarygodne dane naprężenie-odkształcenie. Zastosowanie kulistej końcówki z wgłębieniem CSM pozwala na pomiar właściwości materiału przy zwiększonym naprężeniu. Obciążenie i promień wgłębnika można zmieniać w celu testowania różnych materiałów na kontrolowanych głębokościach. Testery mechaniczne Nanovea zapewniają testy wgłębień w zakresie od poniżej mN do 400N.
Próba zginania 3-punktowego z zastosowaniem mikroindentacji
W tym zastosowaniu Nanovea Tester mechaniczny, W Mikroindentacja Tryb ten jest używany do pomiaru wytrzymałości na zginanie (przy użyciu 3-punktowego zginania) próbek prętów o różnych rozmiarach (makaronów) w celu pokazania zakresu danych. Wybrano 2 różne średnice, aby zademonstrować zarówno właściwości sprężyste, jak i kruche. Używając wgłębnika z płaską końcówką do przyłożenia obciążenia punktowego, określamy sztywność (moduł Younga) i identyfikujemy obciążenia krytyczne, przy których próbka pęknie.
Kategorie
- Uwagi do zastosowania
- Blok dotyczący trybologii pierścieniowej
- Korozja Tribologia
- Badanie tarcia | Współczynnik tarcia
- Badanie mechaniczne w wysokiej temperaturze
- Tribologia w wysokich temperaturach
- Wilgotność i gazy Tribologia
- Wilgotność Testy mechaniczne
- Wgłębianie | Pełzanie i odprężanie
- Wytrzymałość na wgniatanie | Wytrzymałość na złamanie
- Wgłębianie | Twardość i sprężystość
- Wgniecenie | Utrata i przechowywanie
- Wgłębianie | Stress vs Strain
- Wytrzymałość na wgniecenia | Granica plastyczności i zmęczenie
- Badania laboratoryjne
- Tribologia liniowa
- Badanie mechaniczne cieczy
- Tribologia cieczy
- Tribologia w niskich temperaturach
- Badania mechaniczne
- Informacja prasowa
- Profilometria | Płaskość i wypaczenie
- Profilometria | Geometria i kształt
- Profilometria | Chropowatość i Wykończenie
- Profilometria | Wysokość i grubość stopnia
- Profilometria | Tekstura i ziarno
- Profilometria | objętość i powierzchnia
- Badanie profilometryczne
- Tribologia "pierścień na pierścieniu
- Tribologia rotacyjna
- Testy na zarysowania | Błąd kleju
- Testy na zarysowania | Uszkodzenie spoiwa
- Próba zarysowania | zużycie wieloprzebiegowe
- Testy na zarysowania | Twardość na zarysowania
- Badanie zarysowań Tribologia
- Tradeshow
- Badania tribologiczne
- Uncategorized
Archiwa
- wrzesień 2023
- sierpień 2023
- czerwiec 2023
- maj 2023
- lipiec 2022
- maj 2022
- kwiecień 2022
- styczeń 2022
- grudzień 2021
- listopad 2021
- październik 2021
- wrzesień 2021
- sierpień 2021
- lipiec 2021
- czerwiec 2021
- maj 2021
- marzec 2021
- luty 2021
- grudzień 2020
- listopad 2020
- październik 2020
- wrzesień 2020
- lipiec 2020
- maj 2020
- kwiecień 2020
- marzec 2020
- luty 2020
- styczeń 2020
- listopad 2019
- październik 2019
- wrzesień 2019
- sierpień 2019
- lipiec 2019
- czerwiec 2019
- maj 2019
- kwiecień 2019
- marzec 2019
- styczeń 2019
- grudzień 2018
- listopad 2018
- październik 2018
- wrzesień 2018
- lipiec 2018
- czerwiec 2018
- maj 2018
- kwiecień 2018
- marzec 2018
- luty 2018
- listopad 2017
- październik 2017
- wrzesień 2017
- sierpień 2017
- czerwiec 2017
- maj 2017
- kwiecień 2017
- marzec 2017
- luty 2017
- styczeń 2017
- listopad 2016
- październik 2016
- sierpień 2016
- lipiec 2016
- czerwiec 2016
- maj 2016
- kwiecień 2016
- marzec 2016
- luty 2016
- styczeń 2016
- grudzień 2015
- listopad 2015
- październik 2015
- wrzesień 2015
- sierpień 2015
- lipiec 2015
- czerwiec 2015
- maj 2015
- kwiecień 2015
- marzec 2015
- luty 2015
- styczeń 2015
- listopad 2014
- październik 2014
- wrzesień 2014
- sierpień 2014
- lipiec 2014
- czerwiec 2014
- maj 2014
- kwiecień 2014
- marzec 2014
- luty 2014
- styczeń 2014
- grudzień 2013
- listopad 2013
- październik 2013
- wrzesień 2013
- sierpień 2013
- lipiec 2013
- czerwiec 2013
- maj 2013
- kwiecień 2013
- marzec 2013
- luty 2013
- styczeń 2013
- grudzień 2012
- listopad 2012
- październik 2012
- wrzesień 2012
- sierpień 2012
- lipiec 2012
- czerwiec 2012
- maj 2012
- kwiecień 2012
- marzec 2012
- luty 2012
- styczeń 2012
- grudzień 2011
- listopad 2011
- październik 2011
- wrzesień 2011
- sierpień 2011
- lipiec 2011
- czerwiec 2011
- maj 2011
- listopad 2010
- styczeń 2010
- kwiecień 2009
- marzec 2009
- styczeń 2009
- grudzień 2008
- październik 2008
- sierpień 2007
- lipiec 2006
- marzec 2006
- styczeń 2005
- kwiecień 2004