ABD/GLOBAL: +1-949-461-9292
AVRUPA: +39-011-3052-794
BİZE ULAŞIN

Kategori Triboloji Testleri

 

Kaya Tribolojisi

KAYA TRİBOLOJİSİ

NANOVEA TRİBOMETRE KULLANIMI

Tarafından hazırlanmıştır

DUANJIE LI, PhD

GİRİŞ

Kayaçlar mineral taneciklerinden oluşur. Bu minerallerin türü ve bolluğu ile mineral taneleri arasındaki kimyasal bağlanma kuvveti kayaların mekanik ve tribolojik özelliklerini belirler. Jeolojik kaya döngülerine bağlı olarak kayalar dönüşümlere uğrayabilir ve genellikle üç ana türe ayrılır: magmatik, tortul ve metamorfik. Bu kayalar farklı mineral ve kimyasal bileşimler, geçirgenlikler ve parçacık boyutları sergiler ve bu özellikler onların çeşitli aşınma dirençlerine katkıda bulunur. Kaya tribolojisi, kayaların çeşitli jeolojik ve çevresel koşullardaki aşınma ve sürtünme davranışlarını araştırır.

KAYA TRİBOLOJİSİNİN ÖNEMİ

Kuyuların sondaj işlemi sırasında aşınma ve sürtünme de dahil olmak üzere kayalara karşı çeşitli aşınma türleri meydana gelir ve bu durum, matkap uçlarının ve kesici aletlerin onarımı ve değiştirilmesine atfedilen önemli doğrudan ve sonuç olarak ortaya çıkan kayıplara yol açar. Bu nedenle kayaların delinebilirliği, delinebilirliği, kesilebilirliği ve aşındırıcılığının incelenmesi petrol, gaz ve madencilik endüstrilerinde kritik öneme sahiptir. Kaya tribolojisi araştırması, en verimli ve uygun maliyetli sondaj stratejilerinin seçiminde önemli bir rol oynar, böylece genel verimliliği artırır ve malzemelerin, enerjinin ve çevrenin korunmasına katkıda bulunur. Ek olarak, yüzey sürtünmesinin en aza indirilmesi, sondaj ucu ile kaya arasındaki etkileşimin azaltılması açısından oldukça avantajlıdır, bu da takım aşınmasının azalmasına ve delme/kesme verimliliğinin artmasına neden olur.

ÖLÇÜM HEDEFI

Bu çalışmada, NANOVEA T50'nin kapasitesini göstermek için iki tip kayanın tribolojik özelliklerini simüle ettik ve karşılaştırdık. Tribometre kayaların sürtünme katsayısının ve aşınma oranının kontrollü ve izlenebilir bir şekilde ölçülmesinde.

NANOVEA

T50

ÖRNEKLER

TEST PROSEDÜRÜ

İki kaya numunesinin sürtünme katsayısı, COF ve aşınma direnci, Pin-on-Disc Aşınma Modülü kullanılarak NANOVEA T50 Tribometre ile değerlendirildi. Karşı malzeme olarak Al2O3 topu (6 mm çapında) kullanıldı. Testlerin ardından NANOVEA Temassız Profilometre kullanılarak aşınma izi incelendi. Test parametreleri aşağıda özetlenmiştir. 

Aşınma oranı K, K=V/(F×s)=A/(F×n) formülü kullanılarak değerlendirildi; burada V aşınmış hacim, F normal yük, s kayma mesafesi, A ise aşınma izinin kesit alanı ve n devir sayısıdır. Yüzey pürüzlülüğü ve aşınma izi profilleri NANOVEA Optik Profilometre ile değerlendirildi ve aşınma izi morfolojisi optik mikroskop kullanılarak incelendi. 

Bu çalışmada örnek olarak karşı malzeme olarak Al2O3 topunun kullanıldığını lütfen unutmayın. Farklı şekillerdeki herhangi bir katı malzeme, gerçek uygulama durumunu simüle etmek için özel bir fikstür kullanılarak uygulanabilir.

TEST PARAMETRELERI

ÇELİK YÜZEY

Kireçtaşı, Mermer

AŞINMA HALKASI YARIÇAPI 5 mm
NORMAL KUVVET 10 N
TEST SÜRESİ 10 dk
HIZ 100 rpm

SONUÇLAR & TARTIŞMA

Kireçtaşı ve mermer örneklerinin sertliği (H) ve Elastik Modülü (E), NANOVEA Mekanik Test Cihazının Mikro Girinti modülü kullanılarak ŞEKİL 1'de karşılaştırılmıştır. Kireçtaşı örneği, H için 1,07 ve E için 49,6 GPa değerleri kaydeden mermerin aksine, sırasıyla 0,53 ve 25,9 GPa ölçülen daha düşük H ve E değerleri sergiledi. kireçtaşı numunesi, tanecikli ve gözenekli özelliklerinden kaynaklanan daha büyük yüzey homojenliğine atfedilebilir.

İki kaya örneğinin aşınma testleri sırasında COF'nin gelişimi ŞEKİL 2'de gösterilmektedir. Kireçtaşı başlangıçta aşınma testinin başlangıcında COF'de yaklaşık 0,8'e kadar hızlı bir artış yaşar ve bu değeri test süresi boyunca korur. COF'deki bu ani değişiklik, aşınma izi içindeki temas yüzeyinde meydana gelen hızlı aşınma ve pürüzlendirme işleminden kaynaklanan Al2O3 topunun kaya numunesine nüfuz etmesine bağlanabilir. Buna karşılık mermer numunesi, yaklaşık 5 metrelik kayma mesafesinden sonra COF'de kayda değer bir artış göstererek daha yüksek değerlere ulaşıyor; bu da kireçtaşıyla karşılaştırıldığında üstün aşınma direncine işaret ediyor.

ŞEKİL 1: Kireçtaşı ve mermer numuneleri arasında Sertlik ve Young Modülü karşılaştırması.

ŞEKİL 2: Aşınma testleri sırasında kireçtaşı ve mermer numunelerinde Sürtünme Katsayısının (COF) gelişimi.

ŞEKİL 3, aşınma testlerinden sonra kireçtaşı ve mermer numunelerinin kesit profillerini karşılaştırmaktadır ve Tablo 1, aşınma izi analizinin sonuçlarını özetlemektedir. ŞEKİL 4, optik mikroskop altında numunelerin aşınma izlerini göstermektedir. Aşınma izi değerlendirmesi COF evrimi gözlemiyle uyumludur: Daha uzun süre düşük COF değerini koruyan mermer numunesi, kireçtaşı için 0,0353 mm³/N·m ile karşılaştırıldığında 0,0046 mm³/N·m daha düşük bir aşınma oranı sergiler. Mermerin üstün mekanik özellikleri, kireç taşına göre daha iyi aşınma direncine katkıda bulunur.

ŞEKİL 3: Aşınma izlerinin kesit profilleri.

VADİSİ BÖLGESİ VADİ DERİNLİK ORANI GİYMEK
KİREÇ TAŞI 35,3±5,9 × 104 μm2 229±24 mikron 0,0353 mm3/Nm
MERMER 4,6±1,2 × 104 μm2 61±15 mikron 0,0046 mm3/Nm

TABLO 1: Aşınma izi analizinin sonuç özeti.

ŞEKİL 4: Optik mikroskop altında aşınma izleri.

SONUÇ

Bu çalışmada NANOVEA Tribometrenin mermer ve kireçtaşı olmak üzere iki kaya örneğinin sürtünme katsayısını ve aşınma direncini kontrollü ve izlenebilir bir şekilde değerlendirme kapasitesini ortaya koyduk. Mermerin üstün mekanik özellikleri, olağanüstü aşınma direncine katkıda bulunur. Bu özellik, petrol ve gaz endüstrisinde delme veya kesme işlemlerini zorlaştırır. Tam tersine, yer karoları gibi yüksek kaliteli bir yapı malzemesi olarak kullanıldığında ömrünü önemli ölçüde uzatır.

NANOVEA Tribometreler, hem döner hem de doğrusal modlarda ISO ve ASTM standartlarına bağlı kalarak hassas ve tekrarlanabilir aşınma ve sürtünme testi yetenekleri sunar. Ek olarak, yüksek sıcaklıkta aşınma, yağlama ve tribokorozyon için hepsi tek bir sisteme kusursuz bir şekilde entegre edilmiş isteğe bağlı modüller sağlar. NANOVEA'nın eşsiz ürün yelpazesi, ince veya kalın, yumuşak veya sert kaplamaların, filmlerin, alt katmanların ve kaya tribolojisinin tüm tribolojik özelliklerinin belirlenmesi için ideal bir çözümdür.

PTFE Kaplama Aşınma Testi

PTFE KAPLAMA AŞINMA TESTİ

TRİBOMETRE VE MEKANİK TEST CİHAZININ KULLANILMASI

Tarafından hazırlanmıştır

DUANJIE LI, PhD

GİRİŞ

Yaygın olarak Teflon olarak bilinen politetrafloroetilen (PTFE), uygulanan yüklere bağlı olarak son derece düşük sürtünme katsayısına (COF) ve mükemmel aşınma direncine sahip bir polimerdir. PTFE, üstün kimyasal inertlik, 327°C (620°F) yüksek erime noktası sergiler ve düşük sıcaklıklarda yüksek mukavemet, tokluk ve kendi kendini yağlamayı korur. PTFE kaplamaların olağanüstü aşınma direnci, onları otomotiv, havacılık, medikal ve özellikle pişirme kapları gibi çok çeşitli endüstriyel uygulamalarda aranır kılar.

PTFE KAPLAMALARININ NİCEL DEĞERLENDİRMESİNİN ÖNEMİ

Süper düşük sürtünme katsayısı (COF), mükemmel aşınma direnci ve yüksek sıcaklıklarda istisnai kimyasal eylemsizlik kombinasyonu, PTFE'yi yapışmaz tava kaplamaları için ideal bir seçim haline getirir. Ar-Ge sırasında mekanik süreçlerini daha da geliştirmek ve Kalite Kontrol sürecinde arıza önleme ve güvenlik önlemleri üzerinde optimum kontrol sağlamak için, PTFE kaplamaların tribomekanik süreçlerini değerlendiren güvenilir bir tekniğe sahip olmak çok önemlidir. Kaplamaların yüzey sürtünmesi, aşınması ve yapışması üzerinde hassas kontrol, amaçlanan performanslarını sağlamak için esastır.

ÖLÇÜM HEDEFI

Bu uygulamada, bir yapışmaz tava için bir PTFE kaplamanın aşınma süreci, lineer ileri geri hareket modunda NANOVEA Tribometer kullanılarak simüle edilmiştir.

NANOVEA T50

Kompakt Serbest Ağırlık Tribometresi

Ek olarak, PTFE kaplama yapışma hatasının kritik yükünü belirlemek için bir mikro çizik yapışma testi gerçekleştirmek için NANOVEA Mekanik Test Cihazı kullanıldı.

NANOVEA PB1000

Büyük Platformlu Mekanik Test Cihazı

TEST PROSEDÜRÜ

AŞINMA TESTİ

BİR TRİBOMETRE KULLANARAK DOĞRUSAL KARŞILAŞTIRMALI AŞINMA

Sürtünme katsayısı (COF) ve aşınma direnci dahil olmak üzere PTFE kaplama numunesinin tribolojik davranışı NANOVEA kullanılarak değerlendirildi. Tribometre doğrusal ileri geri hareket modunda. Kaplamaya karşı 3 mm çapında (Sınıf 100) Paslanmaz Çelik 440 bilya ucu kullanıldı. COF, PTFE kaplama aşınma testi sırasında sürekli olarak izlendi.

 

Aşınma oranı K, K=V/(F×s)=A/(F×n) formülü kullanılarak hesaplandı; burada V aşınmış hacmi, F normal yükü, s kayma mesafesini, A ise aşınma izinin kesit alanı ve n, strok sayısıdır. Aşınma izi profilleri NANOVEA kullanılarak değerlendirildi Optik Profilometreve aşınma izi morfolojisi bir optik mikroskop kullanılarak incelendi.

