USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Ściskanie na miękkich, elastycznych materiałach

Znaczenie badań miękkich, elastycznych materiałów

Przykładem bardzo miękkich i elastycznych próbek jest układ mikroelektromechaniczny. MEMS są wykorzystywane w codziennych produktach komercyjnych, takich jak drukarki, telefony komórkowe czy samochody [1]. Ich zastosowania obejmują również funkcje specjalne, takie jak biosensory [2] czy zbieranie energii [3]. Dla swoich zastosowań MEMS muszą być w stanie wielokrotnie odwracalnie przechodzić między swoją oryginalną konfiguracją a konfiguracją skompresowaną [4]. Aby zrozumieć jak struktury będą reagować na siły mechaniczne, można przeprowadzić próbę ściskania. Próba ściskania może być wykorzystana do badania i dostrajania różnych konfiguracji MEMS, jak również do badania górnej i dolnej granicy sił dla tych próbek.

 Nanovea Tester mechaniczny Nano Zdolność modułu do dokładnego gromadzenia danych przy bardzo małych obciążeniach i przemieszczania się na odległość powyżej 1 mm sprawia, że idealnie nadaje się do testowania miękkich i elastycznych próbek. Dzięki niezależnym czujnikom obciążenia i głębokości duże przemieszczenie wgłębnika nie wpływa na odczyty czujnika obciążenia. Możliwość przeprowadzania testów przy niskim obciążeniu w zakresie większym niż 1 mm wgłębnika sprawia, że nasz system jest wyjątkowy w porównaniu z innymi systemami nanoindentowania. Dla porównania, rozsądna odległość przemieszczania się w przypadku systemu wcięcia w skali nano wynosi zwykle poniżej 250 μm.
 

Cel pomiaru

W tym studium przypadku, Nanovea przeprowadziła testy ściskania na dwóch unikalnie różnych elastycznych, sprężystych próbkach. Zaprezentowano naszą zdolność do prowadzenia badań ściskania przy bardzo małych obciążeniach i rejestrowania dużych przemieszczeń przy jednoczesnym dokładnym uzyskiwaniu danych przy małych obciążeniach oraz jak to może być zastosowane w przemyśle MEMS. Ze względu na politykę prywatności, próbki i ich pochodzenie nie będą ujawnione w tym badaniu.

Parametry pomiarowe

Uwaga: Szybkość ładowania 1 V/min jest proporcjonalna do około 100μm przemieszczenia, gdy wgłębnik znajduje się w powietrzu.

Wyniki i dyskusja

Odpowiedź próbki na działanie sił mechanicznych można zobaczyć na wykresach zależności obciążenia od głębokości. Próbka A wykazuje tylko liniowe odkształcenie sprężyste przy parametrach testu wymienionych powyżej. Rysunek 2 jest doskonałym przykładem stabilności, którą można osiągnąć dla krzywej zależności obciążenia od głębokości przy 75μN. Ze względu na stabilność czujników obciążenia i głębokości, łatwo jest dostrzec jakąkolwiek znaczącą odpowiedź mechaniczną próbki.

Próbka B wykazuje inną odpowiedź mechaniczną niż próbka A. Po przekroczeniu 750 μm głębokości, na wykresie zaczyna pojawiać się zachowanie przypominające pęknięcie. Widoczne jest to przy gwałtownych spadkach obciążenia na głębokości 850 i 975 μm. Pomimo przemieszczania się z dużą prędkością obciążenia przez ponad 1mm w zakresie 8mN, nasze wysoce czułe czujniki obciążenia i głębokości umożliwiają użytkownikowi uzyskanie poniższych krzywych zależności obciążenia od głębokości.

Sztywność obliczono z części nieobciążającej krzywych zależności obciążenia od głębokości. Sztywność odzwierciedla siłę potrzebną do zdeformowania próbki. Do obliczeń sztywności użyto pseudo współczynnika Poissona o wartości 0,3, ponieważ rzeczywisty współczynnik materiału nie jest znany. W tym przypadku, próbka B okazała się sztywniejsza niż próbka A.

 

Wniosek

Dwie różne elastyczne próbki zostały poddane testom ściskania przy użyciu modułu Nanovea Mechanical Tester. Badania przeprowadzono przy bardzo małych obciążeniach (1mm). Badania ściskania w skali nano z użyciem Nano Modułu wykazały zdolność modułu do badania bardzo miękkich i elastycznych próbek. Dodatkowe badania w ramach tej pracy mogą dotyczyć wpływu powtarzających się cyklicznie obciążeń na aspekt odzyskiwania sprężystości przez próbki sprężyste dzięki opcji wielokrotnego obciążania oferowanej przez Nanovea Mechanical Tester.

Aby uzyskać więcej informacji na temat tej metody badawczej, prosimy o kontakt z nami pod adresem info@nanovea.com, a w celu uzyskania dodatkowych not aplikacyjnych prosimy o przejrzenie naszej obszernej biblioteki cyfrowej not aplikacyjnych.

Referencje

[1] "Wprowadzenie i obszary zastosowań MEMS." EEHerald, 1 Mar. 2017, www.eeherald.com/section/design-guide/mems_application_introduction.html.

[2] Louizos, Louizos-Alexandros; Athanasopoulos, Panagiotis G.; Varty, Kevin (2012). "Microelectromechanical Systems and Nanotechnology. A Platform for the Next Stent Technological Era". Vasc Endovascular Surg.46 (8): 605–609. doi:10.1177/1538574412462637. PMID 23047818.

