USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Kategoria: Uwagi do aplikacji

 

Tekstura i wżery płyt kartonowo-gipsowych przy użyciu profilometrii 3D

Tekstura i chropowatość płyt gipsowo-kartonowych ma kluczowe znaczenie dla jakości i wyglądu produktu końcowego. Lepsze zrozumienie wpływu tekstury i spójności powierzchni na odporność na wilgoć powlekanej płyty gipsowo-kartonowej pozwala wybrać najlepszy produkt i zoptymalizować technikę malowania w celu uzyskania najlepszego rezultatu. Ilościowa, szybka i niezawodna inspekcja powierzchni powłoki jest niezbędna do ilościowej oceny jakości powierzchni. Bezkontaktowe profilometry Nanovea 3D wykorzystują chromatyczną technologię konfokalną z unikalną możliwością precyzyjnego pomiaru powierzchni próbki. Technika czujnika liniowego może zakończyć skanowanie dużej powierzchni płyty gipsowo-kartonowej w ciągu kilku minut.

Tekstura i wżery płyt kartonowo-gipsowych przy użyciu profilometrii 3D

Cykliczny pomiar naprężeń i odkształceń metodą nanoindentacji

Cykliczny pomiar naprężeń i odkształceń metodą nanoindentacji

Dowiedz się więcej

 

Znaczenie nanoindentacji

Ciągłe pomiary sztywności (CSM) uzyskane przez nanoindentacja ujawnia zależność naprężenie-odkształcenie materiałów za pomocą minimalnie inwazyjnych metod. W przeciwieństwie do tradycyjnych metod badania wytrzymałości na rozciąganie, nanoindentacja dostarcza danych naprężenie-odkształcenie w nanoskali bez potrzeby stosowania dużego przyrządu. Krzywa naprężenie-odkształcenie dostarcza kluczowych informacji na temat progu między zachowaniem sprężystym a plastycznym, gdy próbka jest poddawana rosnącym obciążeniom. CSM daje możliwość określenia granicy plastyczności materiału bez użycia niebezpiecznego sprzętu.

 

Nanoindentacja zapewnia niezawodną i przyjazną dla użytkownika metodę szybkiego badania danych naprężenie-odkształcenie. Co więcej, pomiar zachowania naprężenie-odkształcenie w nanoskali umożliwia badanie ważnych właściwości małych powłok i cząstek w materiałach, gdy stają się one bardziej zaawansowane. Nanoindentacja dostarcza informacji na temat granicy sprężystości i granicy plastyczności, a także twardości, modułu sprężystości, pełzania, odporności na pękanie itp. dzięki czemu jest wszechstronnym narzędziem metrologicznym.

Dane naprężenie-odkształcenie dostarczone przez nanoindentację w tym badaniu identyfikują granicę sprężystości materiału, wchodząc tylko 1,2 mikrona w głąb powierzchni. Używamy CSM do określenia, w jaki sposób właściwości mechaniczne materiałów rozwijają się, gdy wgłębnik wnika głębiej w powierzchnię. Jest to szczególnie przydatne w zastosowaniach cienkowarstwowych, gdzie właściwości mogą zależeć od głębokości. Nanoindentacja to minimalnie inwazyjna metoda potwierdzania właściwości materiałów w badanych próbkach.

Test CSM jest przydatny do pomiaru właściwości materiału w zależności od głębokości. Testy cykliczne mogą być wykonywane przy stałym obciążeniu w celu określenia bardziej złożonych właściwości materiału. Może to być przydatne do badania zmęczenia lub wyeliminowania wpływu porowatości w celu uzyskania rzeczywistego modułu sprężystości.

Cel pomiaru

W tej aplikacji tester mechaniczny Nanovea wykorzystuje CSM do badania twardości i modułu sprężystości w funkcji głębokości oraz danych naprężenie-odkształcenie na standardowej próbce stali. Stal została wybrana ze względu na jej powszechnie uznaną charakterystykę, aby pokazać kontrolę i dokładność danych naprężenie-odkształcenie w nanoskali. Sferyczna końcówka o promieniu 5 mikronów została użyta do osiągnięcia wystarczająco wysokich naprężeń przekraczających granicę sprężystości stali.

 

Warunki i procedury testowe

Zastosowano następujące parametry wcięcia:

Wyniki:

 

Wzrost obciążenia podczas oscylacji zapewnia następującą krzywą głębokości w funkcji obciążenia. Podczas obciążenia przeprowadzono ponad 100 oscylacji, aby znaleźć dane naprężenie-odkształcenie, gdy wgłębnik penetruje materiał.