AŞINMA TESTI PARAMETRELERI

YÜKLE 30 N
TEST SÜRESİ 5 dakika
KAYMA ORANI 80 devir
İZİN GENLİĞİ 8 mm
DEVRİMLER 300
KÜRESEL ÇAP 3 mm
KÜRESEL MALZEME Paslanmaz Çelik 440
YAĞLAYICI Hiçbiri
ATMOSFER Hava
SICAKLIK 230C (RT)
NEM 43%

TEST PROSEDÜRÜ

ÇİZİK TESTİ

MEKANİK TEST CİHAZI İLE MİKRO ÇİZİK YAPIŞMA TESTİ

PTFE çizik yapışma ölçümü NANOVEA kullanılarak yapıldı. Mekanik Test Cihazı Mikro Çizilme Test Cihazı Modunda 1200 Rockwell C elmas prob ucu (200 μm yarıçap) ile.

 

Sonuçların tekrar üretilebilirliğini sağlamak için, aynı test koşulları altında üç test gerçekleştirildi.

ÇIZIK TESTI PARAMETRELERI

YÜK TİPİ İlerici
İLK YÜK 0,01 mN
SON YÜK 20 mN
YÜKLEME ORANI 40 mN/dak
ÇİZİK UZUNLUĞU 3 mm
ÇİZME HIZI, dx/dt 6,0 mm/dak
GIRINTI GEOMETRISI 120o Rockwell C
GİRDİ MALZEMESİ (uç) Elmas
GIRINTI UCU YARIÇAPI 200 μm

SONUÇLAR & TARTIŞMA

BİR TRİBOMETRE KULLANARAK DOĞRUSAL KARŞILAŞTIRMALI AŞINMA

Yerinde kaydedilen COF, ŞEKİL 1'de gösterilmektedir. Test numunesi, PTFE'nin düşük yapışkanlığından dolayı ilk 130 devir sırasında ~0,18'lik bir COF sergiledi. Bununla birlikte, kaplama kırıldığında COF'da ~1'e ani bir artış oldu ve alttaki alt tabaka ortaya çıktı. Doğrusal ileri geri hareket testlerinin ardından aşınma izi profili NANOVEA kullanılarak ölçüldü Temassız Optik ProfilometreŞEKİL 2'de gösterildiği gibi. Elde edilen verilerden karşılık gelen aşınma oranı ~2,78 × 10-3 mm3/Nm olarak hesaplanırken aşınma izinin derinliği 44,94 µm olarak belirlendi.

NANOVEA T50 Tribometre üzerinde PTFE kaplama aşınma testi kurulumu.

ŞEKİL 1: PTFE kaplama aşınma testi sırasında COF'un gelişimi.

ŞEKİL 2: Aşınma izi PTFE'den profil çıkarma.

PTFE Atılımdan önce

Maksimum COF 0.217
Min COF 0.125
Ortalama COF 0.177

PTFE Atılımdan sonra

Maksimum COF 0.217
Min COF 0.125
Ortalama COF 0.177

TABLO 1: Aşınma testi sırasında atılımdan önce ve sonra COF.

SONUÇLAR & TARTIŞMA

MEKANİK TEST CİHAZI İLE MİKRO ÇİZİK YAPIŞMA TESTİ

PTFE kaplamanın alt tabakaya yapışması, 200 um'lik bir elmas prob ucu ile yapılan kazıma testleri kullanılarak ölçülür. Mikrograf ŞEKİL 3 ve ŞEKİL 4'te, COF Evrimi ve penetrasyon derinliği ŞEKİL 5'te gösterilmektedir. PTFE kaplama çizik testi sonuçları TABLO 4'te özetlenmiştir. Elmas prob ucu üzerindeki yük arttıkça, kademeli olarak kaplamaya nüfuz etti, COF'de bir artışa neden olur. ~8,5 N'lik bir yüke ulaşıldığında, kaplamanın kırılması ve alt tabakanın açığa çıkması yüksek basınç altında gerçekleşti ve ~0,3'lük yüksek bir COF'ye yol açtı. TABLO 2'de gösterilen düşük St Dev, NANOVEA Mekanik Test Cihazı kullanılarak yürütülen PTFE kaplama çizik testinin tekrarlanabilirliğini gösterir.

ŞEKİL 3: PTFE (10X) üzerindeki tüm çiziklerin mikrografı.

ŞEKİL 4: PTFE (10X) üzerindeki tüm çiziklerin mikrografı.

ŞEKİL 5: PTFE için kritik arıza noktası çizgisini gösteren sürtünme grafiği.

Çizik Başarısızlık Noktası [N] Sürtünme kuvveti (N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
Ortalama 8.52 2.47 0.297
st dev 0.17 0.16 0.012

TABLO 2: Çizilme testi sırasında Kritik Yük, Sürtünme Kuvveti ve COF'un Özeti.

SONUÇ

Bu çalışmada, doğrusal ileri geri hareket modunda NANOVEA T50 Tribometre kullanarak yapışmaz tavalar için bir PTFE kaplamanın aşınma sürecinin bir simülasyonunu gerçekleştirdik. PTFE kaplama, ~0.18 değerinde düşük bir COF sergiledi ve kaplama, yaklaşık 130 devirde bir atılım yaşadı. PTFE kaplamanın metal alt tabakaya yapışmasının kantitatif değerlendirmesi, bu testte kaplama yapışma hatasının kritik yükünü ~8,5 N olarak belirleyen NANOVEA Mekanik Test Cihazı kullanılarak yapıldı.

 

NANOVEA Tribometreler, ISO ve ASTM uyumlu döner ve doğrusal modları kullanarak hassas ve tekrarlanabilir aşınma ve sürtünme testi yetenekleri sunar. Hepsi tek bir sisteme entegre edilmiş yüksek sıcaklıkta aşınma, yağlama ve tribokorozyon için isteğe bağlı modüller sağlarlar. Bu çok yönlülük, kullanıcıların gerçek dünyadaki uygulama ortamlarını daha doğru bir şekilde simüle etmesine ve farklı malzemelerin aşınma mekanizmaları ve tribolojik özellikleri hakkında daha iyi bir anlayış kazanmasına olanak tanır.

 

NANOVEA Mekanik Test Cihazları, her biri ISO ve ASTM uyumlu girinti, çizik ve aşınma testi modları içeren Nano, Mikro ve Makro modüller sunarak tek bir sistemde mevcut olan en geniş ve en kullanıcı dostu test yetenekleri yelpazesini sunar.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Tribometre Kullanarak Döşemenin Aşamalı Aşınma Haritalaması

Döşemenin Aşamalı Aşınma Haritası

Entegre Profilometre ile Tribometre Kullanımı

Tarafından hazırlanmıştır

FRANK LIU

GİRİŞ

Zemin kaplama malzemeleri dayanıklı olacak şekilde tasarlanmıştır ancak genellikle hareket ve mobilya kullanımı gibi günlük aktivitelerden dolayı aşınma ve yıpranmaya maruz kalırlar. Uzun ömürlü olmalarını sağlamak için çoğu zemin kaplaması hasara karşı dayanıklı koruyucu bir aşınma katmanına sahiptir. Ancak aşınma tabakasının kalınlığı ve dayanıklılığı döşeme tipine ve yaya trafiğinin seviyesine bağlı olarak değişiklik göstermektedir. Ayrıca zemin yapısındaki UV kaplamalar, dekoratif katmanlar ve sır gibi farklı katmanların aşınma oranları da farklılık gösterir. Aşamalı aşınma haritalamanın devreye girdiği yer burasıdır. NANOVEA T2000 Tribometreyi entegre bir şekilde kullanmak 3D Temassız ProfilometreDöşeme malzemelerinin performansının ve ömrünün hassas bir şekilde izlenmesi ve analizi yapılabilir. Bilim insanları ve teknik profesyoneller, çeşitli zemin kaplama malzemelerinin aşınma davranışı hakkında ayrıntılı bilgi sağlayarak yeni zemin kaplama sistemlerini seçerken ve tasarlarken daha bilinçli kararlar verebilirler.

ZEMİN PANELLERİ İÇİN AŞAMALI AŞINMA HARİTALAMASININ ÖNEMİ

Zemin testleri geleneksel olarak aşınmaya karşı dayanıklılığını belirlemek için bir numunenin aşınma oranına odaklanmıştır. Ancak aşamalı aşınma haritalaması, test boyunca numunenin aşınma oranının analiz edilmesine olanak tanıyarak aşınma davranışı hakkında değerli bilgiler sağlar. Bu derinlemesine analiz, sürtünme verileri ile aşınma oranı arasında korelasyon kurulmasına olanak tanıyarak aşınmanın temel nedenlerini belirleyebilir. Aşınma oranlarının aşınma testleri boyunca sabit olmadığı unutulmamalıdır. Bu nedenle, aşınmanın ilerleyişini gözlemlemek numunenin aşınması hakkında daha doğru bir değerlendirme sağlar. Geleneksel test yöntemlerinin ötesine geçerek, aşamalı aşınma haritalamasının benimsenmesi, zemin testi alanında önemli ilerlemelere katkıda bulunmuştur.

Entegre 3D Temassız Profilometreye sahip NANOVEA T2000 Tribometre, aşınma testi ve hacim kaybı ölçümleri için çığır açan bir çözümdür. Pim ile profilometre arasında hassas bir şekilde hareket etme yeteneği, aşınma izi yarıçapındaki veya konumundaki herhangi bir sapmayı ortadan kaldırarak sonuçların güvenilirliğini garanti eder. Ancak hepsi bu kadar değil; 3D Temassız Profilometrenin gelişmiş özellikleri, yüksek hızlı yüzey ölçümlerine olanak tanıyarak tarama süresini yalnızca saniyelere indirir. 2.000 N'ye kadar yük uygulama ve 5.000 rpm'ye kadar eğirme hızlarına ulaşma kapasitesiyle NANOVEA T2000 Tribometre değerlendirme sürecinde çok yönlülük ve hassasiyet sunar. Bu ekipmanın aşamalı aşınma haritalamasında hayati bir rol oynadığı açıktır.

 

ŞEKİL 1: Aşınma testinden önce numune kurulumu (solda) ve aşınma izinin aşınma testi sonrası profilometrisi (sağda).

ÖLÇÜM HEDEFI

Aşamalı aşınma haritalama testi iki tip döşeme malzemesi üzerinde gerçekleştirilmiştir: taş ve ahşap. Her numune, zaman içindeki aşınmanın karşılaştırılmasına olanak tanıyan 2, 4, 8, 20, 40, 60 ve 120 saniyelik artan test süreleri ile toplam 7 test döngüsüne tabi tutulmuştur. Her test döngüsünden sonra, aşınma izinin profili NANOVEA 3D Temassız Profilometre kullanılarak çıkarılmıştır. Profilometre tarafından toplanan verilerden, deliğin hacmi ve aşınma oranı, NANOVEA Tribometer yazılımındaki veya yüzey analiz yazılımımız Mountains'deki entegre özellikler kullanılarak analiz edilebilir.

NANOVEA

T2000

aşınma haritalama test örnekleri ahşap ve taş

 ÖRNEKLER 

AŞINMA HARITALAMA TEST PARAMETRELERI

YÜKLE40 N
TEST SÜRESİdeğişir
HIZ200 rpm
RADIUS10 mm
MESAFEdeğişir
KÜRESEL MALZEMETungsten Karbür
KÜRESEL ÇAP10 mm

Yedi döngü boyunca kullanılan test süreleri şöyleydi 2, 4, 8, 20, 40, 60 ve 120 saniyesırasıyla. Kat edilen mesafeler 0.40, 0.81, 1.66, 4.16, 8.36, 12.55 ve 25.11 metre.

