USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Kategoria: Testowanie zarysowań | Uszkodzenie spójności

 

Właściwości mechaniczne powłok na płytki z węglika krzemu

Zrozumienie właściwości mechanicznych powłok na waflach z węglika krzemu ma kluczowe znaczenie. Proces produkcji urządzeń mikroelektronicznych może obejmować ponad 300 różnych etapów i może trwać od sześciu do ośmiu tygodni. Podczas tego procesu, podłoże wafla musi być w stanie wytrzymać ekstremalne warunki produkcji, ponieważ niepowodzenie na którymkolwiek etapie spowoduje stratę czasu i pieniędzy. Testowanie twardośćOdporność na przyleganie/zadrapanie oraz współczynnik COF/zużycie płytki muszą spełniać określone wymagania, aby przetrwać warunki narzucone podczas procesu produkcji i aplikacji, aby zapewnić, że nie dojdzie do awarii.

Właściwości mechaniczne powłok na płytki z węglika krzemu

Test mikroskrobania powłoki polimerowej

Testowanie zarysowań stała się jedną z najczęściej stosowanych metod oceny wytrzymałości kohezyjnej i adhezyjnej powłok. Obciążenie krytyczne, przy którym występuje określony rodzaj uszkodzenia powłoki wraz ze stopniowym wzrostem przyłożonego obciążenia, jest powszechnie uważane za niezawodne narzędzie do określania i porównywania właściwości adhezyjnych i kohezyjnych powłok. Najczęściej stosowanym wgłębnikiem do badania zarysowań jest stożkowy wgłębnik diamentowy Rockwella. Jednakże, gdy test zarysowania jest wykonywany na miękkiej powłoce polimerowej osadzonej na kruchym podłożu, takim jak wafel krzemowy, wgłębnik stożkowy ma tendencję do przebijania się przez powłokę, tworząc rowki, a nie tworząc pęknięcia lub rozwarstwienia. Pękanie kruchego wafla krzemowego ma miejsce, gdy obciążenie dalej wzrasta. Dlatego tak ważne jest opracowanie nowej techniki oceny właściwości kohezyjnych lub adhezyjnych miękkich powłok na kruchym podłożu.

Test mikroskrobania powłoki polimerowej

ASTM D7187 Wpływ temperatury z wykorzystaniem nanozarysowania

ASTM D7187, odporność lakieru na zarysowania i marmur odgrywa kluczową rolę w jego końcowym zastosowaniu. Lakier samochodowy podatny na zarysowania jest trudny i kosztowny w utrzymaniu i naprawie. Opracowano różne architektury powłok podkładu, lakieru bazowego i lakieru bezbarwnego, aby uzyskać najlepszą odporność na zarysowania/marmur. Testowanie nanozarysowań została opracowana jako standardowa metoda testowa do pomiaru mechanistycznych aspektów zachowania powłok malarskich pod wpływem zarysowań/maru, zgodnie z opisem w normie ASTM D7187.. Podczas testu zarysowania przy różnych obciążeniach występują różne podstawowe mechanizmy odkształcenia, a mianowicie odkształcenie sprężyste, odkształcenie plastyczne i pękanie. Zapewnia to ilościową ocenę odporności plastycznej i odporności na pękanie powłok malarskich.

ASTM D7187 Wpływ temperatury z wykorzystaniem nanozarysowania

Uszkodzenie powłoki stentu z rowkiem z wykorzystaniem badania nanozarysowań

Stent uwalniający lek to nowe podejście w technologii stentów. Posiada biodegradowalną i biokompatybilną powłokę polimerową, która uwalnia lek powoli i w sposób ciągły w lokalnej tętnicy, aby zahamować pogrubienie błony wewnętrznej i zapobiec ponownemu zablokowaniu tętnicy. Jednym z głównych problemów jest rozwarstwienie powłoki polimerowej, która zawiera warstwę uwalniającą lek, od metalowego podłoża stentu. Aby poprawić przyczepność tej powłoki do podłoża, stent jest projektowany w różnych kształtach. W szczególności w tym badaniu powłoka polimerowa znajduje się na dnie rowka na drucie siatkowym, co stanowi ogromne wyzwanie dla pomiaru przyczepności. Potrzebna jest niezawodna technika ilościowego pomiaru wytrzymałości międzyfazowej między powłoką polimerową a metalowym podłożem. Specjalny kształt i mała średnica siatki stentu (porównywalna z ludzkim włosem) wymagają bardzo dokładnej dokładności bocznej XY w celu zlokalizowania pozycji testowej oraz właściwej kontroli i pomiaru obciążenia i głębokości podczas testu.

Uszkodzenie powłoki stentu z rowkiem z wykorzystaniem badania nanozarysowań

przyczepność do zarysowań w skali makro

Awaria makroprzyczepności DLC

wiertła i łożyska. W tak ekstremalnych warunkach, wystarczająca spójność i przyczepność systemu powłoka/podłoże staje się kluczowa. Aby wybrać najlepsze podłoże metalowe do docelowego zastosowania i ustanowić spójny proces powlekania DLC, kluczowe znaczenie ma opracowanie niezawodnej techniki ilościowej oceny spójności i przyczepności różnych systemów powłok DLC.

Wytrzymałość kohezyjna i adhezyjna DLC przy użyciu testu makrozarysowań

Odporność na korozję powłoki po teście zarysowania

Powłoki odporne na korozję powinny charakteryzować się wystarczającą wytrzymałością mechaniczną, ponieważ są one często narażone na działanie środowisk ściernych i erozyjnych. Na przykład, ścierne piaski roponośne stale ścierają wnętrze rury, co stopniowo zagraża integralności rury i potencjalnie prowadzi do awarii. W przemyśle motoryzacyjnym korozja ma miejsce w miejscu zadrapań na samochodzie.
farby, zwłaszcza podczas mroźnej zimy, kiedy na drogi nakładane są sole. W związku z tym potrzebne jest ilościowe i wiarygodne narzędzie do pomiaru
Wpływ testów zarysowań na powłoki ochronne i ich odporność na korozję jest potrzebny, aby wybrać najbardziej odpowiednią powłokę do zamierzonego zastosowania.

Odporność na korozję powłoki po teście zarysowania

Pomiar głębokości mikro zarysowań z wykorzystaniem profilometrii 3D

W tym zastosowaniu Nanovea ST400 Profilometer jest używany do pomiar głębokości rzędu mikrozadrapań powstałych przy użyciu Nanovea Tester mechaniczny w trybie zarysowania. W ciągu kilku sekund Profilometr po pojedynczym przejściu linii w trybie 2D umożliwia pomiar powierzchni i głębokości.

Pomiar głębokości mikrozarysowań przy użyciu profilometrii 3D