미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

카테고리: 마찰 테스트

 

암석 마찰학

암석 트라이볼로지

NANOVEA 트리보미터 사용

작성자

DUANJIE LI, PhD

소개

암석은 광물 알갱이로 구성되어 있습니다. 이러한 광물의 종류와 풍부함, 그리고 광물 알갱이 사이의 화학적 결합 강도가 암석의 기계적, 마찰학적 특성을 결정합니다. 지질 암석 주기에 따라 암석은 변형을 겪을 수 있으며 일반적으로 화성암, 퇴적암, 변성암의 세 가지 주요 유형으로 분류됩니다. 이러한 암석은 다양한 광물 및 화학적 조성, 투과성 및 입자 크기를 나타내며 이러한 특성은 다양한 내마모성에 기여합니다. 암석 마찰학은 다양한 지질 및 환경 조건에서 암석의 마모 및 마찰 거동을 탐구합니다.

암석 마찰학의 중요성

마모 및 마찰을 포함한 암석에 대한 다양한 유형의 마모는 유정 굴착 과정에서 발생하며, 이는 드릴 비트 및 절단 도구의 수리 및 교체로 인해 직접적이고 결과적으로 상당한 손실을 초래합니다. 따라서 암석의 천공성, 천공성, 절단성 및 마모성에 대한 연구는 석유, 가스 및 광업 산업에서 매우 중요합니다. 암석 마찰학 연구는 가장 효율적이고 비용 효과적인 시추 전략을 선택하는 데 중추적인 역할을 하여 전반적인 효율성을 향상시키고 재료, 에너지 및 환경 보존에 기여합니다. 또한 표면 마찰을 최소화하면 드릴 비트와 암석 사이의 상호 작용을 줄여 도구 마모를 줄이고 드릴링/절단 효율을 향상시키는 데 매우 유리합니다.

측정 목표

본 연구에서는 NANOVEA T50의 성능을 보여주기 위해 두 가지 유형의 암석에 대한 마찰학적 특성을 시뮬레이션하고 비교했습니다. 트라이보미터 통제되고 모니터링되는 방식으로 암석의 마찰 계수와 마모율을 측정합니다.

나노베아

T50

샘플

테스트 절차

두 암석 샘플의 마찰 계수, COF 및 내마모성은 Pin-on-Disc 마모 모듈을 사용하는 NANOVEA T50 마찰계로 평가되었습니다. Al2O3 볼(직경 6mm)을 카운터 재료로 사용했습니다. 테스트 후 NANOVEA 비접촉 프로파일로미터를 사용하여 마모 트랙을 검사했습니다. 테스트 매개변수는 아래에 요약되어 있습니다. 

마모율 K는 공식 K=V/(F×s)=A/(F×n)을 사용하여 평가되었으며, 여기서 V는 마모량, F는 일반 하중, s는 슬라이딩 거리, A는 마모 트랙의 단면적, n은 회전수입니다. NANOVEA Optical Profilometer를 사용하여 표면 거칠기와 마모 트랙 프로파일을 평가하고 광학 현미경을 사용하여 마모 트랙 형태를 검사했습니다. 

본 연구에서는 카운터 재료로 Al2O3 볼을 예로 사용했습니다. 실제 적용 상황을 시뮬레이션하기 위해 맞춤형 고정 장치를 사용하여 다양한 모양의 견고한 재료를 적용할 수 있습니다.

테스트 매개변수

강철 표면

석회석, 대리석

마모 반지름 5mm
일반 힘 10 N
테스트 기간 10 분
속도 100rpm

결과 및 토론

NANOVEA Mechanical Tester의 Micro Indentation 모듈을 활용하여 석회석과 대리석 샘플의 경도(H)와 탄성 계수(E)를 그림 1에서 비교합니다. 석회석 샘플은 H에 대해 1.07, E에 대해 49.6GPa의 값을 기록한 대리석과 달리 각각 0.53 및 25.9GPa로 측정된 더 낮은 H 및 E 값을 나타냈습니다. 석회석 샘플은 과립화 및 다공성 특성으로 인해 표면 불균질성이 더 크기 때문일 수 있습니다.

두 암석 샘플의 마모 테스트 중 COF의 변화는 그림 2에 나와 있습니다. 석회석은 초기에 마모 테스트 시작 시 COF가 약 0.8로 급격히 증가하여 테스트 기간 동안 이 값을 유지합니다. COF의 이러한 급격한 변화는 마모 트랙 내의 접촉면에서 발생하는 빠른 마모 및 거칠기 과정으로 인해 Al2O3 볼이 암석 샘플에 침투하기 때문일 수 있습니다. 대조적으로, 대리석 샘플은 약 5m의 슬라이딩 거리 후에 COF가 더 높은 값으로 눈에 띄게 증가하여 석회석과 비교할 때 내마모성이 우수함을 나타냅니다.

그림 1: 석회석과 대리석 샘플 간의 경도 및 영률 비교.

그림 2: 마모 테스트 중 석회석 및 대리석 샘플의 마찰계수(COF) 변화.

그림 3은 마모 테스트 후 석회석과 대리석 샘플의 단면 프로파일을 비교하고 표 1은 마모 추적 분석 결과를 요약합니다. 그림 4는 광학 현미경으로 관찰한 샘플의 마모 흔적을 보여줍니다. 마모 트랙 평가는 COF 진화 관찰과 일치합니다. 장기간 동안 낮은 COF를 유지하는 대리석 샘플은 석회석의 0.0353mm³/Nm에 비해 0.0046mm³/Nm의 더 낮은 마모율을 나타냅니다. 대리석의 우수한 기계적 특성은 석회석보다 내마모성이 우수합니다.

그림 3: 마모 트랙의 단면 프로파일.

밸리 지역 계곡 깊이 마모율
석회암 35.3±5.9×104 μm2 229±24μm 0.0353mm3/Nm
대리석 4.6±1.2×104 μm2 61±15μm 0.0046mm3/Nm

표 1: 마모궤적 분석 결과 요약.

그림 4: 광학 현미경으로 트랙을 착용합니다.