AŞINMA HARITALAMA SONUÇLARI

AHŞAP DÖŞEME

Test DöngüsüMaksimum COFMin COFAvg. COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

RADYAL YÖNLENDİRME

Test DöngüsüToplam Hacim Kaybı (µm3Toplam Mesafe
Seyahat Edilen (m)
Aşınma Oranı
(mm/Nm) x10-5
Anlık Aşınma Oranı
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
ahşap progresif aşınma oranı vs toplam mesafe

ŞEKİL 2: Kat edilen toplam mesafeye karşı aşınma oranı (solda)
ve ahşap döşeme için test döngüsüne karşı anlık aşınma oranı (sağda).

ahşap zemi̇ni̇n aşamali aşinma hari̇tasi

ŞEKİL 3: COF grafiği ve ahşap zemin üzerindeki #7 testinden aşınma izinin 3D görünümü.

aşınma haritası çıkarılmış profil

ŞEKİL 4: Test #7'den Ahşap Aşınma İzinin Kesit Analizi

aşamalı aşınma haritalama hacim ve alan analizi

ŞEKİL 5: Ahşap Numune Testi #7 üzerindeki Aşınma İzinin Hacim ve Alan Analizi.

AŞINMA HARITALAMA SONUÇLARI

TAŞ DÖŞEME

Test DöngüsüMaksimum COFMin COFAvg. COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

RADYAL YÖNLENDİRME

Test DöngüsüToplam Hacim Kaybı (µm3Toplam Mesafe
Seyahat Edilen (m)
Aşınma Oranı
(mm/Nm) x10-5
Anlık Aşınma Oranı
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
taş döşeme aşınma oranı vs mesafe
taş döşeme anlık aşınma oranı tablosu

ŞEKİL 6: Kat edilen toplam mesafeye karşı aşınma oranı (solda)
ve taş döşeme için test döngüsüne karşı anlık aşınma oranı (sağda).

taş zemin 3d aşınma izi profili

ŞEKİL 7: COF grafiği ve taş zemin üzerindeki #7 testinden aşınma izinin 3D görünümü.

taş zemin aşamalı aşınma haritalama çıkarılmış profil
taş döşeme çıkarılan profil maksimum derinlik ve yükseklik delik ve tepe alanı

ŞEKİL 8: Test #7'den Taş Aşınma İzinin Kesit Analizi.

ahşap zemi̇n aşamali aşinma hari̇talama haci̇m anali̇zi̇

ŞEKİL 9: Taş Numune Testi #7 üzerindeki Aşınma İzinin Hacim ve Alan Analizi.

TARTIŞMA

Anlık aşınma oranı aşağıdaki denklem ile hesaplanır:
döşeme formülünün aşamalı aşınma haritası

V'nin bir deliğin hacmi, N'nin yük ve X'in toplam mesafe olduğu bu denklem, test döngüleri arasındaki aşınma oranını tanımlar. Anlık aşınma oranı, test boyunca aşınma oranındaki değişiklikleri daha iyi tanımlamak için kullanılabilir.

Her iki numune de çok farklı aşınma davranışlarına sahiptir. Zaman içinde, ahşap döşeme yüksek bir aşınma oranıyla başlar ancak hızla daha küçük, sabit bir değere düşer. Taş döşeme için aşınma oranı düşük bir değerden başlıyor ve döngüler boyunca daha yüksek bir değere doğru eğilim gösteriyor. Anlık aşınma oranı da çok az tutarlılık göstermektedir. Farklılığın spesifik nedeni kesin değildir ancak numunelerin yapısından kaynaklanıyor olabilir. Taş döşeme, ahşabın kompakt yapısına kıyasla farklı şekilde aşınacak olan gevşek tanecik benzeri parçacıklardan oluşuyor gibi görünmektedir. Bu aşınma davranışının nedenini belirlemek için ek test ve araştırmalara ihtiyaç duyulacaktır.

Sürtünme katsayısından (COF) elde edilen veriler, gözlemlenen aşınma davranışıyla uyumlu görünmektedir. Ahşap döşeme için COF grafiği, sabit aşınma oranını tamamlayacak şekilde döngüler boyunca tutarlı görünmektedir. Taş döşeme için ortalama COF, aşınma oranının da döngülerle birlikte artmasına benzer şekilde döngüler boyunca artmaktadır. Sürtünme grafiklerinin şeklinde de belirgin değişiklikler vardır, bu da bilyenin taş numuneyle nasıl etkileşime girdiğinde değişiklikler olduğunu göstermektedir. Bu durum en belirgin şekilde döngü 2 ve döngü 4'te görülmektedir.

SONUÇ

NANOVEA T2000 Tribometre, iki farklı zemin numunesi arasındaki aşınma oranını analiz ederek aşamalı aşınma haritalaması yapma yeteneğini sergiliyor. Sürekli aşınma testinin durdurulması ve yüzeyin NANOVEA 3D Temassız Profilometre ile taranması, malzemenin zaman içindeki aşınma davranışı hakkında değerli bilgiler sağlar.

Entegre 3D Temassız Profilometreye sahip NANOVEA T2000 Tribometre, COF (Sürtünme Katsayısı) verileri, yüzey ölçümleri, derinlik okumaları, yüzey görselleştirme, hacim kaybı, aşınma oranı ve daha fazlası dahil olmak üzere çok çeşitli veriler sağlar. Bu kapsamlı bilgi seti, kullanıcıların sistem ile numune arasındaki etkileşimleri daha iyi anlamalarını sağlar. Kontrollü yükleme, yüksek hassasiyet, kullanım kolaylığı, yüksek yükleme, geniş hız aralığı ve ek çevresel modülleri ile NANOVEA T2000 Tribometre, tribolojiyi bir üst seviyeye taşır.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Tribometre Kullanarak Yüksek Sıcaklıkta Çizilme Sertliği

YÜKSEK SICAKLIKTA ÇIZILME SERTLIĞI

TRIBOMETRE KULLANARAK

Tarafından hazırlanmıştır

DUANJIE, PhD

GİRİŞ

Sertlik, malzemelerin kalıcı veya plastik deformasyona karşı direncini ölçer. İlk olarak 1820 yılında Alman mineralog Friedrich Mohs tarafından geliştirilen çizilme sertliği testi, bir malzemenin keskin bir cisimden kaynaklanan sürtünme nedeniyle çizilme ve aşınmaya karşı sertliğini belirler1. Mohs ölçeği doğrusal bir ölçekten ziyade karşılaştırmalı bir indekstir, bu nedenle ASTM standardı G171-03'te açıklandığı gibi daha doğru ve kalitatif bir çizilme sertliği ölçümü geliştirilmiştir2. Bir elmas kalem tarafından oluşturulan çiziğin ortalama genişliğini ölçer ve çizik sertlik sayısını (HSP) hesaplar.

YÜKSEK SICAKLIKLARDA ÇİZİK SERTLİĞİ ÖLÇÜMÜNÜN ÖNEMİ

Malzemeler hizmet gereksinimlerine göre seçilir. Önemli sıcaklık değişiklikleri ve termal gradyanlar içeren uygulamalarda, mekanik limitlerin tam olarak farkında olmak için malzemelerin yüksek sıcaklıklardaki mekanik özelliklerini araştırmak kritik önem taşır. Malzemeler, özellikle polimerler, genellikle yüksek sıcaklıklarda yumuşar. Birçok mekanik arıza, sadece yüksek sıcaklıklarda meydana gelen sürünme deformasyonu ve termal yorgunluktan kaynaklanır. Bu nedenle, yüksek sıcaklık uygulamaları için malzemelerin doğru seçimini sağlamak amacıyla yüksek sıcaklıklarda sertliği ölçmek için güvenilir bir tekniğe ihtiyaç vardır.

ÖLÇÜM HEDEFI

Bu çalışmada, NANOVEA T50 Tribometre, bir Teflon numunesinin oda sıcaklığından 300°C'ye kadar farklı sıcaklıklarda çizilme sertliğini ölçmektedir. Yüksek sıcaklıkta çizilme sertliği ölçümü yapabilme yeteneği NANOVEA'yı Tribometre Yüksek sıcaklık uygulamalarına yönelik malzemelerin tribolojik ve mekanik değerlendirmeleri için çok yönlü bir sistem.

NANOVEA

T50

TEST KOŞULLARI

NANOVEA T50 Serbest Ağırlık Standart Tribometresi, oda sıcaklığı (RT) ile 300°C arasında değişen sıcaklıklarda bir Teflon numunesi üzerinde çizilme sertliği testleri gerçekleştirmek için kullanılmıştır. Teflonun erime noktası 326,8°C'dir. Uç yarıçapı 200 µm olan 120° tepe açısına sahip konik bir elmas uç kullanılmıştır. Teflon numune, döner numune tablasına, tabla merkezine 10 mm mesafe kalacak şekilde sabitlenmiştir. Numune bir fırın ile ısıtılmış ve RT, 50°C, 100°C, 150°C, 200°C, 250°C ve 300°C sıcaklıklarda test edilmiştir.

TEST PARAMETRELERI

yüksek sıcaklıkta çizilme sertliği ölçümü

NORMAL KUVVET 2 N
KAYMA HIZI 1 mm/s
KAYAN MESAFE Sıcaklık başına 8mm
ATMOSFER Hava
SICAKLIK RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

SONUÇLAR & TARTIŞMA

Teflon numunenin farklı sıcaklıklardaki çizik izi profilleri, farklı yüksek sıcaklıklardaki çizik sertliğini karşılaştırmak için ŞEKİL 1'de gösterilmiştir. Çizik izi kenarlarındaki malzeme yığılması, kalem 2 N'luk sabit bir yükte hareket ederken ve Teflon numunesine sürülürken, çizik izindeki malzemeyi yana doğru iterek ve deforme ederek oluşur.

Çizik izleri ŞEKİL 2'de gösterildiği gibi optik mikroskop altında incelenmiştir. Ölçülen çizik izi genişlikleri ve hesaplanan çizik sertlik sayıları (HSP) ŞEKİL 3'te özetlenmiş ve karşılaştırılmıştır. Mikroskopla ölçülen çizik izi genişliği, NANOVEA Profiler kullanılarak ölçülenle uyumludur - Teflon numunesi daha yüksek sıcaklıklarda daha geniş bir çizik genişliği sergiler. Sıcaklık RT'den 300oC'ye yükseldikçe çizik izi genişliği 281'den 539 µm'ye çıkmakta, bu da HSP'nin 65'ten 18 MPa'ya düşmesine neden olmaktadır.

Yüksek sıcaklıklarda çizilme sertliği, NANOVEA T50 Tribometre kullanılarak yüksek hassasiyet ve tekrarlanabilirlik ile ölçülebilir. Diğer sertlik ölçümlerine alternatif bir çözüm sağlar ve NANOVEA Tribometrelerini kapsamlı yüksek sıcaklık tribo-mekanik değerlendirmeleri için daha eksiksiz bir sistem haline getirir.

ŞEKİL 1: Farklı sıcaklıklarda çizilme sertliği testlerinden sonra çizik izi profilleri.

ŞEKİL 2: Farklı sıcaklıklardaki ölçümlerden sonra mikroskop altında çizik izleri.

ŞEKİL 3: Çizik izi genişliğinin ve çizik sertliğinin sıcaklığa karşı gelişimi.

SONUÇ

Bu çalışmada, NANOVEA Tribometrenin ASTM G171-03'e uygun olarak yüksek sıcaklıklarda çizilme sertliğini nasıl ölçtüğünü gösteriyoruz. Sabit yükte çizilme sertliği testi, tribometre kullanarak malzemelerin sertliğini karşılaştırmak için alternatif basit bir çözüm sunar. Yüksek sıcaklıklarda çizilme sertliği ölçümleri gerçekleştirme kapasitesi, NANOVEA Tribometreyi malzemelerin yüksek sıcaklıktaki tribo-mekanik özelliklerini değerlendirmek için ideal bir araç haline getirir.

NANOVEA Tribometre ayrıca ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak hassas ve tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklık aşınması, yağlama ve tribo-korozyon modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. Pürüzlülük gibi diğer yüzey ölçümlerine ek olarak aşınma izlerinin yüksek çözünürlüklü 3D görüntülemesi için isteğe bağlı 3D temassız profilleyici mevcuttur.