[3] Hajati, Arman; Sang-Gook Kim (2011). "Ultra-wide bandwidth piezoelectric energy harvesting". AppliedPhysics Letters. 99 (8): 083105. doi:10.1063/1.3629551.

[4] Fu, Haoran, et al. "Morphable 3D mesostructures and microelectronic devices by multistable bucklingmechanics." Nature materials 17.3 (2018): 268.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Ocena klocków hamulcowych za pomocą trybologii


Znaczenie oceny wydajności poduszek przeciwodłamkowych

Klocki hamulcowe to kompozyty, czyli materiał składający się z wielu składników, który musi spełniać wiele wymogów bezpieczeństwa. Idealne klocki hamulcowe mają wysoki współczynnik tarcia (COF), niski wskaźnik zużycia, minimalny hałas i pozostają niezawodne w zmiennych warunkach. Aby zapewnić, że jakość klocków hamulcowych jest w stanie spełnić ich wymagania, badania tribologiczne mogą być wykorzystane do identyfikacji krytycznych specyfikacji.


Znaczenie niezawodności klocków hamulcowych jest stawiane bardzo wysoko; bezpieczeństwo pasażerów nigdy nie powinno być zaniedbywane. Dlatego kluczowe jest odtworzenie warunków pracy i zidentyfikowanie możliwych punktów awarii.
Z Nanoveą Tribometr, pomiędzy sworzniem, kulką lub płaską powierzchnią a stale poruszającym się materiałem przeciwstawnym przykładane jest stałe obciążenie. Tarcie między dwoma materiałami rejestruje się za pomocą sztywnego czujnika tensometrycznego, co pozwala na zbieranie właściwości materiału przy różnych obciążeniach i prędkościach oraz testuje je w środowiskach o wysokiej temperaturze, korozyjnym lub ciekłym.



Cel pomiaru

W niniejszej pracy badano współczynnik tarcia klocków hamulcowych w środowisku o stale wzrastającej temperaturze od temperatury pokojowej do 700°C. Temperatura środowiska była podnoszona in-situ do momentu zaobserwowania zauważalnego uszkodzenia klocka hamulcowego. Do tylnej strony trzpienia przymocowano termoparę, aby zmierzyć temperaturę w pobliżu interfejsu ślizgowego.



Procedura badania i procedury




Wyniki i dyskusja

W tym badaniu skupiono się głównie na temperaturze, w której klocki hamulcowe zaczynają się psuć. Uzyskane współczynniki COF nie reprezentują wartości rzeczywistych; materiał sworznia nie jest taki sam jak wirników hamulcowych. Należy również zauważyć, że zebrane dane dotyczące temperatury to temperatura sworznia, a nie temperatura interfejsu ślizgowego.

 








Na początku badania (temperatura pokojowa) współczynnik COF pomiędzy trzpieniem SS440C a klockiem hamulcowym miał stałą wartość około 0,2. Wraz ze wzrostem temperatury współczynnik COF stale wzrastał i osiągnął wartość szczytową 0,26 w pobliżu 350°C. Po przekroczeniu temperatury 390°C współczynnik COF zaczął się szybko zmniejszać. W temperaturze 450°C współczynnik COF zaczął ponownie wzrastać do wartości 0,2, ale wkrótce potem zaczął spadać do wartości 0,05.


Temperatura, przy której klocki hamulcowe stale ulegały uszkodzeniu, została określona na poziomie powyżej 500°C. Po przekroczeniu tej temperatury współczynnik COF nie był już w stanie utrzymać początkowego współczynnika COF wynoszącego 0,2.



Wniosek




Klocki hamulcowe wykazały konsekwentne uszkodzenie w temperaturze powyżej 500°C. Współczynnik COF wynoszący 0,2 powoli wzrasta do wartości 0,26, a następnie spada do 0,05 pod koniec badania (580°C). Różnica pomiędzy 0,05 a 0,2 jest 4-krotna. Oznacza to, że siła normalna w temperaturze 580°C musi być czterokrotnie większa niż w temperaturze pokojowej, aby uzyskać taką samą siłę hamowania!


Chociaż nie jest to uwzględnione w tym badaniu, Tribometr Nanovea jest również w stanie przeprowadzić badania w celu obserwacji innej ważnej właściwości klocków hamulcowych: szybkości zużycia. Wykorzystując nasze bezkontaktowe profilometry 3D, można uzyskać objętość śladu zużycia, aby obliczyć jak szybko zużywają się próbki. Testy zużycia mogą być przeprowadzone za pomocą Tribometru Nanovea w różnych warunkach i środowiskach, aby jak najlepiej zasymulować warunki pracy.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Analiza jakościowa metali obrabianych elektroerozyjnie

Obróbka elektroerozyjna (EDM) to proces produkcyjny, w którym materiał jest usuwany za pomocą prądu elektrycznego.
wyładowania [1]. Ten proces obróbki stosuje się zazwyczaj do metali przewodzących, które trudno byłoby
do obróbki konwencjonalnymi metodami.

Jak w przypadku wszystkich procesów obróbki, precyzja i dokładność muszą być wysokie, aby spełnić akceptowalne
poziomy tolerancji. W tej nocie aplikacyjnej, jakość obrabianych metali będzie oceniana za pomocą
Nanovea Bezkontaktowy profilometr 3D.

Kliknij, aby przeczytać!