결론

본 연구에서 우리는 제어되고 모니터링되는 방식으로 대리석과 석회석이라는 두 암석 샘플의 마찰 계수와 내마모성을 평가하는 NANOVEA 마찰계의 성능을 보여주었습니다. 대리석의 우수한 기계적 특성은 뛰어난 내마모성에 기여합니다. 이러한 특성으로 인해 석유 및 가스 산업에서 드릴링 또는 절단 작업이 어려워집니다. 반대로, 바닥타일 등 고급 건축자재로 사용하면 수명이 대폭 연장됩니다.

NANOVEA 마찰계는 회전 모드와 선형 모드 모두에서 ISO 및 ASTM 표준을 준수하면서 정확하고 반복 가능한 마모 및 마찰 테스트 기능을 제공합니다. 또한 고온 마모, 윤활 및 마찰 부식을 위한 옵션 모듈을 제공하며 모두 하나의 시스템에 원활하게 통합됩니다. NANOVEA의 탁월한 제품군은 얇거나 두꺼운, 부드럽거나 단단한 코팅, 필름, 기판 및 암석 마찰학의 모든 범위의 마찰공학 특성을 결정하는 데 이상적인 솔루션입니다.

PTFE 코팅 마모 테스트

PTFE 코팅 마모 테스트

트라이보미터 및 기계적 테스터 사용

작성자

DUANJIE LI, PhD

소개

일반적으로 Teflon으로 알려진 PTFE(Polytetrafluoroethylene)는 적용된 하중에 따라 마찰 계수(COF)가 매우 낮고 내마모성이 뛰어난 폴리머입니다. PTFE는 뛰어난 화학적 불활성, 327°C(620°F)의 높은 융점을 나타내며 낮은 온도에서 높은 강도, 인성 및 자기 윤활성을 유지합니다. PTFE 코팅의 뛰어난 내마모성은 자동차, 항공 우주, 의료 및 특히 조리기구와 같은 광범위한 산업 응용 분야에서 매우 인기가 있습니다.

PTFE 코팅의 정량적 평가의 중요성

매우 낮은 마찰 계수(COF), 우수한 내마모성 및 고온에서의 뛰어난 화학적 불활성의 조합으로 인해 PTFE는 들러붙지 않는 팬 코팅에 이상적인 선택입니다. R&D 동안 기계 공정을 더욱 강화하고 품질 관리 공정에서 오작동 방지 및 안전 조치에 대한 최적의 제어를 보장하려면 PTFE 코팅의 마찰 기계적 공정을 양적으로 평가하기 위한 신뢰할 수 있는 기술을 보유하는 것이 중요합니다. 코팅의 표면 마찰, 마모 및 접착력을 정밀하게 제어하는 것은 의도한 성능을 보장하는 데 필수적입니다.

측정 목표

이 응용 분야에서 NANOVEA 트리보미터를 사용하여 선형 왕복 모드에서 논스틱 팬용 PTFE 코팅의 마모 과정을 시뮬레이션합니다.

나노베아 T50

소형 프리웨이트 트리보미터

또한 NANOVEA Mechanical Tester를 사용하여 PTFE 코팅 접착 실패의 임계 하중을 결정하기 위해 미세 스크래치 접착 테스트를 수행했습니다.

나노베아 PB1000

대형 플랫폼 기계 시험기

테스트 절차

착용 테스트

트라이보미터를 사용한 선형 왕복 마모

마찰 계수(COF) 및 내마모성을 포함한 PTFE 코팅 샘플의 마찰학적 거동은 NANOVEA를 사용하여 평가되었습니다. 트라이보미터 선형 왕복 모드에서. 직경 3mm(등급 100)의 스테인레스 스틸 440 볼 팁을 코팅에 사용했습니다. COF는 PTFE 코팅 마모 테스트 중에 지속적으로 모니터링되었습니다.

 

마모율 K는 K=V/(F×s)=A/(F×n) 공식을 사용하여 계산되었으며, 여기서 V는 마모량을 나타내고, F는 일반 하중, s는 슬라이딩 거리, A는 마모 트랙의 단면적, n은 스트로크 수입니다. 마모 트랙 프로파일은 NANOVEA를 사용하여 평가되었습니다. 광학 프로파일로미터, 마모 트랙 형태는 광학 현미경을 사용하여 검사되었습니다.

마모 테스트 매개변수

로드 30 N
테스트 기간 5 분
슬라이딩 속도 80rpm
트랙의 진폭 8mm
혁명 300
볼 지름 3mm
볼 소재 스테인레스 스틸 440
윤활유 없음
대기권 Air
온도 230C (RT)
습도 43%

테스트 절차

스크래치 테스트

MECHANICAL TESTER를 이용한 미세스크래치 접착력 시험

PTFE 스크래치 접착력 측정은 NANOVEA를 사용하여 수행되었습니다. 기계 테스터 마이크로 스크래치 테스터 모드에서 1200 Rockwell C 다이아몬드 스타일러스(반경 200μm)를 사용합니다.

 

결과의 재현성을 보장하기 위해 동일한 테스트 조건에서 세 가지 테스트를 수행했습니다.

스크래치 테스트 매개변수

로드 유형 프로그레시브
초기 로드 0.01mN
최종 로드 20mN
로딩 속도 40mN/분
스크래치 길이 3mm
스크래칭 속도, dx/dt 6.0mm/분
들여쓰기 기하학 120o 로크웰 C
들여쓰기 재료(팁) 다이아몬드
들여쓰기 팁 반경 200 μm

결과 및 토론

트라이보미터를 사용한 선형 왕복 마모

현장에서 기록된 COF는 그림 1에 나와 있습니다. 테스트 샘플은 PTFE의 낮은 점착성으로 인해 처음 130회전 동안 ~0.18의 COF를 나타냈습니다. 그러나 코팅이 뚫리면서 COF가 ~1로 갑자기 증가하여 아래의 기판이 드러났습니다. 선형 왕복 시험 후 마모 트랙 프로파일은 NANOVEA를 사용하여 측정되었습니다. 비접촉식 광학 프로파일로미터, 그림 2와 같이 얻은 데이터에서 해당 마모율은 ~2.78 × 10-3mm3/Nm로 계산되었으며 마모 트랙의 깊이는 44.94μm로 결정되었습니다.

NANOVEA T50 트라이보미터의 PTFE 코팅 마모 테스트 설정.