1 Wredenberg, Fredrik; PL Larsson (2009). "Metallerin ve polimerlerin çizik testi: Experiments and numerics". Aşınma 266 (1-2): 76
2 ASTM G171-03 (2009), "Elmas Stylus Kullanılarak Malzemelerin Çizilme Sertliği için Standart Test Yöntemi"

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Endüstriyel Kaplamalar Çizilme ve Aşınma Değerlendirmesi

ENDÜSTRİYEL KAPLAMA

TRIBOMETRE KULLANARAK ÇIZIK VE AŞINMA DEĞERLENDIRMESI

Tarafından hazırlanmıştır

DUANJIE LI, PhD & ANDREA HERRMANN

GİRİŞ

Akrilik üretan boya, zemin boyası, oto boyası ve diğerleri gibi çeşitli endüstriyel uygulamalarda yaygın olarak kullanılan hızlı kuruyan bir koruyucu kaplama türüdür. Zemin boyası olarak kullanıldığında, yürüyüş yolları, bordürler ve otoparklar gibi yoğun yaya ve lastik tekerlek trafiği olan alanlara hizmet edebilir.

KALİTE KONTROL İÇİN ÇİZİK VE AŞINMA TESTLERİNİN ÖNEMİ

Geleneksel olarak, ASTM D4060 standardına göre akrilik üretan zemin boyasının aşınma direncini değerlendirmek için Taber aşınma testleri gerçekleştirilmiştir. Ancak, standartta belirtildiği gibi, "Bazı malzemeler için, Taber Aşındırıcı kullanılarak yapılan aşınma testleri, test sırasında tekerleğin aşındırıcı özelliklerindeki değişiklikler nedeniyle değişkenliğe maruz kalabilir. "1 Bu, test sonuçlarının tekrarlanabilirliğinin zayıf olmasına ve farklı laboratuvarlardan bildirilen değerlerin karşılaştırılmasında zorluklara neden olabilir. Ayrıca, Taber aşınma testlerinde, aşınma direnci belirli sayıda aşınma döngüsünde ağırlık kaybı olarak hesaplanır. Bununla birlikte, akrilik üretan zemin boyalarının önerilen kuru film kalınlığı 37,5-50 μm2'dir.

Taber Abraser tarafından gerçekleştirilen agresif aşındırma işlemi akrilik üretan kaplamayı hızla aşındırabilir ve alt tabakada kütle kaybı yaratarak boya ağırlık kaybının hesaplanmasında önemli hatalara yol açabilir. Aşındırma testi sırasında boyaya aşındırıcı partiküllerin implantasyonu da hatalara katkıda bulunur. Bu nedenle, boyanın tekrarlanabilir aşınma değerlendirmesini sağlamak için iyi kontrol edilen ölçülebilir ve güvenilir bir ölçüm çok önemlidir. Buna ek olarak çizik testi kullanıcıların gerçek hayattaki uygulamalarda erken yapıştırıcı / tutkal arızalarını tespit etmelerini sağlar.

ÖLÇÜM HEDEFI

Bu çalışmada NANOVEA'nın Tribometreler ve Mekanik Test Cihazları Endüstriyel kaplamaların değerlendirilmesi ve kalite kontrolü için idealdir.

Farklı son katlara sahip akrilik üretan zemin boyalarının aşınma süreci, NANOVEA Tribometre kullanılarak kontrollü ve izlenebilir bir şekilde simüle edilmiştir. Mikro çizik testi, boyada yapışkan veya yapışkan arızasına neden olmak için gereken yükü ölçmek için kullanılır.

NANOVEA T100

Kompakt Pnömatik Tribometre

NANOVEA PB1000

Geniş Platform Mekanik Test Cihazı

TEST PROSEDÜRÜ

Bu çalışma, dayanıklılığı arttırmak amacıyla katkı karışımlarında küçük bir değişiklikle aynı formüle sahip aynı astar (taban kat) ve farklı son katlara sahip ticari olarak temin edilebilen dört su bazlı akrilik zemin kaplamasını değerlendirmektedir. Bu dört kaplama A, B, C ve D Örnekleri olarak tanımlanmıştır.

AŞINMA TESTİ

NANOVEA Tribometre, örneğin sürtünme katsayısı, COF ve aşınma direnci gibi tribolojik davranışı değerlendirmek için uygulandı. Test edilen boyalara bir SS440 bilye ucu (6 mm çap, Sınıf 100) uygulandı. COF yerinde kaydedildi. Aşınma oranı K, K=V/(F×s)=A/(F×n) formülü kullanılarak değerlendirildi; burada V aşınmış hacim, F normal yük, s kayma mesafesi, A ise aşınma izinin kesit alanı ve n, devir sayısıdır. Yüzey pürüzlülüğü ve aşınma izi profilleri NANOVEA tarafından değerlendirildi Optik Profilometreve aşınma izi morfolojisi optik mikroskop kullanılarak incelenmiştir.

AŞINMA TESTI PARAMETRELERI

NORMAL KUVVET

20 N

HIZ

15 m/dak

TEST SÜRESI

100, 150, 300 ve 800 döngü

ÇİZİK TESTİ

Rockwell C elmas uç (200 μm yarıçap) ile donatılmış NANOVEA Mekanik Test Cihazı, Mikro Çizik Test Cihazı Modu kullanılarak boya numuneleri üzerinde aşamalı yük çizik testleri gerçekleştirmek için kullanılmıştır. İki nihai yük kullanılmıştır: Boyanın astardan ayrılmasını incelemek için 5 N nihai yük ve astarın metal alt tabakalardan ayrılmasını incelemek için 35 N nihai yük. Sonuçların tekrarlanabilirliğini sağlamak için her numune üzerinde aynı test koşullarında üç test tekrarlanmıştır.

Tüm çizik uzunluklarının panoramik görüntüleri otomatik olarak oluşturuldu ve kritik arıza konumları sistem yazılımı tarafından uygulanan yüklerle ilişkilendirildi. Bu yazılım özelliği, kullanıcıların çizik testlerinden hemen sonra mikroskop altında kritik yükü belirlemek zorunda kalmak yerine, çizik izleri üzerinde istedikleri zaman analiz yapmalarını kolaylaştırmaktadır.

ÇIZIK TESTI PARAMETRELERI

YÜK TİPİİlerici
İLK YÜK0,01 mN
SON YÜK5 N / 35 N
YÜKLEME ORANI10 / 70 N/dak
ÇİZİK UZUNLUĞU3 mm
ÇİZME HIZI, dx/dt6,0 mm/dak
GIRINTI GEOMETRISI120º koni
GİRDİ MALZEMESİ (uç)Elmas
GIRINTI UCU YARIÇAPI200 μm

AŞINMA TESTI SONUÇLARI

Aşınmanın gelişimini izlemek için her bir numune üzerinde farklı devir sayılarında (100, 150, 300 ve 800 devir) dört adet pin-on-disk aşınma testi gerçekleştirilmiştir. Aşınma testi yapılmadan önce yüzey pürüzlülüğünü ölçmek için numunelerin yüzey morfolojisi NANOVEA 3D Temassız Profilleyici ile ölçülmüştür. Tüm numuneler, ŞEKİL 1'de gösterildiği gibi yaklaşık 1 μm'lik karşılaştırılabilir bir yüzey pürüzlülüğüne sahipti. COF, ŞEKİL 2'de gösterildiği gibi aşınma testleri sırasında in situ olarak kaydedilmiştir. ŞEKİL 4'te 100, 150, 300 ve 800 döngüden sonra aşınma izlerinin gelişimi ve ŞEKİL 3'te aşınma sürecinin farklı aşamalarında farklı numunelerin ortalama aşınma oranı özetlenmiştir.

 

Diğer üç numune için ~0,07 olan COF değeri ile karşılaştırıldığında, Numune A başlangıçta ~0,15 gibi çok daha yüksek bir COF sergilemekte, bu değer kademeli olarak artmakta ve 300 aşınma döngüsünden sonra ~0,3'te sabitlenmektedir. Bu kadar yüksek bir COF aşınma sürecini hızlandırır ve ŞEKİL 4'te gösterildiği gibi önemli miktarda boya döküntüsü oluşturur - Örnek A'nın son kat boyası ilk 100 devirde sökülmeye başlamıştır. ŞEKİL 3'te gösterildiği gibi, Örnek A ilk 300 devirde ~5 μm2/N ile en yüksek aşınma oranını sergilemekte, metal alt tabakanın daha iyi aşınma direnci nedeniyle bu oran ~3,5 μm2/N'ye hafifçe düşmektedir. Örnek C'nin üst kaplaması ŞEKİL 4'te gösterildiği gibi 150 aşınma döngüsünden sonra bozulmaya başlar ve bu durum ŞEKİL 2'deki COF artışıyla da gösterilir.

 

Karşılaştırıldığında, Örnek B ve Örnek D gelişmiş tribolojik özellikler göstermektedir. Örnek B tüm test boyunca düşük COF değerini korur - COF değeri ~0,05'ten ~0,1'e hafifçe yükselir. Böyle bir yağlama etkisi aşınma direncini önemli ölçüde artırır - son kat, 800 aşınma döngüsünden sonra alttaki astara hala üstün koruma sağlar. En düşük ortalama aşınma oranı 800 döngüde sadece ~0,77 μm2/N ile Örnek B için ölçülmüştür. Örnek D'nin üst kaplaması, ŞEKİL 2'de COF'nin ani artışıyla yansıtıldığı gibi 375 döngüden sonra delaminasyona başlar. Örnek D'nin ortalama aşınma oranı 800 döngüde ~1,1 μm2/N'dir.

 

Geleneksel Taber aşınma ölçümleriyle karşılaştırıldığında NANOVEA Tribometre, ticari zemin/otomotiv boyalarının tekrarlanabilir değerlendirmelerini ve kalite kontrolünü sağlayan iyi kontrollü ölçülebilir ve güvenilir aşınma değerlendirmeleri sağlar. Ayrıca, in situ COF ölçümlerinin kapasitesi, kullanıcıların bir aşınma sürecinin farklı aşamalarını COF'un evrimi ile ilişkilendirmesine olanak tanır; bu da çeşitli boya kaplamalarının aşınma mekanizması ve tribolojik özelliklerinin temel anlayışını geliştirmede kritik öneme sahiptir.

ŞEKİL 1: Boya örneklerinin 3D morfolojisi ve pürüzlülüğü.

ŞEKİL 2: Pin-on-disk testleri sırasında COF.

ŞEKİL 3: Farklı boyaların aşınma oranının evrimi.

ŞEKİL 4: Disk üzerinde pim testleri sırasında aşınma izlerinin evrimi.

AŞINMA TESTI SONUÇLARI

ŞEKİL 5, Örnek A için çizik uzunluğunun bir fonksiyonu olarak normal kuvvet, sürtünme kuvveti ve gerçek derinlik grafiğini örnek olarak göstermektedir. Daha fazla bilgi sağlamak için isteğe bağlı bir akustik emisyon modülü takılabilir. Normal yük doğrusal olarak arttıkça, girinti ucu, gerçek derinliğin kademeli olarak artmasıyla yansıtıldığı gibi test edilen numuneye kademeli olarak batar. Sürtünme kuvveti ve gerçek derinlik eğrilerinin eğimlerindeki değişim, kaplama hatalarının oluşmaya başladığını gösteren sonuçlardan biri olarak kullanılabilir.

ŞEKİL 5: için çizik uzunluğunun bir fonksiyonu olarak normal kuvvet, sürtünme kuvveti ve gerçek derinlik Örnek A'nın maksimum 5 N yük ile çizik testi.

ŞEKİL 6 ve ŞEKİL 7 sırasıyla 5 N ve 35 N maksimum yük ile test edilen dört boya numunesinin tam çiziklerini göstermektedir. D numunesi astarı delamine etmek için 50 N'luk daha yüksek bir yük gerektirmiştir. 5 N nihai yükteki çizik testleri (ŞEKİL 6) üst boyanın kohezif/yapışkan hatasını değerlendirirken, 35 N'dakiler (ŞEKİL 7) astarın delaminasyonunu değerlendirmektedir. Mikrograflardaki oklar, üst kaplamanın veya astarın astardan veya alt tabakadan tamamen ayrılmaya başladığı noktayı göstermektedir. Kritik Yük, Lc olarak adlandırılan bu noktadaki yük, Tablo 1'de özetlendiği gibi boyanın kohezif veya yapışkan özelliklerini karşılaştırmak için kullanılır.