 

Określiliśmy naprężenie i odkształcenie na podstawie informacji uzyskanych w każdym cyklu. Maksymalne obciążenie i głębokość w każdym cyklu pozwalają nam obliczyć maksymalne naprężenie przyłożone w każdym cyklu do materiału. Odkształcenie jest obliczane na podstawie głębokości resztkowej w każdym cyklu od częściowego rozładowania. Pozwala nam to obliczyć promień pozostałego odcisku poprzez podzielenie promienia końcówki w celu uzyskania współczynnika odkształcenia. Wykres zależności naprężenia od odkształcenia dla materiału pokazuje strefy sprężyste i plastyczne z odpowiadającym im naprężeniem granicznym sprężystości. Nasze testy wykazały, że przejście między strefą sprężystą i plastyczną materiału wynosi około 0,076 odkształcenia przy granicy sprężystości 1,45 GPa.

Każdy cykl działa jak pojedyncze wgłębienie, więc w miarę zwiększania obciążenia przeprowadzamy testy na różnych kontrolowanych głębokościach w stali. Twardość i moduł sprężystości w zależności od głębokości można więc wykreślić bezpośrednio z danych uzyskanych dla każdego cyklu.

Gdy wgłębnik przemieszcza się w głąb materiału, obserwujemy wzrost twardości i spadek modułu sprężystości.

Wniosek

Wykazaliśmy, że tester mechaniczny Nanovea zapewnia wiarygodne dane naprężenie-odkształcenie. Zastosowanie kulistej końcówki z wgłębieniem CSM pozwala na pomiar właściwości materiału przy zwiększonym naprężeniu. Obciążenie i promień wgłębnika można zmieniać w celu testowania różnych materiałów na kontrolowanych głębokościach. Testery mechaniczne Nanovea zapewniają testy wgłębień w zakresie od poniżej mN do 400N.

 

Jakość wykończenia obróbki przy użyciu profilometrii 3D

Wykończenie obróbki jest wynikiem różnych technik cięcia wykazujących różne cechy powierzchni. Płaskość, chropowatość i tekstura ciętej/obrabianej powierzchni ma kluczowe znaczenie dla jej końcowego zastosowania. Precyzyjne, czyste cięcie redukuje dalsze prace związane ze szlifowaniem i usuwaniem szorstkich krawędzi. Na przykład, gdy produkowane są płytki marmurowe, niedokładne i szorstkie cięcie może prowadzić do niedopasowania podczas montażu płytek podłogowych. Ilościowy pomiar tekstury powierzchni, konsystencji, chropowatości i innych parametrów ma kluczowe znaczenie dla usprawnienia procesu cięcia/obróbki i środków kontroli jakości.

Jakość wykończenia obróbki przy użyciu profilometrii 3D

Uszkodzenie powłoki stentu z rowkiem z wykorzystaniem badania nanozarysowań

Stent uwalniający lek to nowe podejście w technologii stentów. Posiada biodegradowalną i biokompatybilną powłokę polimerową, która uwalnia lek powoli i w sposób ciągły w lokalnej tętnicy, aby zahamować pogrubienie błony wewnętrznej i zapobiec ponownemu zablokowaniu tętnicy. Jednym z głównych problemów jest rozwarstwienie powłoki polimerowej, która zawiera warstwę uwalniającą lek, od metalowego podłoża stentu. Aby poprawić przyczepność tej powłoki do podłoża, stent jest projektowany w różnych kształtach. W szczególności w tym badaniu powłoka polimerowa znajduje się na dnie rowka na drucie siatkowym, co stanowi ogromne wyzwanie dla pomiaru przyczepności. Potrzebna jest niezawodna technika ilościowego pomiaru wytrzymałości międzyfazowej między powłoką polimerową a metalowym podłożem. Specjalny kształt i mała średnica siatki stentu (porównywalna z ludzkim włosem) wymagają bardzo dokładnej dokładności bocznej XY w celu zlokalizowania pozycji testowej oraz właściwej kontroli i pomiaru obciążenia i głębokości podczas testu.

Uszkodzenie powłoki stentu z rowkiem z wykorzystaniem badania nanozarysowań

Kontrola trybologiczna powłok z azotku tytanu za pomocą trybometru

Zużycie narzędzi podczas pracy powoduje utratę wymiarów i funkcjonalności narzędzi. Ma to znaczący wpływ na żywotność narzędzia, a także integralność powierzchni i dokładność wymiarów gotowych produktów. Właściwości trybologiczno-mechaniczne ceramicznych powłok ochronnych mogą znacząco poprawić wydajność i żywotność obrabiarek. Niezawodna i dokładna kontrola trybologiczna takich powłok ochronnych staje się kluczowa dla zapewnienia wysokiej jakości działania narzędzi.