그림 1: PTFE 코팅 마모 테스트 중 COF의 진화.

그림 2: 마모 트랙 PTFE의 프로파일 추출.

PTFE 돌파 전

최대 COF 0.217
최소 COF 0.125
평균 COF 0.177

획기적인 후 PTFE

최대 COF 0.217
최소 COF 0.125
평균 COF 0.177

표 1: 마모 테스트 중 돌파 전후의 COF.

결과 및 토론

MECHANICAL TESTER를 이용한 미세스크래치 접착력 시험

기판에 대한 PTFE 코팅의 접착력은 200µm 다이아몬드 스타일러스로 스크래치 테스트를 사용하여 측정됩니다. 현미경 사진은 그림 3 및 그림 4, COF의 진화 및 그림 5의 침투 깊이에 나와 있습니다. PTFE 코팅 스크래치 테스트 결과는 표 4에 요약되어 있습니다. 다이아몬드 스타일러스에 대한 부하가 증가함에 따라 점차적으로 코팅에 침투했습니다. 결과적으로 COF가 증가합니다. ~8.5N의 하중에 도달했을 때 코팅의 돌파와 기판의 노출이 고압에서 발생하여 ~0.3의 높은 COF를 초래했습니다. 표 2에 표시된 낮은 St Dev는 NANOVEA 기계적 테스터를 사용하여 수행된 PTFE 코팅 스크래치 테스트의 반복성을 보여줍니다.

그림 3: PTFE(10X)의 전체 스크래치 현미경 사진.

그림 4: PTFE(10X)의 전체 스크래치 현미경 사진.

그림 5: PTFE에 대한 임계 실패 지점의 선을 보여주는 마찰 그래프.

스크래치 실패 지점 [N] 마찰력 [N] COF
1 0.335 0.124 0.285
2 0.337 0.207 0.310
3 0.380 0.229 0.295
평균 8.52 2.47 0.297
세인트 데브 0.17 0.16 0.012

표 2: 스크래치 테스트 중 임계 하중, 마찰력 및 COF 요약.

결론

이 연구에서는 선형 왕복 모드에서 NANOVEA T50 트리보미터를 사용하여 붙지 않는 팬용 PTFE 코팅의 마모 프로세스 시뮬레이션을 수행했습니다. PTFE 코팅은 ~0.18의 낮은 COF를 나타냈고 코팅은 약 130회전에서 돌파구를 경험했습니다. 금속 기판에 대한 PTFE 코팅 접착력의 정량적 평가는 NANOVEA Mechanical Tester를 사용하여 수행되었으며 이 테스트에서 코팅 접착 실패의 임계 하중은 ~8.5N으로 결정되었습니다.

 

NANOVEA 트리보미터는 ISO 및 ASTM 준수 회전 및 선형 모드를 사용하여 정확하고 반복 가능한 마모 및 마찰 테스트 기능을 제공합니다. 단일 시스템에 모두 통합된 고온 마모, 윤활 및 마찰 부식을 위한 옵션 모듈을 제공합니다. 이러한 다재다능함을 통해 사용자는 실제 응용 환경을 보다 정확하게 시뮬레이션하고 다양한 재료의 마모 메커니즘 및 마찰 특성을 이해할 수 있습니다.

 

NANOVEA 기계적 테스터는 나노, 마이크로 및 매크로 모듈을 제공하며 각 모듈에는 ISO 및 ASTM 준수 인덴테이션, 스크래치 및 마모 테스트 모드가 포함되어 있어 단일 시스템에서 사용할 수 있는 가장 광범위하고 사용자 친화적인 테스트 기능을 제공합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

트라이보미터를 사용한 바닥재의 점진적 마모 매핑

바닥재의 점진적 마모 매핑

프로파일로미터가 통합된 트라이보미터 사용

작성자

프랭크 리우

소개

바닥재는 내구성이 뛰어나도록 설계되었지만 이동, 가구 사용 등 일상 활동으로 인해 마모되거나 찢어지는 경우가 많습니다. 수명을 보장하기 위해 대부분의 바닥재에는 손상을 방지하는 보호 마모층이 있습니다. 그러나 바닥재 종류와 보행량에 따라 마모층의 두께와 내구성이 달라집니다. 또한 UV 코팅, 장식 층, 유약 등 바닥 구조 내의 다양한 층은 마모율이 다릅니다. 이것이 바로 점진적인 마모 매핑이 필요한 곳입니다. 통합된 NANOVEA T2000 마찰계를 사용하여 3D 비접촉 프로파일로미터, 바닥재의 성능과 수명에 대한 정밀한 모니터링과 분석이 가능합니다. 다양한 바닥재의 마모 거동에 대한 자세한 통찰력을 제공함으로써 과학자와 기술 전문가는 새로운 바닥재 시스템을 선택하고 설계할 때 더 많은 정보를 바탕으로 결정을 내릴 수 있습니다.

바닥 패널에 대한 프로그레시브 마모 매핑의 중요성

바닥재 테스트는 전통적으로 마모에 대한 내구성을 결정하기 위해 샘플의 마모율에 중점을 두었습니다. 그러나 프로그레시브 마모 매핑을 사용하면 테스트 전반에 걸쳐 샘플의 마모율을 분석하여 마모 거동에 대한 귀중한 통찰력을 얻을 수 있습니다. 이러한 심층 분석을 통해 마찰 데이터와 마모율 간의 상관관계를 파악하여 마모의 근본 원인을 파악할 수 있습니다. 마모율은 마모 테스트 전반에 걸쳐 일정하지 않다는 점에 유의해야 합니다. 따라서 마모 진행을 관찰하면 샘플의 마모를 보다 정확하게 평가할 수 있습니다. 기존의 테스트 방법을 뛰어넘는 프로그레시브 마모 매핑의 도입은 바닥재 테스트 분야에서 상당한 발전에 기여했습니다.