 

Boya Numunesi D'nin en iyi arayüzey yapışmasına sahip olduğu açıktır - boya delaminasyonunda 4,04 N ve astar delaminasyonunda 36,61 N ile en yüksek Lc değerlerini sergilemektedir. Örnek B ikinci en iyi çizilme direncini göstermektedir. Çizilme analizinden, boya formülünün optimizasyonunun mekanik davranışlar veya daha spesifik olarak akrilik zemin boyalarının çizilme direnci ve yapışma özelliği için kritik öneme sahip olduğunu gösteriyoruz.

Tablo 1: Kritik yüklerin özeti.

ŞEKİL 6: Maksimum 5 N yük ile tam çizik mikrografları.

ŞEKİL 7: Maksimum 35 N yük ile tam çizik mikrografları.

SONUÇ

Geleneksel Taber aşınma ölçümleriyle karşılaştırıldığında, NANOVEA Mekanik Test Cihazı ve Tribometre, ticari zemin ve otomotiv kaplamalarının değerlendirilmesi ve kalite kontrolü için üstün araçlardır. Çizilme modundaki NANOVEA Mekanik Test Cihazı, bir kaplama sistemindeki yapışma / kohezyon sorunlarını tespit edebilir. NANOVEA Tribometre, boyaların aşınma direnci ve sürtünme katsayısı üzerinde iyi kontrollü ölçülebilir ve tekrarlanabilir tribolojik analiz sağlar.

 

Bu çalışmada test edilen su bazlı akrilik zemin kaplamaları üzerinde yapılan kapsamlı tribolojik ve mekanik analizlere dayanarak, Örnek B'nin en düşük COF ve aşınma oranına ve ikinci en iyi çizilme direncine sahip olduğunu, Örnek D'nin ise en iyi çizilme direncini ve ikinci en iyi aşınma direncini sergilediğini gösteriyoruz. Bu değerlendirme, farklı uygulama ortamlarındaki ihtiyaçları hedefleyen en iyi adayı değerlendirmemize ve seçmemize olanak sağlamaktadır.

 

NANOVEA Mekanik Test Cihazının Nano ve Mikro modüllerinin tümü ISO ve ASTM uyumlu girinti, çizik ve aşınma test cihazı modlarını içerir ve tek bir modülde boya değerlendirmesi için mevcut olan en geniş test yelpazesini sağlar. NANOVEA Tribometre, ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak hassas ve tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklık aşınması, yağlama ve tribo-korozyon modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. NANOVEA'nın eşsiz ürün yelpazesi, sertlik, Young modülü, kırılma tokluğu, yapışma, aşınma direnci ve diğerleri dahil olmak üzere ince veya kalın, yumuşak veya sert kaplamaların, filmlerin ve alt tabakaların tüm mekanik/tribolojik özelliklerini belirlemek için ideal bir çözümdür. Pürüzlülük gibi diğer yüzey ölçümlerine ek olarak çiziklerin ve aşınma izlerinin yüksek çözünürlüklü 3D görüntülemesi için isteğe bağlı NANOVEA Temassız Optik Profilleyiciler mevcuttur.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Tribometre Kullanarak Polimer Kayış Aşınması ve Sürtünmesi

POLİMER KAYIŞLAR

TRİBOMETRE KULLANARAK AŞINMA VE KIRILMA

Tarafından hazırlanmıştır

DUANJIE LI, PhD

GİRİŞ

Kayış tahriki, gücü iletir ve iki veya daha fazla dönen şaft arasındaki göreceli hareketi izler. Minimum bakım gerektiren basit ve ucuz bir çözüm olan kayış tahrikleri, testereler, hızarlar, harman makineleri, silo üfleyiciler ve konveyörler gibi çeşitli uygulamalarda yaygın olarak kullanılmaktadır. Kayış tahrikleri makineyi aşırı yükten korumanın yanı sıra titreşimi sönümler ve izole eder.

AŞINMA DEĞERLENDİRMESİNİN ÖNEMİ KAYIŞ TAHRIKLERI IÇIN

Kayış tahrikli bir makinedeki kayışlar için sürtünme ve aşınma kaçınılmazdır. Yeterli sürtünme kayma olmadan etkili güç aktarımı sağlar, ancak aşırı sürtünme kayışı hızla aşındırabilir. Kayışla tahrik işlemi sırasında yorulma, aşınma ve sürtünme gibi farklı aşınma türleri meydana gelir. Kayışın ömrünü uzatmak ve kayış onarımı ve değişiminde maliyeti ve zamanı azaltmak için, kayışların aşınma performansının güvenilir bir şekilde değerlendirilmesi, kayış ömrünü, üretim verimliliğini ve uygulama performansını iyileştirmek için arzu edilir. Kayışın sürtünme katsayısının ve aşınma oranının doğru ölçümü, Ar-Ge'yi ve kayış üretiminin kalite kontrolünü kolaylaştırır.

ÖLÇÜM HEDEFI

Bu çalışmada, farklı yüzey dokularına sahip kayışların aşınma davranışlarını simüle ettik ve karşılaştırdık. NANOVEA T2000 Tribometre, kayışın aşınma sürecini kontrollü ve izlenebilir bir şekilde simüle eder.

NANOVEA

T2000

TEST PROSEDÜRLERI

Farklı yüzey pürüzlülüğüne ve dokusuna sahip iki kayışın sürtünme katsayısı, COF ve aşınma direnci aşağıdaki yöntemlerle değerlendirilmiştir NANOVEA Yüksek Yük Tribometre Doğrusal Pistonlu Aşınma Modülü kullanarak. Karşı malzeme olarak Çelik 440 bilya (10 mm çapında) kullanıldı. Yüzey pürüzlülüğü ve aşınma izi entegre bir sistem kullanılarak incelendi. 3D Temassız profilometre. Aşınma oranı, Kformülü kullanılarak değerlendirilmiştir K=Vl(Fxs), nerede V aşınmış hacimdir, F normal yük ve s kayma mesafesidir.

 

Bu çalışmada örnek olarak pürüzsüz bir Çelik 440 bilye muadilinin kullanıldığını, gerçek uygulama durumunu simüle etmek için özel fikstürler kullanılarak farklı şekillere ve yüzey kaplamasına sahip herhangi bir katı malzemenin uygulanabileceğini lütfen unutmayın.

SONUÇLAR & TARTIŞMA

Dokulu Kayış ve Düz Kayışın yüzey pürüzlülüğü Ra sırasıyla 33,5 ve 8,7 um'dir. NANOVEA 3D Temassız Optik profilleyici. Test edilen iki kayışın COF ve aşınma oranı, kayışların farklı yüklerdeki aşınma davranışını karşılaştırmak için sırasıyla 10 N ve 100 N'de ölçülmüştür.

ŞEKİL 1 aşınma testleri sırasında kayışların COF'sinin gelişimini göstermektedir. Farklı dokulara sahip kayışlar önemli ölçüde farklı aşınma davranışları sergilemektedir. COF'nin kademeli olarak arttığı alıştırma döneminden sonra, Dokulu Kayışın 10 N ve 100 N yükler kullanılarak yapılan her iki testte de ~0,5'lik daha düşük bir COF'ye ulaşması ilginçtir. 10 N yük altında test edilen Düz Kayış, COF sabitlendiğinde ~1,4'lük önemli ölçüde daha yüksek bir COF sergilemekte ve testin geri kalanında bu değerin üzerinde kalmaktadır. Düz Kayış 100 N yük altında test edildiğinde çelik 440 bilye tarafından hızla aşındırılmış ve büyük bir aşınma izi oluşturmuştur. Bu nedenle test 220 devirde durdurulmuştur.

ŞEKİL 1: Farklı yüklerde kayışların COF'sinin evrimi.

NANOVEA 3D temassız profilometre, aşınma izlerinin ayrıntılı morfolojisini analiz etmek için bir araç sunarak aşınma mekanizmasının temel olarak anlaşılmasına yönelik daha fazla bilgi sağlar.

TABLO 1: Aşınma izi analizinin sonucu.

ŞEKİL 2:  İki kayışın 3D görünümü
100 N'deki testlerden sonra.

3D aşınma izi profili, TABLO 1'de gösterildiği gibi gelişmiş analiz yazılımı tarafından hesaplanan aşınma izi hacminin doğrudan ve doğru bir şekilde belirlenmesini sağlar. Düz Kayış, 220 devirlik bir aşınma testinde 75,7 mm3 hacmiyle çok daha büyük ve derin bir aşınma izine sahipken, 600 devirlik bir aşınma testinden sonra Dokulu Kayış için aşınma hacmi 14,0 mm3'tür. Düz Kayışın çelik bilyeye karşı önemli ölçüde daha yüksek sürtünmesi, Dokulu Kayışa kıyasla 15 kat daha yüksek bir aşınma oranına yol açmaktadır.

 

Dokulu Kayış ile Düz Kayış arasındaki bu kadar ciddi bir COF farkı muhtemelen kayış ile çelik bilye arasındaki temas alanının boyutuyla ilgilidir ve bu da farklı aşınma performanslarına yol açmaktadır. ŞEKİL 3, iki kayışın optik mikroskop altındaki aşınma izlerini göstermektedir. Aşınma izi incelemesi, COF evrimine ilişkin gözlemle uyumludur: 0,5 gibi düşük bir COF değerini koruyan Dokulu Kayış, 10 N yük altındaki aşınma testinden sonra hiçbir aşınma belirtisi göstermez. 10 N'de Düz Kayış küçük bir aşınma izi gösterir. 100 N'de gerçekleştirilen aşınma testleri, hem Dokulu hem de Düz Kayışlarda önemli ölçüde daha büyük aşınma izleri oluşturur ve aşınma oranı, aşağıdaki paragrafta tartışılacağı gibi 3D profiller kullanılarak hesaplanacaktır.

ŞEKİL 3:  Optik mikroskop altında aşınma izleri.

SONUÇ

Bu çalışmada, NANOVEA T2000 Tribometre'nin kayışların sürtünme katsayısını ve aşınma oranını iyi kontrollü ve nicel bir şekilde değerlendirme kapasitesini sergiledik. Yüzey dokusu, hizmet performansları sırasında kayışların sürtünme ve aşınma direncinde kritik bir rol oynamaktadır. Dokulu kayış, ~0,5'lik sabit bir sürtünme katsayısı sergiler ve uzun bir kullanım ömrüne sahiptir, bu da takım onarımı veya değişimi için daha az zaman ve maliyet sağlar. Buna karşılık, düz kayışın çelik bilyeye karşı aşırı sürtünmesi kayışı hızla aşındırır. Ayrıca, kayış üzerindeki yükleme, hizmet ömrü açısından hayati bir faktördür. Aşırı yük çok yüksek sürtünme yaratarak kayışın daha hızlı aşınmasına neden olur.

NANOVEA T2000 Tribometre, ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak hassas ve tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklık aşınması, yağlama ve tribokorozyon modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. NANOVEA'nın eşsiz ürün yelpazesi, ince veya kalın, yumuşak veya sert kaplamaların, filmlerin ve alt tabakaların tüm tribolojik özelliklerini belirlemek için ideal bir çözümdür.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Tribometre Kullanarak Zımpara Kağıdı Aşınma Performansı

ZIMPARA KAĞIDI AŞINMA PERFORMANSI

TRIBOMETRE KULLANARAK

Tarafından hazırlanmıştır

DUANJIE LI, PhD

GİRİŞ

Zımpara kağıdı, bir kağıt veya bezin bir yüzüne yapıştırılmış aşındırıcı parçacıklardan oluşur. Parçacıklar için granat, silisyum karbür, alüminyum oksit ve elmas gibi çeşitli aşındırıcı malzemeler kullanılabilir. Zımpara kağıdı, ahşap, metal ve alçıpan üzerinde belirli yüzey kaplamaları oluşturmak için çeşitli endüstriyel sektörlerde yaygın olarak uygulanmaktadır. Genellikle el veya elektrikli aletlerle uygulanan yüksek basınçlı temas altında çalışırlar.