Kontrola powłok z azotku tytanu za pomocą trybometru

Opcjonalny trybometr pierścieniowy z blokadą

Test Block on Ring jest szeroko stosowaną techniką, która ocenia ślizgowe zużycie materiałów w różnych symulowanych warunkach, umożliwiając wiarygodny ranking par materiałów do określonych zastosowań trybologicznych. Zużycie ślizgowe często obejmuje złożone mechanizmy zużycia zachodzące na powierzchni styku, takie jak zużycie adhezyjne, ścieranie dwubarwne, ścieranie trójbarwne i zużycie zmęczeniowe. Na zużycie materiałów znaczący wpływ ma środowisko pracy, takie jak normalne obciążenie, prędkość, korozja i smarowanie. Wszechstronny trybometr, który może symulować różne realistyczne warunki pracy, będzie idealny do oceny zużycia.

https://nanovea.com/App-Notes/block-on-ring.pdf

Pomiar zestawu ściskającego za pomocą profilometrii 3D

Pomiar zestawu ściskanego gumy stopniowo odzyskuje swój kształt po usunięciu naprężenia ściskającego. Dokładny in situ Monitorowanie ewolucji kształtu podczas okresu kompresji może zapewnić ważny wgląd w mechanizm odzyskiwania materiału. Co więcej, monitorowanie morfologii powierzchni w czasie rzeczywistym jest bardzo przydatne w różnych zastosowaniach materiałowych, takich jak suszenie farb i drukowanie 3D. Bezkontaktowe profilometry Nanovea 3D mierzą morfologię powierzchni materiałów bez dotykania próbki, unikając wprowadzania dodatkowych zadrapań lub zmian kształtu, które mogą być spowodowane przez technologie kontaktowe, takie jak przesuwanie rysika.

https://nanovea.com/App-Notes/compression-set-measurement.pdf

Nanoindentacja folii polimerowych w kontrolowanej wilgotności

Właściwości mechaniczne polimeru zmieniają się wraz ze wzrostem wilgotności otoczenia. Przejściowe efekty wilgoci, znane również jako efekty mechano-sorpcyjne, powstają, gdy polimer absorbuje wysoką zawartość wilgoci i doświadcza przyspieszonego pełzania. Wyższa podatność na pełzanie jest wynikiem złożonych połączonych efektów, takich jak zwiększona ruchliwość cząsteczek, starzenie fizyczne wywołane sorpcją i gradienty naprężeń wywołane sorpcją.

W związku z tym potrzebny jest wiarygodny i ilościowy test (nanoindentacja wilgotnościowa) wpływu sorpcji na zachowanie mechaniczne materiałów polimerowych przy różnym poziomie wilgotności. Moduł Nano testera mechanicznego Nanovea przykłada obciążenie za pomocą precyzyjnego piezoelektrycznego czujnika i bezpośrednio mierzy ewolucję siły i przemieszczenia. Jednolita wilgotność jest wytwarzana wokół końcówki wgłębnika i powierzchni próbki za pomocą obudowy izolacyjnej, co zapewnia dokładność pomiaru i minimalizuje wpływ dryftu spowodowanego gradientem wilgotności.

Nanoindentacja folii polimerowych w kontrolowanej wilgotności

Wpływ wilgotności na płaskość papieru

Płaskość papieru ma kluczowe znaczenie dla prawidłowego działania papieru drukarskiego. Komunikuje cechy funkcjonalne i sprawia wrażenie jakości papieru. Lepsze zrozumienie wpływu wilgoci na płaskość, teksturę i konsystencję papieru pozwala na optymalizację procesów przetwarzania i kontroli w celu uzyskania najlepszego produktu. Aby symulować użycie papieru w realistycznych zastosowaniach, konieczna jest wymierna, precyzyjna i niezawodna kontrola powierzchni papieru w różnych wilgotnych środowiskach. Nanovea Profilometry bezkontaktowe 3D wykorzystuje chromatyczną technologię konfokalną z unikalną możliwością precyzyjnego pomiaru powierzchni papieru. Kontroler wilgotności zapewnia precyzyjną kontrolę wilgotności w szczelnej komorze, w której badana próbka jest wystawiona na działanie wilgoci.

Wpływ wilgotności na płaskość papieru

Wpływ trybologii wilgotności na powłokę DLC

Powłoka DLC wykazuje bardzo niski współczynnik COF względem stalowej kulki (poniżej 0,1) w warunkach wysokiej próżni i suchości. Jednakże doniesiono również, że DLC jest bardzo wrażliwa na zmianę warunków środowiskowych, w szczególności na trybologię wilgotności względnej (RH). Środowisko o wysokiej wilgotności i stężeniu tlenu może prowadzić do znacznego wzrostu COF. Aby symulować realistyczne warunki środowiskowe powłoki DLC do zastosowań trybologicznych, potrzebna jest wiarygodna ocena zużycia w kontrolowanej i monitorowanej wilgotności. Pozwala to użytkownikom na prawidłowe porównanie zużycia powłok DLC wystawionych na działanie różnych wilgotności i wybranie najlepszego kandydata do docelowego zastosowania.

Wpływ trybologii wilgotności na powłokę DLC