3D 비접촉 프로파일로미터가 통합된 NANOVEA T2000 마찰계는 마모 테스트 및 체적 손실 측정을 위한 획기적인 솔루션입니다. 핀과 프로파일로미터 사이를 정밀하게 이동할 수 있는 능력은 마모 트랙 반경이나 위치의 편차를 제거하여 결과의 신뢰성을 보장합니다. 하지만 그게 전부는 아닙니다. 3D 비접촉 프로파일로미터의 고급 기능을 사용하면 고속 표면 측정이 가능해 스캔 시간이 단 몇 초로 단축됩니다. 최대 2,000N의 하중을 적용하고 최대 5,000rpm의 회전 속도를 달성할 수 있는 NANOVEA T2000 트라이보미터 평가 과정에서 다양성과 정확성을 제공합니다. 이 장비가 점진적인 마모 매핑에서 중요한 역할을 한다는 것은 분명합니다.

 

그림 1: 마모 테스트 전 샘플 셋업 (왼쪽) 및 마모 테스트 후 마모 트랙의 프로파일 측정(오른쪽).

측정 목표

프로그레시브 마모 매핑 테스트는 석재와 목재 두 가지 유형의 바닥재에 대해 수행되었습니다. 각 샘플은 2, 4, 8, 20, 40, 60, 120초로 테스트 시간을 늘려가며 총 7번의 테스트 주기를 거쳤으며, 시간 경과에 따른 마모를 비교할 수 있도록 했습니다. 각 테스트 사이클이 끝난 후 나노베아 3D 비접촉 프로파일로미터를 사용하여 마모 트랙을 프로파일링했습니다. 프로파일러가 수집한 데이터에서 구멍의 부피와 마모율은 나노베아 트라이보미터 소프트웨어 또는 표면 분석 소프트웨어인 마운틴의 통합 기능을 사용하여 분석할 수 있습니다.

나노베아

T2000

마모 매핑 테스트 샘플 목재 및 석재

 샘플 

마모 매핑 테스트 매개변수

로드40 N
테스트 기간다양
속도200 rpm
RADIUS10 mm
거리다양
볼 소재텅스텐 카바이드
볼 지름10 mm

7주기 동안 사용된 테스트 기간은 다음과 같습니다. 2, 4, 8, 20, 40, 60, 120초로 각각 이동했습니다. 이동 거리는 다음과 같습니다. 0.40, 0.81, 1.66, 4.16, 8.36, 12.55, 25.11미터.

마모 매핑 결과

목재 바닥재

테스트 주기최대 COF최소 COFAvg. COF
10.3350.1240.275
20.3370.2070.295
30.3800.2290.329
40.3930.2650.354
50.3520.2050.314
60.3450.1990.312
70.3150.2110.293

 

방사형 방향

테스트 주기총 부피 손실(µm3총 거리
이동 거리(m)
마모율
(mm/Nm) x10-5
순간 마모율
(mm/Nm) x10-5
12962476870.401833.7461833.746
23552452271.221093.260181.5637
35963713262.88898.242363.1791
48837477677.04530.629172.5496
5120717995115.40360.88996.69074
6147274531827.95293.32952.89311
7185131921053.06184.34337.69599
목재 프로그레시브 마모율 대 총 거리

그림 2: 마모율 대비 총 이동 거리(왼쪽)
목재 바닥재의 순간 마모율과 테스트 주기(오른쪽)를 비교한 결과입니다.

목재 바닥의 점진적 마모 매핑

그림 3: 목재 바닥에서 테스트한 #7의 마모 트랙의 COF 그래프 및 3D 보기.

웨어 매핑 추출 프로파일

그림 4: 테스트 #7의 목재 마모 트랙 단면 분석

프로그레시브 마모 매핑 볼륨 및 면적 분석

그림 5: 목재 샘플 테스트 #7에서 마모 트랙의 부피 및 면적 분석.

마모 매핑 결과

석재 바닥재

테스트 주기최대 COF최소 COFAvg. COF
10.2490.0350.186
20.3490.1970.275
30.2940.1540.221
40.5030.1240.273
50.5480.1060.390
60.5100.1290.434
70.5270.1810.472

 

방사형 방향

테스트 주기총 부피 손실(µm3총 거리
이동 거리(m)
마모율
(mm/Nm) x10-5
순간 마모율
(mm/Nm) x10-5
1962788460.40595.957595.9573
28042897311.222475.1852178.889
313161478552.881982.355770.9501
431365302157.041883.2691093.013
51082173218015.403235.1802297.508
62017496034327.954018.2821862.899
74251206342053.064233.0812224.187
석재 바닥재 마모율 대 거리
석재 바닥재 순간 마모율 차트

그림 6: 마모율 대비 총 이동 거리(왼쪽)
석재 바닥재의 순간 마모율과 테스트 주기(오른쪽)를 비교합니다.

마모 트랙의 석재 바닥 3D 프로파일

그림 7: 석재 바닥에서 테스트한 #7의 마모 트랙의 COF 그래프 및 3D 보기.

석재 바닥 프로그레시브 마모 매핑 추출 프로파일
석재 바닥재 추출 프로파일 구멍과 피크의 최대 깊이 및 높이 면적

그림 8: 테스트 #7의 스톤 마모 트랙 단면 분석.

목재 바닥 프로그레시브 마모 매핑 볼륨 분석

그림 9: 석재 샘플 테스트 #7에서 마모 트랙의 부피 및 면적 분석.

토론

순간 마모율은 다음 공식을 사용하여 계산합니다:
바닥재 공식의 점진적 마모 매핑

여기서 V는 구멍의 부피, N은 하중, X는 총 거리이며, 이 방정식은 테스트 주기 사이의 마모율을 설명합니다. 순간 마모율은 테스트 전반에 걸친 마모율의 변화를 더 잘 파악하는 데 사용할 수 있습니다.

두 샘플의 마모 거동은 매우 다릅니다. 시간이 지남에 따라 목재 바닥재는 높은 마모율로 시작하지만 빠르게 더 작고 일정한 값으로 떨어집니다. 석재 바닥재의 경우 마모율은 낮은 값에서 시작하여 주기에 따라 더 높은 값으로 증가하는 경향을 보입니다. 순간 마모율도 일관성이 거의 없습니다. 이 차이의 구체적인 이유는 확실하지 않지만 샘플의 구조 때문일 수 있습니다. 석재 바닥재는 나뭇결 같은 입자로 이루어져 있어 목재의 촘촘한 구조와 다르게 마모되는 것으로 보입니다. 이러한 마모 현상의 원인을 확인하려면 추가적인 테스트와 연구가 필요합니다.