ZIMPARA KAĞIDININ AŞINMA PERFORMANSINI DEĞERLENDIRMENIN ÖNEMI

Zımpara kağıdının etkinliği genellikle farklı koşullar altındaki aşındırma performansına göre belirlenir. Kum boyutu, yani zımpara kağıdına gömülü aşındırıcı partiküllerin boyutu, zımparalanan malzemenin aşınma oranını ve çizik boyutunu belirler. Daha yüksek kum numaralı zımpara kağıtları daha küçük parçacıklara sahiptir, bu da daha düşük zımparalama hızları ve daha ince yüzey kalitesi sağlar. Aynı kum numarasına sahip ancak farklı malzemelerden yapılmış zımpara kağıtları, kuru veya ıslak koşullar altında benzer olmayan davranışlara sahip olabilir. Üretilen zımpara kağıdının istenen aşındırıcı davranışa sahip olduğundan emin olmak için güvenilir tribolojik değerlendirmelere ihtiyaç vardır. Bu değerlendirmeler, kullanıcıların hedef uygulama için en iyi adayı seçmek amacıyla farklı zımpara kağıdı türlerinin aşınma davranışlarını kontrollü ve izlenen bir şekilde niceliksel olarak karşılaştırmasına olanak tanır.

ÖLÇÜM HEDEFI

Bu çalışmada, NANOVEA Tribometre'nin kuru ve ıslak koşullar altında çeşitli zımpara kağıdı örneklerinin aşınma performansını nicel olarak değerlendirme yeteneğini sergiliyoruz.

NANOVEA

T2000

TEST PROSEDÜRLERI

İki tip zımpara kağıdının sürtünme katsayısı (COF) ve aşınma performansı NANOVEA T100 Tribometre ile değerlendirildi. Karşı malzeme olarak 440 paslanmaz çelik bilya kullanıldı. Bilye aşınma izleri, NANOVEA kullanılarak her aşınma testinden sonra incelendi. 3D Temassız Optik Profil Oluşturucu Hassas hacim kaybı ölçümleri sağlamak için.

Karşılaştırmalı bir çalışma oluşturmak için karşı malzeme olarak 440 paslanmaz çelik bilyenin seçildiğini, ancak farklı bir uygulama koşulunu simüle etmek için herhangi bir katı malzemenin ikame edilebileceğini lütfen unutmayın.

TEST SONUÇLARI VE TARTIŞMA

ŞEKİL 1'de kuru ve ıslak ortam koşullarında Zımpara Kağıdı 1 ve 2'nin COF karşılaştırması gösterilmektedir. Zımpara kağıdı 1, kuru koşullar altında, testin başında 0,4'lük bir COF göstermekte ve bu değer giderek azalarak 0,3'te sabitlenmektedir. Islak koşullar altında, bu numune 0,27'lik daha düşük bir ortalama COF sergilemektedir. Buna karşılık, Örnek 2'nin COF sonuçları kuru COF değerinin 0,27 ve ıslak COF değerinin ~ 0,37 olduğunu göstermektedir. 

Lütfen tüm COF grafikleri için verilerdeki salınımın, bilyenin pürüzlü zımpara kağıdı yüzeylerine karşı kayma hareketinden kaynaklanan titreşimlerden kaynaklandığını unutmayın.

ŞEKİL 1: Aşınma testleri sırasında COF'un evrimi.

ŞEKİL 2 aşınma izi analizinin sonuçlarını özetlemektedir. Aşınma izleri bir optik mikroskop ve bir NANOVEA 3D Temassız Optik Profilleyici kullanılarak ölçülmüştür. ŞEKİL 3 ve ŞEKİL 4, Zımpara Kağıdı 1 ve 2 (ıslak ve kuru koşullar) üzerindeki aşınma testleri sonrasında aşınmış SS440 bilyelerin aşınma izlerini karşılaştırmaktadır. ŞEKİL 4'te gösterildiği gibi, NANOVEA Optik Profilleyici dört bilyenin yüzey topografisini ve ilgili aşınma izlerini hassas bir şekilde yakalar ve daha sonra hacim kaybını ve aşınma oranını hesaplamak için NANOVEA Mountains Gelişmiş Analiz yazılımı ile işlenir. Bilyenin mikroskop ve profil görüntüsünde, Zımpara Kağıdı 1 (kuru) testi için kullanılan bilyenin 0,313 hacim kaybı ile diğerlerine kıyasla daha büyük bir düzleştirilmiş aşınma izi sergilediği gözlemlenebilir. mm3. Buna karşılık, Zımpara Kağıdı 1 (ıslak) için hacim kaybı 0,131 mm3. Zımpara Kağıdı 2 (kuru) için hacim kaybı 0,163'tür mm3 ve Zımpara Kağıdı 2 (ıslak) için hacim kaybı 0,237'ye yükselmiştir mm3.

Ayrıca, COF'nin zımpara kağıtlarının aşınma performansında önemli bir rol oynadığını gözlemlemek ilginçtir. Zımpara kağıdı 1 kuru durumda daha yüksek COF sergilemiş ve testte kullanılan SS440 bilye için daha yüksek bir aşınma oranına yol açmıştır. Buna karşılık, Zımpara Kağıdı 2'nin ıslak koşuldaki daha yüksek COF'si daha yüksek bir aşınma oranıyla sonuçlanmıştır. Ölçümlerden sonra zımpara kağıtlarının aşınma izleri ŞEKİL 5'te gösterilmektedir.

Zımpara Kağıtları 1 ve 2'nin her ikisi de kuru ve ıslak ortamlarda çalıştığını iddia ediyor. Ancak kuru ve ıslak koşullarda önemli ölçüde farklı aşınma performansı sergilediler. NANOVEA tribometreler tekrarlanabilir aşınma değerlendirmeleri sağlayan, iyi kontrol edilen, ölçülebilir ve güvenilir aşınma değerlendirme yetenekleri sağlar. Dahası, yerinde COF ölçümü kapasitesi, kullanıcıların bir aşınma sürecinin farklı aşamalarını COF'nin gelişimi ile ilişkilendirmesine olanak tanır; bu, aşınma mekanizmasının ve zımpara kağıdının tribolojik özelliklerinin temel anlayışının geliştirilmesinde kritik öneme sahiptir.

ŞEKİL 2: Bilyaların aşınma izi hacmi ve farklı koşullar altında ortalama COF.

ŞEKİL 3: Testlerden sonra topların yara izleri.

ŞEKİL 4: Bilyelerdeki aşınma izlerinin 3D morfolojisi.

ŞEKİL 5: Farklı koşullar altında zımpara kağıtları üzerindeki aşınma izleri.

SONUÇ

Bu çalışmada, aynı kum numarasına sahip iki tip zımpara kağıdının aşınma performansı kuru ve ıslak koşullar altında değerlendirilmiştir. Zımpara kağıdının servis koşulları, çalışma performansının etkinliğinde kritik bir rol oynamaktadır. Zımpara kağıdı 1 kuru koşullar altında önemli ölçüde daha iyi aşınma davranışına sahipken, Zımpara kağıdı 2 ıslak koşullar altında daha iyi performans göstermiştir. Zımparalama işlemi sırasındaki sürtünme, aşınma performansını değerlendirirken göz önünde bulundurulması gereken önemli bir faktördür. NANOVEA Optik Profilleyici, bilye üzerindeki aşınma izleri gibi herhangi bir yüzeyin 3D morfolojisini hassas bir şekilde ölçerek bu çalışmada zımpara kağıdının aşınma performansı hakkında güvenilir bir değerlendirme yapılmasını sağlar. NANOVEA Tribometre, bir aşınma testi sırasında sürtünme katsayısını yerinde ölçerek bir aşınma sürecinin farklı aşamaları hakkında fikir verir. Ayrıca, ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklık aşınma ve yağlama modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. Bu eşsiz ürün yelpazesi, kullanıcıların yüksek stres, aşınma ve yüksek sıcaklık vb. dahil olmak üzere bilyalı rulmanların farklı zorlu çalışma ortamlarını simüle etmelerine olanak tanır. Ayrıca, yüksek yükler altında üstün aşınma dirençli malzemelerin tribolojik davranışlarını nicel olarak değerlendirmek için ideal bir araç sağlar.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Piston Aşınma Testi

Piston Aşınma Testi

Tribometre Kullanımı

Tarafından hazırlanmıştır

FRANK LIU

GİRİŞ

Sürtünme kaybı, bir dizel motor için yakıttaki toplam enerjinin yaklaşık 10%'sini oluşturur[1]. Sürtünme kaybının 40-55%'si güç silindiri sisteminden kaynaklanmaktadır. Sürtünmeden kaynaklanan enerji kaybı, güç silindiri sisteminde meydana gelen tribolojik etkileşimlerin daha iyi anlaşılmasıyla azaltılabilir.

Güç silindiri sistemindeki sürtünme kaybının önemli bir kısmı piston eteği ile silindir gömleği arasındaki temastan kaynaklanır. Piston eteği, yağlayıcı ve silindir arayüzleri arasındaki etkileşim, gerçek hayattaki bir motorda kuvvet, sıcaklık ve hızdaki sürekli değişiklikler nedeniyle oldukça karmaşıktır. Her bir faktörü optimize etmek, optimum motor performansı elde etmenin anahtarıdır. Bu çalışma, piston eteği-yağlayıcı-silindir gömleği (P-L-C) arayüzlerinde sürtünme kuvvetlerine ve aşınmaya neden olan mekanizmaların çoğaltılmasına odaklanacaktır.

 Güç silindirleri sisteminin şeması ve piston eteği-yağlayıcı-silindir gömleği arayüzleri.

[1] Bai, Dongfang. İçten yanmalı motorlarda piston eteği yağlamasının modellenmesi. Doktora tezi. MIT, 2012

PISTONLARIN TRIBOMETRE ILE TEST EDILMESININ ÖNEMI

Motor yağı, uygulaması için iyi tasarlanmış bir yağlayıcıdır. Baz yağa ek olarak, performansını artırmak için deterjanlar, dağıtıcılar, viskozite artırıcı (VI), aşınma/sürtünme önleyici maddeler ve korozyon önleyiciler gibi katkı maddeleri eklenir. Bu katkı maddeleri, yağın farklı çalışma koşulları altında nasıl davrandığını etkiler. Yağın davranışı P-L-C arayüzlerini etkiler ve metal-metal temasından kaynaklanan önemli aşınma veya hidrodinamik yağlama (çok az aşınma) olup olmadığını belirler.

Alanı dış değişkenlerden izole etmeden P-L-C arayüzlerini anlamak zordur. Olayı gerçek hayattaki uygulamasını temsil eden koşullarla simüle etmek daha pratiktir. Bu NANOVEA Tribometre bunun için idealdir. Çoklu kuvvet sensörleri, derinlik sensörü, damla damla yağlama modülü ve doğrusal ileri geri hareket kademesi ile donatılmış olan NANOVEA T2000, bir motor bloğunda meydana gelen olayları yakından taklit edebilir ve P-L-C arayüzlerini daha iyi anlamak için değerli veriler elde edebilir.

NANOVEA T2000 Tribometre üzerindeki Sıvı Modülü

Damla damla modülü bu çalışma için çok önemlidir. Pistonlar çok hızlı hareket edebildiğinden (3000 rpm'nin üzerinde), numuneyi daldırarak ince bir yağlayıcı filmi oluşturmak zordur. Bu sorunu çözmek için damla damla modülü, piston etek yüzeyine sabit miktarda yağlayıcıyı tutarlı bir şekilde uygulayabilmektedir.

Taze yağlayıcı uygulaması, yerinden oynamış aşınma kirleticilerinin yağlayıcının özelliklerini etkilemesi endişesini de ortadan kaldırır.

NANOVEA T2000

Yüksek Yük Tribometresi

ÖLÇÜM HEDEFI

Bu raporda piston eteği-yağlayıcı-silindir gömleği arayüzleri incelenecektir. Arayüzler, damla damla yağlayıcı modülü ile doğrusal bir ileri geri aşınma testi gerçekleştirilerek çoğaltılacaktır.

Yağlayıcı, soğuk başlatma ve optimum çalışma koşullarını karşılaştırmak için oda sıcaklığında ve ısıtılmış koşullarda uygulanacaktır. Arayüzlerin gerçek hayattaki uygulamalarda nasıl davrandığını daha iyi anlamak için COF ve aşınma oranı gözlemlenecektir.

