USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Właściwości mechaniczne hydrożelu

WŁAŚCIWOŚCI MECHANICZNE HYDROŻELU

PRZY UŻYCIU NANOINDENTACJI

Przygotowane przez

DUANJIE LI, PhD & JORGE RAMIREZ

WPROWADZENIE

Hydrożel znany jest ze swojej super chłonności wody, pozwalającej na bliskie podobieństwo elastyczności do naturalnych tkanek. To podobieństwo sprawiło, że hydrożel stał się powszechnym wyborem nie tylko w biomateriałach, ale także w elektronice, ochronie środowiska i zastosowaniach konsumenckich, takich jak soczewki kontaktowe. Każda unikalna aplikacja wymaga specyficznych właściwości mechanicznych hydrożelu.

ZNACZENIE NANOINDENTACJI DLA HYDROŻELU

Hydrożele stanowią wyjątkowe wyzwanie dla badań metodą nanoindentacji, takie jak dobór parametrów badań i przygotowanie próbek. Wiele systemów do badań metodą nanoindentacji posiada poważne ograniczenia, ponieważ nie zostały one zaprojektowane z myślą o zastosowaniu w badaniach hydrożeli. tak miękkich materiałów. Niektóre systemy nanoindentacji wykorzystują zespół cewka/magnes do przyłożenia siły do próbki. Nie ma pomiaru rzeczywistej siły, co prowadzi do niedokładnego i nieliniowego obciążenia podczas badania miękkich materiałów. materiały. Określenie punktu styku jest niezwykle trudne, ponieważ Głębokość jest jedynym parametrem faktycznie mierzonym. Niemal niemożliwe jest zaobserwowanie zmiany nachylenia w Głębokość a czas działka podczas okres, w którym końcówka wgłębnika zbliża się do materiału hydrożelowego.

W celu przezwyciężenia ograniczeń tych systemów, nano moduł NANOVEA Tester mechaniczny mierzy sprzężenie zwrotne siły za pomocą indywidualnego ogniwa obciążnikowego, aby zapewnić wysoką dokładność na wszystkich rodzajach materiałów, miękkich i twardych. Przemieszczenie sterowane piezoelektrycznie jest niezwykle precyzyjne i szybkie. Umożliwia to niezrównany pomiar właściwości lepkosprężystych poprzez wyeliminowanie wielu założeń teoretycznych, które muszą uwzględniać systemy z zespołem cewki/magnesu i bez sprzężenia zwrotnego siły.

CEL POMIARU

W tej aplikacji NANOVEA Tester mechaniczny, w trybie nanoindentacji, służy do badania twardości, modułu sprężystości i pełzania próbki hydrożelowej.

NANOVEA

PB1000

WARUNKI BADANIA

Próbkę hydrożelu umieszczoną na szklanym szkiełku badano techniką nanoindentacji przy użyciu NANOVEA Tester mechaniczny. Dla tego miękkiego materiału zastosowano końcówkę sferyczną o średnicy 3 mm. Obciążenie liniowo wzrastało od 0,06 do 10 mN podczas okresu obciążania. Następnie mierzono pełzanie na podstawie zmiany głębokości wgłębienia przy maksymalnym obciążeniu 10 mN przez 70 sekund.

PRĘDKOŚĆ ZBLIŻANIA SIĘ: 100 μm/min

ŁADUNEK KONTAKTOWY
0,06 mN
OBCIĄŻENIE MAKSYMALNE
10 mN
PRĘDKOŚĆ ZAŁADUNKU

20 mN/min

CREEP
70 s
WYNIKI I DYSKUSJA

Ewolucja obciążenia i głębokości w funkcji czasu została przedstawiona w FUGURA 1. Można zauważyć, że na wykresie dot. Głębokość a czas, bardzo trudno jest określić punkt zmiany nachylenia na początku okresu obciążenia, który zwykle sprawdza się jako wskazówka, gdzie wgłębnik zaczyna stykać się z miękkim materiałem. Jednakże, wykres Obciążenie w zależności od czasu pokazuje osobliwe zachowanie hydrożelu pod wpływem przyłożonego obciążenia. Gdy hydrożel zaczyna stykać się z wgłębnikiem kulistym, z powodu napięcia powierzchniowego hydrożel ciągnie wgłębnik kulisty, co powoduje zmniejszenie jego powierzchni. Takie zachowanie prowadzi do ujemnego zmierzonego obciążenia na początku etapu obciążania. Obciążenie stopniowo wzrasta, gdy wgłębnik zagłębia się w hydrożel, a następnie jest kontrolowane, aby było stałe przy maksymalnym obciążeniu 10 mN przez 70 sekund w celu zbadania zachowania hydrożelu podczas pełzania.

RYSUNEK 1: Ewolucja obciążenia i głębokości w funkcji czasu.

Działka o pow. Głębokość pełzania w funkcji czasu zaznaczono w RYSUNEK 2, oraz Obciążenie a przemieszczenie wykres badania metodą nanoindentacji pokazany jest w RYSUNEK 3. Hydrożel w tej pracy posiada twardość 16,9 KPa i moduł Younga 160,2 KPa, obliczone na podstawie krzywej przemieszczenia obciążenia metodą Olivera-Pharra.

Pełzanie jest ważnym czynnikiem w badaniach właściwości mechanicznych hydrożelu. Sterowanie w ścisłej pętli sprzężenia zwrotnego pomiędzy piezoelementem a ultraczułym ogniwem obciążnikowym zapewnia rzeczywiste stałe obciążenie w czasie pełzania przy maksymalnym obciążeniu. Jak pokazano w RYSUNEK 2, hydrożel ustępuje ~42 μm w wyniku pełzania w ciągu 70 sekund pod maksymalnym obciążeniem 10 mN przyłożonym przez końcówkę kulkową 3 mm.

RYSUNEK 2: Pełzanie przy maksymalnym obciążeniu 10 mN przez 70 sekund.

RYSUNEK 3: Wykres zależności obciążenia od przemieszczenia hydrożelu.

PODSUMOWANIE

W tym badaniu wykazaliśmy, że NANOVEA Tester mechaniczny, w trybie nanoindentacji, zapewnia precyzyjny i powtarzalny pomiar właściwości mechanicznych hydrożelu, w tym twardości, modułu Younga i pełzania. Duża 3 mm końcówka kulkowa zapewnia prawidłowy kontakt z powierzchnią hydrożelu. Wysokoprecyzyjny zmotoryzowany statyw do próbek umożliwia dokładne pozycjonowanie płaskiej powierzchni próbki hydrożelu pod końcówką kulkową. Hydrożel w tym badaniu wykazuje twardość 16,9 KPa i moduł Younga 160,2 KPa. Głębokość pełzania wynosi ~42 μm pod obciążeniem 10 mN przez 70 sekund.

NANOVEA Testery mechaniczne zapewniają niezrównaną wielofunkcyjność modułów Nano i Micro na jednej platformie. Oba moduły zawierają tryb testera zarysowań, testera twardości oraz testera zużycia, oferując najszerszy i najbardziej przyjazny dla użytkownika zakres badań dostępny na jednej platformie.
system.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Komentarz