마찰 계수(COF)의 데이터는 관찰된 마모 거동과 일치하는 것으로 보입니다. 목재 바닥재의 COF 그래프는 사이클 전체에 걸쳐 일관되게 나타나며 꾸준한 마모율을 보완합니다. 석재 바닥재의 경우 사이클에 따라 마모율도 증가하는 것과 유사하게 사이클 전반에 걸쳐 평균 COF가 증가합니다. 마찰 그래프의 모양에도 뚜렷한 변화가 있어 공이 석재 샘플과 상호 작용하는 방식에 변화가 있음을 알 수 있습니다. 이는 사이클 2와 사이클 4에서 가장 두드러집니다.

결론

나노베아 T2000 트라이보미터는 두 개의 서로 다른 바닥재 샘플 사이의 마모율을 분석하여 점진적 마모 매핑을 수행할 수 있는 기능을 선보입니다. 연속 마모 테스트를 일시 중지하고 나노베아 3D 비접촉 프로파일로미터로 표면을 스캔하면 시간에 따른 재료의 마모 거동에 대한 귀중한 통찰력을 얻을 수 있습니다.

3D 비접촉식 프로파일로미터가 통합된 나노베아 T2000 트라이보미터는 COF(마찰 계수) 데이터, 표면 측정, 깊이 판독, 표면 시각화, 체적 손실, 마모율 등을 포함한 다양한 데이터를 제공합니다. 이 포괄적인 정보 세트를 통해 사용자는 시스템과 시료 간의 상호 작용에 대해 더 깊이 이해할 수 있습니다. 제어된 하중, 고정밀, 사용 편의성, 높은 하중, 넓은 속도 범위 및 추가 환경 모듈을 갖춘 NANOVEA T2000 트라이보미터는 마찰학을 한 차원 더 높은 수준으로 끌어올립니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

트라이보미터를 이용한 고온 스크래치 경도 측정

고온 스크래치 경도

트라이보미터 사용

작성자

DUANJIE, 박사

소개

경도는 영구적 또는 소성 변형에 대한 재료의 저항력을 측정합니다. 1820년 독일의 광물학자 프리드리히 모스가 처음 개발한 스크래치 경도 테스트는 날카로운 물체와의 마찰로 인한 스크래치 및 마모에 대한 재료의 경도를 결정합니다.1. 모스 척도는 선형 척도가 아닌 비교 지수이므로 ASTM 표준 G171-03에 설명된 대로 보다 정확하고 정성적인 스크래치 경도 측정이 개발되었습니다.2. 다이아몬드 스타일러스로 생성된 스크래치의 평균 너비를 측정하여 스크래치 경도 수치(HSP)를 계산합니다.

고온에서 스크래치 경도 측정의 중요성

재료는 서비스 요구 사항에 따라 선택됩니다. 온도 변화와 열 구배가 큰 응용 분야의 경우 고온에서 재료의 기계적 특성을 조사하여 기계적 한계를 완전히 파악하는 것이 중요합니다. 재료, 특히 폴리머는 일반적으로 고온에서 부드러워집니다. 많은 기계적 고장은 높은 온도에서만 발생하는 크리프 변형과 열 피로로 인해 발생합니다. 따라서 고온 응용 분야에 적합한 재료를 적절히 선택하려면 고온에서 경도를 측정할 수 있는 신뢰할 수 있는 기술이 필요합니다.

측정 목표

이 연구에서 NANOVEA T50 마찰계는 실온부터 300°C까지 다양한 온도에서 테프론 샘플의 스크래치 경도를 측정합니다. NANOVEA는 고온 스크래치 경도 측정 기능을 통해 트라이보미터 고온 응용 분야용 재료의 마찰공학 및 기계적 평가를 위한 다목적 시스템입니다.

나노베아

T50

테스트 조건

나노베아 T50 무중량 표준 트라이보미터를 사용하여 실온(RT)에서 300°C 범위의 온도에서 테프론 시료에 대한 스크래치 경도 테스트를 수행했습니다. 테프론의 녹는점은 326.8°C입니다. 팁 반경 200 µm의 정점 각도 120°의 원추형 다이아몬드 스타일러스를 사용했습니다. 테프론 샘플은 스테이지 중심까지 10mm의 거리를 두고 회전식 샘플 스테이지에 고정되었습니다. 샘플을 오븐으로 가열하고 RT, 50°C, 100°C, 150°C, 200°C, 250°C 및 300°C의 온도에서 테스트했습니다.

테스트 매개변수

고온 스크래치 경도 측정

일반 힘 2 N
슬라이딩 속도 1 mm/s
슬라이딩 거리 온도당 8mm
대기권 Air
온도 RT, 50°C, 100°C, 150°C, 200°C, 250°C, 300°C.

결과 및 토론

다양한 온도에서 테프론 샘플의 스크래치 트랙 프로파일은 서로 다른 온도에서 스크래치 경도를 비교하기 위해 그림 1에 나와 있습니다. 스크래치 트랙 가장자리에 쌓인 재료는 스타일러스가 2N의 일정한 하중으로 이동하고 테프론 샘플을 쟁기질하면서 스크래치 트랙의 재료를 옆으로 밀고 변형시키면서 형성됩니다.

그림 2와 같이 스크래치 트랙을 광학 현미경으로 검사했습니다. 측정된 스크래치 트랙 폭과 계산된 스크래치 경도 수치(HSP)는 그림 3에 요약되어 비교되어 있습니다. 현미경으로 측정한 스크래치 트랙 폭은 나노베아 프로파일러로 측정한 것과 일치하며, 테프론 샘플은 더 높은 온도에서 더 넓은 스크래치 폭을 나타냅니다. 스크래치 트랙 폭은 온도가 RT에서 300oC로 상승함에 따라 281µm에서 539µm로 증가하며, 그 결과 HSP는 65에서 18MPa로 감소합니다.

고온에서의 스크래치 경도는 나노베아 T50 트라이보미터를 사용하여 높은 정밀도와 반복성으로 측정할 수 있습니다. 이 제품은 다른 경도 측정의 대체 솔루션을 제공하며, 나노베아 트라이보미터를 포괄적인 고온 트라이보 기계 평가를 위한 보다 완벽한 시스템으로 만들어 줍니다.