TEST PARAMETRELERI

pistonlar üzerinde triboloji testi için

YÜKLE ............................ 100 N

TEST SÜRESİ ............................ 30 dakika

HIZ ............................ 2000 rpm

AMPLİTÜD ............................ 10 mm

TOPLAM MESAFE ............................ 1200 m

ETEK KAPLAMASI ............................ Moly-grafit

PİM MALZEMESİ ............................ Alüminyum Alaşım 5052

PİM ÇAPI ............................ 10 mm

YAĞLAYICI ............................ Motor Yağı (10W-30)

YAKLAŞIK. AKIŞ ORANI ............................ 60 mL/dak

SICAKLIK ............................ Oda sıcaklığı ve 90°C

DOĞRUSAL PISTONLU TEST SONUÇLARI

Bu deneyde karşı malzeme olarak A5052 kullanılmıştır. Motor blokları genellikle A356 gibi dökme alüminyumdan yapılırken, A5052 bu simülatif test için A356'ya benzer mekanik özelliklere sahiptir [2].

Test koşulları altında, önemli ölçüde aşınma
Oda sıcaklığında piston eteğinde gözlemlenen
90°C ile karşılaştırıldığında. Numunelerde görülen derin çizikler, statik malzeme ile piston eteği arasındaki temasın test boyunca sık sık meydana geldiğini göstermektedir. Oda sıcaklığındaki yüksek viskozite, yağın ara yüzeylerdeki boşlukları tamamen doldurmasını ve metal-metal teması oluşturmasını engelliyor olabilir. Daha yüksek sıcaklıklarda yağ incelir ve pim ile piston arasında akabilir. Sonuç olarak, yüksek sıcaklıkta önemli ölçüde daha az aşınma gözlenir. ŞEKİL 5 aşınma izinin bir tarafının diğer tarafa göre önemli ölçüde daha az aşındığını göstermektedir. Bu büyük olasılıkla yağ çıkışının konumundan kaynaklanmaktadır. Yağlayıcı film kalınlığı bir tarafta diğerine göre daha kalındı ve bu da eşit olmayan aşınmaya neden oldu.

 

 

[2] "5052 Alüminyum vs 356.0 Alüminyum." MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

Doğrusal pistonlu triboloji testlerinin COF'si yüksek ve düşük geçiş olarak ikiye ayrılabilir. Yüksek geçiş, numunenin ileri veya pozitif yönde hareket ettiğini, düşük geçiş ise numunenin ters veya negatif yönde hareket ettiğini ifade eder. RT yağı için ortalama COF'nin her iki yönde de 0,1'in altında olduğu gözlemlenmiştir. Geçişler arasındaki ortalama COF 0,072 ve 0,080 idi. 90°C yağın ortalama COF değerinin geçişler arasında farklı olduğu görülmüştür. Ortalama COF değerleri 0,167 ve 0,09 olarak gözlemlenmiştir. COF'deki fark, yağın pimin sadece bir tarafını düzgün bir şekilde ıslatabildiğine dair ek bir kanıt sunmaktadır. Hidrodinamik yağlama nedeniyle pim ve piston eteği arasında kalın bir film oluştuğunda yüksek COF elde edilmiştir. Karışık yağlama meydana geldiğinde diğer yönde daha düşük COF gözlemlenmiştir. Hidrodinamik yağlama ve karışık yağlama hakkında daha fazla bilgi için lütfen aşağıdaki uygulama notumuzu ziyaret edin Stribeck Eğrileri.

Tablo 1: Pistonlar üzerinde yağlanmış aşınma testi sonuçları.

ŞEKİL 1: Oda sıcaklığında yağ aşınma testi için COF grafikleri A ham profil B yüksek geçiş C düşük geçiş.

ŞEKİL 2: 90°C aşınma yağı testi için COF grafikleri A ham profil B yüksek geçiş C düşük geçiş.

ŞEKİL 3: RT motor yağı aşınma testinden aşınma izinin optik görüntüsü.

ŞEKİL 4: RT motor yağı aşınma testinden elde edilen aşınma izinin delik analizi hacmi.

ŞEKİL 5: RT motor yağı aşınma testinden aşınma izinin profilometri taraması.

ŞEKİL 6: 90°C motor yağı aşınma testinden elde edilen aşınma izinin optik görüntüsü

ŞEKİL 7: 90°C motor yağı aşınma testinden elde edilen aşınma izinin delik analizi hacmi.

ŞEKİL 8: 90°C motor yağı aşınma testinden elde edilen aşınma izinin profilometri taraması.

SONUÇ

Yağlanmış doğrusal ileri geri aşınma testi, bir pistonda meydana gelen olayları simüle etmek için bir piston üzerinde gerçekleştirilmiştir.
gerçek hayattaki operasyonel motor. Piston eteği-yağlayıcı-silindir gömleği arayüzleri bir motorun çalışması için çok önemlidir. Arayüzdeki yağlayıcı kalınlığı, piston eteği ve silindir gömleği arasındaki sürtünme veya aşınmadan kaynaklanan enerji kaybından sorumludur. Motoru optimize etmek için film kalınlığı, piston eteği ve silindir gömleğinin temas etmesine izin vermeden mümkün olduğunca ince olmalıdır. Ancak buradaki zorluk, sıcaklık, hız ve kuvvet değişikliklerinin P-L-C arayüzlerini nasıl etkileyeceğidir.

Geniş yükleme aralığı (2000 N'a kadar) ve hızı (15000 rpm'ye kadar) ile NANOVEA T2000 tribometre, bir motorda olası farklı koşulları simüle edebilmektedir. Bu konuda gelecekte yapılacak olası çalışmalar arasında P-L-C arayüzlerinin farklı sabit yük, salınımlı yük, yağlayıcı sıcaklığı, hız ve yağlayıcı uygulama yöntemi altında nasıl davranacağı yer almaktadır. Bu parametreler NANOVEA T2000 tribometre ile kolayca ayarlanarak piston eteği-yağlayıcı-silindir gömleği arayüzlerinin mekanizmaları hakkında tam bir anlayış sağlanabilir.

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Tribometre ile Cam Kaplama Nem Aşınma Testi

Tribometre ile Cam Kaplama Nem Aşınma Testi

Daha fazla bilgi edinin

CAM KAPLAMA NEM

TRIBOMETRE ILE AŞINMA TESTI

Tarafından hazırlanmıştır

DUANJIE LI, Doktora

GİRİŞ

Kendi kendini temizleyen cam kaplama, kir, kir ve lekelerin birikmesini önleyen kolay temizlenen bir cam yüzey oluşturur. Kendi kendini temizleme özelliği sıklığı, zamanı, enerjiyi ve temizlik maliyetlerini önemli ölçüde azaltarak cam cephe, aynalar, duş camları, pencereler ve ön camlar gibi çeşitli konut ve ticari uygulamalar için cazip bir seçim haline getirir.

AŞINMA DIRENCININ ÖNEMI KENDI KENDINI TEMIZLEYEN CAM KAPLAMA

Kendi kendini temizleyen kaplamanın önemli bir uygulaması gökdelenlerdeki cam cephenin dış yüzeyidir. Cam yüzey genellikle güçlü rüzgarlar tarafından taşınan yüksek hızlı parçacıklar tarafından saldırıya uğrar. Hava koşulları da cam kaplamanın hizmet ömründe önemli bir rol oynar. Camın yüzey işlemini yapmak ve eski kaplama arızalandığında yeni kaplamayı uygulamak çok zor ve maliyetli olabilir. Bu nedenle, cam kaplamanın aşınma direnci
farklı hava koşulları kritiktir.


Kendi kendini temizleyen kaplamanın farklı hava koşullarındaki gerçekçi çevresel koşullarını simüle etmek için, kontrollü ve izlenen bir nemde tekrarlanabilir aşınma değerlendirmesine ihtiyaç vardır. Bu, kullanıcıların farklı neme maruz kalan kendi kendini temizleyen kaplamaların aşınma direncini doğru bir şekilde karşılaştırmasına ve hedeflenen uygulama için en iyi adayı seçmesine olanak tanır.

ÖLÇÜM HEDEFI

Bu çalışmada, Türkiye'de NANOVEA Nem kontrolörü ile donatılmış T100 Tribometre, farklı nem oranlarında kendi kendini temizleyen cam kaplamaların aşınma direncini araştırmak için ideal bir araçtır.

NANOVEA

T100

TEST PROSEDÜRLERI

Soda kireç camı mikroskop lamları, iki farklı işlem reçetesi ile kendi kendini temizleyen cam kaplamalarla kaplanmıştır. Bu iki kaplama Kaplama 1 ve Kaplama 2 olarak tanımlanmıştır. Karşılaştırma için kaplanmamış çıplak bir cam lam da test edilmiştir.


NANOVEA Tribometre Kendi kendini temizleyen cam kaplamaların sürtünme katsayısı, COF ve aşınma direnci gibi tribolojik davranışlarını değerlendirmek için bir nem kontrol modülüyle donatılmış. Test edilen numunelere bir WC bilye ucu (6 mm çap) uygulandı. COF yerinde kaydedildi. Tribo odasına takılan nem kontrol cihazı bağıl nem (RH) değerini ±1 % aralığında hassas bir şekilde kontrol etti. Aşınma testinin ardından aşınma izi morfolojisi optik mikroskop altında incelendi.

MAKSİMUM YÜK 40 mN
SONUÇLAR & TARTIŞMA

Farklı nem koşullarında pin-on-disk aşınma testleri kaplamalı ve kaplamasız cam üzerinde gerçekleştirilmiştir
örnekler. COF, aşınma testleri sırasında aşağıda gösterildiği gibi yerinde kaydedilmiştir
ŞEKİL 1 ve ortalama COF şu şekilde özetlenmiştir ŞEKİL 2. ŞEKİL 4 aşınma testlerinden sonra aşınma izlerini karşılaştırır.


'de gösterildiği gibi
ŞEKİL 1kaplanmamış cam, 30% RH'de kayma hareketi başladığında ~0,45'lik yüksek bir COF sergiler ve 300 devirlik aşınma testinin sonunda kademeli olarak ~0,6'ya yükselir. Karşılaştırma yapmak gerekirse
Kaplamalı cam numuneleri Kaplama 1 ve Kaplama 2, testin başında 0,2'nin altında düşük bir COF göstermektedir. COF
Kaplama 2'nin COF değeri testin geri kalanında ~0,25'te sabitlenirken, Kaplama 1'de COF değerinde keskin bir artış görülmektedir.
~250 devir ve COF ~0,5 değerine ulaşır. Aşınma testleri 60% RH'de gerçekleştirildiğinde
kaplanmamış cam, aşınma testi boyunca hala ~0.45'lik daha yüksek bir COF göstermektedir. Kaplama 1 ve 2 sırasıyla 0,27 ve 0,22 COF değerleri sergilemektedir. 90% RH'de, kaplanmamış cam aşınma testinin sonunda ~0,5 gibi yüksek bir COF değerine sahiptir. Kaplama 1 ve 2, aşınma testi başladığında ~0,1'lik karşılaştırılabilir COF sergilemektedir. Kaplama 1, ~0,15'lik nispeten istikrarlı bir COF değerini korur. Bununla birlikte, Kaplama 2 ~100 devirde başarısız olur ve ardından aşınma testinin sonuna doğru COF ~0,5'e önemli bir artış gösterir.


Kendi kendini temizleyen cam kaplamanın düşük sürtünmesi, düşük yüzey enerjisinden kaynaklanır. Çok yüksek bir statik enerji yaratır.
su temas açısı ve düşük roll-off açısı. 'de mikroskop altında gösterildiği gibi 90% RH'de kaplama yüzeyinde küçük su damlacıklarının oluşmasına yol açar.
ŞEKİL 3. Ayrıca, RH değeri 30%'den 90%'ye yükseldikçe Kaplama 2 için ortalama COF değerinin ~0,23'ten ~0,15'e düşmesine neden olur.

ŞEKİL 1: Farklı bağıl nemde disk üzerinde pim testleri sırasında sürtünme katsayısı.

ŞEKİL 2: Farklı bağıl nem oranlarında pin-on-disk testleri sırasında ortalama COF.

ŞEKİL 3: Kaplanmış cam yüzeyinde küçük su damlacıklarının oluşumu.

ŞEKİL 4 farklı nem oranlarındaki aşınma testlerinden sonra cam yüzeyindeki aşınma izlerini karşılaştırmaktadır. Kaplama 1, 30% ve 60% RH'deki aşınma testlerinden sonra hafif aşınma belirtileri göstermektedir. Aşınma testi sırasında COF'deki önemli artışla uyumlu olarak 90% RH'deki testten sonra büyük bir aşınma izine sahiptir. Kaplama 2, hem kuru hem de ıslak ortamdaki aşınma testlerinden sonra neredeyse hiç aşınma belirtisi göstermez ve ayrıca farklı nem oranlarındaki aşınma testleri sırasında sabit düşük COF sergiler. İyi tribolojik özellikler ve düşük yüzey enerjisinin birleşimi, Kaplama 2'yi zorlu ortamlarda kendi kendini temizleyen cam kaplama uygulamaları için iyi bir aday haline getirmektedir. Buna karşılık, kaplanmamış cam farklı nem oranlarında daha büyük aşınma izleri ve daha yüksek COF göstererek kendi kendini temizleyen kaplama tekniğinin gerekliliğini ortaya koymaktadır.

ŞEKİL 4: Farklı bağıl nemlerde disk üzerinde pin testlerinden sonra aşınma izleri (200x büyütme).

SONUÇ

NANOVEA T100 Tribometre, farklı nem oranlarında kendi kendini temizleyen cam kaplamaların değerlendirilmesi ve kalite kontrolü için üstün bir araçtır. Yerinde COF ölçümü kapasitesi, kullanıcıların aşınma sürecinin farklı aşamalarını COF'un evrimi ile ilişkilendirmesine olanak tanır; bu da cam kaplamaların aşınma mekanizması ve tribolojik özelliklerinin temel anlayışını geliştirmede kritik öneme sahiptir. Farklı nem oranlarında test edilen kendi kendini temizleyen cam kaplamalar üzerinde yapılan kapsamlı tribolojik analizlere dayanarak, Kaplama 2'nin hem kuru hem de ıslak ortamlarda sabit bir düşük COF ve üstün aşınma direncine sahip olduğunu ve farklı hava koşullarına maruz kalan kendi kendini temizleyen cam kaplama uygulamaları için daha iyi bir aday olduğunu gösteriyoruz.


NANOVEA Tribometreler, ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak hassas ve tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklık aşınması, yağlama ve tribo-korozyon modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. Yüksek sıcaklıklar için isteğe bağlı 3D temassız profilleyici mevcuttur.
Pürüzlülük gibi diğer yüzey ölçümlerine ek olarak aşınma izinin çözünürlüklü 3D görüntülemesi. 

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM

Yüksek Sıcaklıkta Yerinde Aşınma Ölçümü

YERINDE AŞINMA ÖLÇÜMÜ YÜKSEK SICAKLIKTA

TRIBOMETRE KULLANARAK

YERİNDE AŞINMA ÖLÇÜMÜ Havacılık ve Uzay Tribometresi

Tarafından hazırlanmıştır

Duanjie Li, PhD

GİRİŞ

Doğrusal Değişken Diferansiyel Transformatör (LVDT), doğrusal yer değiştirmeyi ölçmek için kullanılan bir tür sağlam elektrik transformatörüdür. Güç türbinleri, hidrolik, otomasyon, uçak, uydular, nükleer reaktörler ve diğerleri dahil olmak üzere çeşitli endüstriyel uygulamalarda yaygın olarak kullanılmaktadır.

Bu çalışmamızda NANOVEA'nın LVDT ve yüksek sıcaklık modüllerinin eklentilerine yer verdik. Tribometre bu, test edilen numunenin aşınma izi derinliğindeki değişikliğin, yüksek sıcaklıklardaki aşınma işlemi sırasında ölçülmesine olanak tanır. Bu, kullanıcıların aşınma sürecinin farklı aşamalarını COF'nin gelişimi ile ilişkilendirmesine olanak tanır; bu, yüksek sıcaklık uygulamaları için aşınma mekanizmasının ve malzemelerin tribolojik özelliklerinin temel anlayışının geliştirilmesinde kritik öneme sahiptir.

ÖLÇÜM HEDEFI

Bu çalışmada, NANOVEA T50 Tribometre'nin yüksek sıcaklıklarda malzemelerin aşınma sürecinin gelişimini yerinde izleme kapasitesini sergilemek istiyoruz.

Alümina silikat seramiğin farklı sıcaklıklardaki aşınma süreci kontrollü ve izlenebilir bir şekilde simüle edilmiştir.

NANOVEA

T50

TEST PROSEDÜRÜ

Alümina silikat seramik plakaların tribolojik davranışı, örneğin sürtünme katsayısı, COF ve aşınma direnci NANOVEA Tribometre ile değerlendirilmiştir. Alümina silikat seramik plaka, oda sıcaklığından (RT) yüksek sıcaklıklara (400°C ve 800°C) kadar bir fırın ile ısıtılmış ve ardından bu sıcaklıklarda aşınma testleri yapılmıştır. 

Karşılaştırma için, aşınma testleri numune 800°C'den 400°C'ye ve ardından oda sıcaklığına soğutulduğunda gerçekleştirilmiştir. Test edilen numunelere bir AI2O3 bilye ucu (6 mm çap, Sınıf 100) uygulanmıştır. COF, aşınma derinliği ve sıcaklık yerinde izlenmiştir.

TEST PARAMETRELERI

pin-on-disk ölçümünün

Tribometre LVDT Örneği

Aşınma oranı, K, K=V/(Fxs)=A/(Fxn) formülü kullanılarak değerlendirilmiştir; burada V aşınan hacim, F normal yük, s kayma mesafesi, A aşınma izinin kesit alanı ve n devir sayısıdır. Yüzey pürüzlülüğü ve aşınma izi profilleri NANOVEA Optik Profilleyici ile değerlendirilmiş ve aşınma izi morfolojisi optik mikroskop kullanılarak incelenmiştir.

SONUÇLAR & TARTIŞMA

Yerinde kaydedilen COF ve aşınma izi derinliği sırasıyla ŞEKİL 1 ve ŞEKİL 2'de gösterilmektedir. ŞEKİL 1'de "-I", sıcaklık RT'den yüksek bir sıcaklığa çıkarıldığında gerçekleştirilen testi göstermektedir. "-D" 800°C'lik daha yüksek bir sıcaklıktan düşürülen sıcaklığı temsil etmektedir.

ŞEKİL 1'de gösterildiği gibi, farklı sıcaklıklarda test edilen numuneler, ölçümler boyunca ~0,6'lık karşılaştırılabilir bir COF sergilemektedir. Bu kadar yüksek bir COF, önemli miktarda döküntü oluşturan hızlandırılmış bir aşınma sürecine yol açar. Aşınma izi derinliği, aşınma testleri sırasında ŞEKİL 2'de gösterildiği gibi LVDT ile izlenmiştir. Numune ısıtılmadan önce oda sıcaklığında ve numune soğutulduktan sonra yapılan testler, alümina silikat seramik plakanın RT'de aşamalı bir aşınma süreci sergilediğini, aşınma izi derinliğinin aşınma testi boyunca kademeli olarak sırasıyla ~170 ve ~150 μm'ye yükseldiğini göstermektedir. 

Buna karşılık, yüksek sıcaklıklardaki (400°C ve 800°C) aşınma testleri farklı bir aşınma davranışı sergilemektedir - aşınma izi derinliği aşınma sürecinin başında hızla artmakta ve test devam ettikçe yavaşlamaktadır. 400°C-I, 800°C ve 400°C-D sıcaklıklarında gerçekleştirilen testler için aşınma izi derinlikleri sırasıyla ~140, ~350 ve ~210 μm'dir.

Farklı sıcaklıklarda pin-on-desk Testleri sırasında COF

ŞEKİL 1. Farklı sıcaklıklarda pin-on-disk testleri sırasında Sürtünme Katsayısı

Farklı sıcaklıklarda alümina silikat seramik plakanın aşınma izi derinliği

ŞEKİL 2. Farklı sıcaklıklarda alümina silikat seramik plakanın aşınma izi derinliğinin evrimi

Alümina silikat seramik plakaların farklı sıcaklıklardaki ortalama aşınma oranı ve aşınma izi derinliği NANOVEA Optical Profiler'da özetlendiği gibi ŞEKİL 3. Aşınma izi derinliği LVDT kullanılarak kaydedilenle uyumludur. Alümina silikat seramik plaka, 400°C'nin altındaki sıcaklıklarda 0,2mm3/N'nin altındaki aşınma oranlarına kıyasla 800°C'de ~0,5 mm3/Nm'lik önemli ölçüde artmış bir aşınma oranı göstermektedir. Alümina silikat seramik plaka, kısa ısıtma işleminden sonra önemli ölçüde gelişmiş mekanik/tribolojik özellikler sergilememekte, ısıl işlemden önce ve sonra karşılaştırılabilir bir aşınma oranına sahip olmaktadır.

Lav ve harika taş olarak da bilinen alümina silikat seramik, ısıtma işleminden önce yumuşak ve işlenebilirdir. 1093°C'ye kadar yüksek sıcaklıklarda uzun bir fırınlama işlemi, sertliğini ve mukavemetini önemli ölçüde artırabilir, ardından elmas işleme gerekir. Böylesine benzersiz bir özellik, alümina silikat seramiği heykeltıraşlık için ideal bir malzeme haline getirir.

Bu çalışmada, kısa sürede fırınlama için gerekli olandan daha düşük bir sıcaklıkta (800°C'ye karşı 1093°C) ısıl işlemin alümina silikat seramiğin mekanik ve tribolojik özelliklerini iyileştirmediğini ve bu malzemenin gerçek uygulamalarda kullanılmadan önce uygun şekilde fırınlanmasını gerekli bir işlem haline getirdiğini gösteriyoruz.

 
Farklı sıcaklıklarda numunenin aşınma oranı ve aşınma izi derinliği 1

ŞEKİL 3. Farklı sıcaklıklarda numunenin aşınma oranı ve aşınma izi derinliği

SONUÇ

Bu çalışmadaki kapsamlı tribolojik analize dayanarak, alümina silikat seramik plakanın oda sıcaklığından 800°C'ye kadar farklı sıcaklıklarda karşılaştırılabilir sürtünme katsayısı sergilediğini gösteriyoruz. Bununla birlikte, 800°C'de ~0,5 mm3/Nm'lik önemli ölçüde artan bir aşınma oranı göstererek bu seramiğin uygun ısıl işleminin önemini ortaya koymaktadır.

NANOVEA Tribometreleri, 1000°C'ye kadar yüksek sıcaklıklardaki uygulamalar için malzemelerin tribolojik özelliklerini değerlendirebilmektedir. Yerinde COF ve aşınma izi derinliği ölçümlerinin işlevi, kullanıcıların aşınma sürecinin farklı aşamalarını COF'un evrimi ile ilişkilendirmesine olanak tanır; bu, yüksek sıcaklıklarda kullanılan malzemelerin aşınma mekanizmasının ve tribolojik özelliklerinin temel anlayışını geliştirmede kritik öneme sahiptir.

NANOVEA Tribometreleri, ISO ve ASTM uyumlu rotatif ve lineer modları kullanarak hassas ve tekrarlanabilir aşınma ve sürtünme testleri sunar ve isteğe bağlı yüksek sıcaklık aşınması, yağlama ve tribo-korozyon modülleri önceden entegre edilmiş tek bir sistemde mevcuttur. NANOVEA'nın eşsiz ürün yelpazesi, ince veya kalın, yumuşak veya sert kaplamaların, filmlerin ve alt tabakaların tüm tribolojik özelliklerini belirlemek için ideal bir çözümdür.

Pürüzlülük gibi diğer yüzey ölçümlerine ek olarak aşınma izlerinin yüksek çözünürlüklü 3D görüntülemesi için isteğe bağlı 3D Temassız Profilleyiciler mevcuttur.

YERINDE AŞINMA ÖLÇÜMÜ

ŞIMDI, BAŞVURUNUZ HAKKINDA KONUŞALIM