그림 1: 다양한 온도에서 스크래치 경도 테스트 후 스크래치 트랙 프로파일.

그림 2: 다양한 온도에서 측정한 후 현미경으로 트랙을 스크래치합니다.

그림 3: 온도에 따른 스크래치 트랙 폭과 스크래치 경도의 변화.

결론

이 연구에서는 나노베아 트라이보미터가 ASTM G171-03에 따라 고온에서 스크래치 경도를 측정하는 방법을 소개합니다. 일정한 하중에서의 스크래치 경도 테스트는 트라이보미터를 사용하여 재료의 경도를 비교할 수 있는 간단한 대체 솔루션을 제공합니다. 고온에서 스크래치 경도 측정을 수행할 수 있는 나노베아 트라이보미터는 재료의 고온 트라이보-기계적 특성을 평가하는 데 이상적인 도구입니다.

또한 나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 고온 마모, 윤활 및 트리보 부식 모듈을 사전 통합된 하나의 시스템에서 옵션으로 사용할 수 있습니다. 옵션으로 제공되는 3D 비접촉식 프로파일러는 거칠기와 같은 기타 표면 측정과 더불어 마모 트랙의 고해상도 3D 이미징을 위해 사용할 수 있습니다.

1 프레드릭 브레덴버그; PL 라르손 (2009). "금속 및 폴리머의 스크래치 테스트: 실험 및 수치". 착용 266 (1-2): 76
2 ASTM G171-03(2009), "다이아몬드 스타일러스를 사용한 재료의 스크래치 경도에 대한 표준 시험 방법"

이제 애플리케이션에 대해 이야기해 보겠습니다.

산업용 코팅 스크래치 및 마모 평가

산업용 코팅

트라이보미터를 사용한 스크래치 및 마모 평가

작성자

DUANJIE LI, 박사 및 안드레아 헤르만(ANDREA HERRMANN)

소개

아크릴 우레탄 페인트는 바닥 페인트, 자동차 페인트 등 다양한 산업 분야에서 널리 사용되는 속건성 보호 코팅의 일종입니다. 바닥 페인트로 사용하면 보도, 연석 및 주차장과 같이 발과 고무 바퀴가 많이 다니는 구역에 사용할 수 있습니다.

품질 관리를 위한 스크래치 및 마모 테스트의 중요성

전통적으로 테이버 마모 테스트는 ASTM D4060 표준에 따라 아크릴 우레탄 바닥 페인트의 내마모성을 평가하기 위해 수행되었습니다. 그러나 표준에 언급된 바와 같이 "일부 재료의 경우, 테이버 연마기를 사용한 마모 테스트는 테스트 중 휠의 연마 특성 변화로 인해 편차가 발생할 수 있습니다."1 이로 인해 테스트 결과의 재현성이 떨어지고 다른 실험실에서 보고된 값을 비교하기 어려울 수 있습니다. 또한 테이퍼 마모 테스트에서 내마모성은 지정된 마모 사이클 횟수에서 무게의 손실로 계산됩니다. 그러나 아크릴 우레탄 바닥 페인트의 권장 건조막 두께는 37.5-50 μm2입니다.

테이버 연마기의 공격적인 마모 공정은 아크릴 우레탄 코팅을 빠르게 마모시키고 기판에 질량 손실을 일으켜 페인트 중량 손실 계산에 상당한 오류를 초래할 수 있습니다. 마모 테스트 중 페인트에 연마 입자를 주입하는 것도 오류의 원인이 됩니다. 따라서 페인트의 재현 가능한 마모 평가를 보장하려면 잘 제어되고 정량화 가능하며 신뢰할 수 있는 측정이 중요합니다. 또한 스크래치 테스트 를 사용하면 실제 응용 분야에서 조기에 접착/응집력 실패를 감지할 수 있습니다.

측정 목표

본 연구에서는 NANOVEA를 소개합니다. 트라이보미터 그리고 기계 테스터 산업용 코팅의 평가 및 품질 관리에 이상적입니다.

다양한 탑코트가 있는 아크릴 우레탄 바닥 페인트의 마모 과정은 나노베아 트라이보미터를 사용하여 제어 및 모니터링 방식으로 시뮬레이션됩니다. 마이크로 스크래치 테스트는 페인트의 응집력 또는 접착력 실패를 유발하는 데 필요한 하중을 측정하는 데 사용됩니다.

나노베아 T100

소형 공압 트라이보미터

나노베아 PB1000

대형 플랫폼 기계 테스터

테스트 절차

이 연구에서는 내구성을 향상시키기 위해 첨가제 배합에 약간의 변화를 주면서 동일한 프라이머(베이스 코트)와 동일한 포뮬러의 다른 탑코트를 가진 시판되는 4가지 수성 아크릴 바닥 코팅제를 평가합니다. 이 네 가지 코팅은 샘플 A, B, C 및 D로 식별됩니다.

착용 테스트

NANOVEA 마찰계는 마찰계수, COF, 내마모성과 같은 마찰학적 거동을 평가하기 위해 적용되었습니다. SS440 볼 팁(직경 6mm, 등급 100)을 테스트된 페인트에 적용했습니다. COF는 현장에서 기록되었습니다. 마모율 K는 공식 K=V/(F×s)=A/(F×n)을 사용하여 평가되었으며, 여기서 V는 마모량, F는 일반 하중, s는 슬라이딩 거리, A는 마모 트랙의 단면적, n은 회전수입니다. 표면 거칠기와 마모 트랙 프로파일은 NANOVEA에 의해 평가되었습니다. 광학 프로파일로미터, 마모 트랙 형태는 광학 현미경을 사용하여 검사되었습니다.

마모 테스트 매개변수

일반 힘

20 N

속도

15m/분

테스트 기간

100, 150, 300 및 800 사이클

스크래치 테스트

마이크로 스크래치 테스터 모드를 사용하여 페인트 샘플에 대한 점진적 하중 스크래치 테스트를 수행하기 위해 로크웰 C 다이아몬드 스타일러스(반경 200μm)가 장착된 나노베아 기계식 테스터를 사용했습니다. 두 가지 최종 하중이 사용되었습니다: 프라이머로부터 페인트 박리를 조사하기 위한 최종 하중 5N과 금속 기판으로부터 프라이머 박리를 조사하기 위한 최종 하중 35N이 사용되었습니다. 결과의 재현성을 보장하기 위해 각 샘플에 대해 동일한 테스트 조건에서 세 번의 테스트를 반복했습니다.

전체 스크래치 길이의 파노라마 이미지가 자동으로 생성되고 시스템 소프트웨어에 의해 임계 고장 위치가 적용된 하중과 상호 연관되었습니다. 이 소프트웨어 기능을 통해 사용자는 스크래치 테스트 직후 현미경으로 임계 하중을 결정할 필요 없이 언제든지 스크래치 트랙에 대한 분석을 수행할 수 있습니다.

스크래치 테스트 매개변수

로드 유형프로그레시브
초기 로드0.01mN
최종 로드5 N / 35 N
로딩 속도10 / 70 N/min
스크래치 길이3mm
스크래칭 속도, dx/dt6.0mm/분
들여쓰기 기하학120º 콘
들여쓰기 재료(팁)다이아몬드
들여쓰기 팁 반경200 μm

마모 테스트 결과

마모 변화를 모니터링하기 위해 각 샘플에 대해 다양한 회전 수(100, 150, 300, 800 사이클)로 4번의 핀 온 디스크 마모 테스트를 수행했습니다. 마모 테스트를 수행하기 전에 표면 거칠기를 정량화하기 위해 나노베아 3D 비접촉 프로파일러로 샘플의 표면 형태를 측정했습니다. 모든 샘플의 표면 거칠기는 그림 1에 표시된 것처럼 약 1μm로 비슷했습니다. 그림 2와 같이 마모 테스트가 진행되는 동안 COF는 현장에서 기록되었습니다. 그림 4는 100, 150, 300, 800 사이클 후 마모 트랙의 변화를 보여주며, 그림 3은 마모 과정의 여러 단계에서 다양한 샘플의 평균 마모율을 요약한 것입니다.

 

다른 세 샘플의 COF 값이 ~0.07인 것과 비교하면, 샘플 A는 처음에 ~0.15로 훨씬 높은 COF를 보이다가 점차 증가하여 300회 마모 사이클 후 ~0.3에서 안정화됩니다. 이러한 높은 COF는 마모 과정을 가속화하고 그림 4에 표시된 바와 같이 상당한 양의 페인트 잔해를 생성합니다(샘플 A의 탑코트는 처음 100회 회전에서 제거되기 시작함). 그림 3에서 볼 수 있듯이, 샘플 A는 처음 300회 동안 ~5μm2/N의 가장 높은 마모율을 나타내며, 금속 기판의 내마모성이 향상되어 ~3.5μm2/N으로 약간 감소합니다. 샘플 C의 탑코트는 그림 4에 표시된 것처럼 150회 마모 사이클 후에 실패하기 시작하며, 이는 그림 2에서 COF의 증가로도 알 수 있습니다.

 

이에 비해 샘플 B와 샘플 D는 향상된 마찰 특성을 보여줍니다. 샘플 B는 전체 테스트 기간 동안 낮은 COF를 유지하며, COF가 ~0.05에서 ~0.1로 약간 증가합니다. 이러한 윤활 효과는 내마모성을 크게 향상시켜 800회 마모 사이클 후에도 탑코트가 여전히 밑에 있는 프라이머에 우수한 보호 기능을 제공합니다. 800 사이클에서 샘플 B의 평균 마모율은 ~0.77 μm2/N에 불과한 최저치를 기록했습니다. 샘플 D의 탑코트는 375 사이클 후에 박리되기 시작하는데, 이는 그림 2의 갑작스러운 COF 증가에 반영되어 있습니다. 샘플 D의 평균 마모율은 800 사이클에서 ~1.1 μm2/N입니다.

 

기존의 테이버 마모 측정과 비교하여 나노베아 트라이보미터는 상업용 바닥/자동차 페인트의 재현 가능한 평가 및 품질 관리를 보장하는 잘 제어되고 정량화되고 신뢰할 수 있는 마모 평가를 제공합니다. 또한, 현장 COF 측정 기능을 통해 사용자는 마모 공정의 여러 단계를 COF의 변화와 연관시킬 수 있으며, 이는 다양한 페인트 코팅의 마모 메커니즘 및 마찰 특성에 대한 근본적인 이해를 향상시키는 데 매우 중요합니다.

그림 1: 페인트 샘플의 3D 형태 및 거칠기.

그림 2: 핀 온 디스크 테스트 중 COF.

그림 3: 다양한 페인트의 마모율의 진화.

그림 4: 핀 온 디스크 테스트 중 마모 트랙의 진화.

마모 테스트 결과

그림 5는 샘플 A의 스크래치 길이에 따른 정상 힘, 마찰력 및 실제 깊이의 플롯을 예로 들어 보여줍니다. 옵션으로 제공되는 음향 방출 모듈을 설치하면 더 많은 정보를 얻을 수 있습니다. 정상 하중이 선형적으로 증가함에 따라 압흔 팁은 실제 깊이의 점진적인 증가에 반영되어 테스트 샘플에 점차적으로 가라 앉습니다. 마찰력 및 실제 깊이 곡선의 기울기 변화는 코팅 실패가 발생하기 시작한다는 의미 중 하나로 사용할 수 있습니다.

그림 5: 스크래치 길이의 함수로서의 정상 힘, 마찰력 및 실제 깊이 최대 하중이 5N인 샘플 A의 스크래치 테스트.

그림 6과 그림 7은 각각 최대 하중 5N과 35N으로 테스트한 네 가지 페인트 샘플 모두의 전체 스크래치를 보여줍니다. 샘플 D는 프라이머를 박리하기 위해 50N의 더 높은 하중이 필요했습니다. 5N 최종 하중에서의 스크래치 테스트(그림 6)는 상단 페인트의 응집력/접착력 실패를 평가하고, 35N에서의 테스트(그림 7)는 프라이머의 박리를 평가합니다. 현미경 사진의 화살표는 상단 코팅 또는 프라이머가 프라이머 또는 기판에서 완전히 제거되기 시작하는 지점을 나타냅니다. 이 시점의 하중을 임계 하중(Lc)이라고 하며, 표 1에 요약된 대로 페인트의 응집력 또는 접착 특성을 비교하는 데 사용됩니다.

 

페인트 박리 시 4.04N, 프라이머 박리 시 36.61N의 가장 높은 Lc 값을 나타내는 페인트 샘플 D가 계면 접착력이 가장 우수하다는 것이 분명합니다. 샘플 B는 두 번째로 우수한 스크래치 저항성을 보여줍니다. 스크래치 분석 결과, 페인트 포뮬러의 최적화가 아크릴 바닥 페인트의 기계적 거동, 더 구체적으로는 스크래치 저항성과 접착 특성에 매우 중요하다는 것을 알 수 있습니다.

표 1: 임계 부하 요약.

그림 6: 최대 하중 5N의 전체 스크래치 현미경 사진.

그림 7: 최대 하중 35N의 전체 스크래치 현미경 사진.

결론

기존의 테이버 마모 측정과 비교했을 때, 나노베아 메카니컬 테스터와 트라이보미터는 상업용 바닥 및 자동차 코팅의 평가 및 품질 관리를 위한 탁월한 도구입니다. 스크래치 모드의 나노베아 메카니컬 테스터는 코팅 시스템의 접착/응집력 문제를 감지할 수 있습니다. 나노베아 트라이보미터는 페인트의 내마모성 및 마찰 계수에 대해 잘 제어되고 정량화 및 반복 가능한 마찰학적 분석을 제공합니다.

 

이 연구에서 테스트한 수성 아크릴 바닥 코팅에 대한 종합적인 마찰 및 기계적 분석에 따르면, 샘플 B가 가장 낮은 COF 및 마모율과 두 번째로 우수한 스크래치 저항성을 보였으며, 샘플 D는 가장 우수한 스크래치 저항성과 두 번째로 우수한 내마모성을 나타냈습니다. 이 평가를 통해 다양한 적용 환경의 요구 사항에 맞는 최적의 후보를 평가하고 선택할 수 있습니다.

 

나노베아 기계식 시험기의 나노 및 마이크로 모듈은 모두 ISO 및 ASTM을 준수하는 압흔, 스크래치 및 마모 시험기 모드를 포함하고 있어 단일 모듈에서 페인트 평가에 사용할 수 있는 가장 광범위한 테스트를 제공합니다. 나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 하나의 사전 통합된 시스템에서 고온 마모, 윤활 및 트리보 부식 모듈을 옵션으로 사용할 수 있습니다. 나노베아의 탁월한 제품군은 경도, 영 계수, 파괴 인성, 접착력, 내마모성 등 얇거나 두꺼운, 연질 또는 경질 코팅, 필름 및 기판의 모든 기계적/ 마찰학적 특성을 측정하는 데 이상적인 솔루션입니다. 옵션으로 제공되는 나노베아 비접촉식 광학 프로파일러는 거칠기와 같은 기타 표면 측정 외에도 스크래치 및 마모 트랙의 고해상도 3D 이미징을 위해 사용할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

트라이보미터를 사용한 폴리머 벨트 마모 및 마찰

폴리머 벨트

트라이보미터를 사용한 마모 및 마찰

작성자

DUANJIE LI, PhD

소개

벨트 드라이브는 동력을 전달하고 둘 이상의 회전축 사이의 상대적인 움직임을 추적합니다. 벨트 드라이브는 최소한의 유지보수로 간단하고 경제적인 솔루션으로 벅쏘, 제재소, 탈곡기, 사일로 블로어, 컨베이어 등 다양한 분야에 널리 사용됩니다. 벨트 드라이브는 과부하로부터 기계를 보호할 뿐만 아니라 습기를 차단하고 진동을 차단할 수 있습니다.

마모 평가의 중요성 벨트 드라이브의 경우

벨트 구동 기계의 벨트는 마찰과 마모가 불가피합니다. 충분한 마찰은 미끄러짐 없이 효과적인 동력 전달을 보장하지만 과도한 마찰은 벨트를 빠르게 마모시킬 수 있습니다. 벨트 구동 작동 중에는 피로, 마모, 마찰 등 다양한 유형의 마모가 발생합니다. 벨트의 수명을 연장하고 벨트 수리 및 교체에 드는 비용과 시간을 절감하기 위해서는 벨트의 마모 성능을 신뢰성 있게 평가하여 벨트의 수명, 생산 효율성 및 응용 분야 성능을 개선하는 것이 바람직합니다. 벨트의 마찰 계수 및 마모율을 정확하게 측정하면 벨트 생산의 R&D 및 품질 관리가 용이해집니다.

측정 목표

이 연구에서는 다양한 표면 질감을 가진 벨트의 마모 거동을 시뮬레이션하여 비교했습니다. 나노베아 T2000 트라이보미터는 벨트의 마모 과정을 제어 및 모니터링하는 방식으로 시뮬레이션합니다.

나노베아

T2000

테스트 절차

표면 거칠기와 질감이 다른 두 벨트의 마찰 계수, COF 및 내마모성을 다음과 같이 평가했습니다. 나노베아 고부하 트라이보미터 선형 왕복 마모 모듈을 사용합니다. Steel 440 볼(직경 10mm)을 카운터 재료로 사용했습니다. 통합된 측정기를 사용하여 표면 거칠기와 마모 트랙을 검사했습니다. 3D 비접촉 프로파일로미터. 마모율, K는 다음 공식을 사용하여 평가되었습니다. K=Vl(Fxs)여기서 V 는 착용한 볼륨입니다, F 는 정상 부하이고 s 는 슬라이딩 거리입니다.

 

이 연구에서는 매끄러운 스틸 440 볼을 예로 사용했으며, 실제 적용 상황을 시뮬레이션하기 위해 맞춤형 픽스처를 사용하여 모양과 표면 마감이 다른 모든 고체 소재를 적용할 수 있습니다.

결과 및 토론

텍스처 벨트 및 스무스 벨트의 표면 거칠기 Ra는 각각 33.5 및 8.7 um이며, 분석된 표면 프로파일에 따르면 나노베아 3D 비접촉식 광학 프로파일러. 서로 다른 하중에서 벨트의 마모 거동을 비교하기 위해 테스트한 두 벨트의 COF와 마모율을 각각 10N과 100N에서 측정했습니다.

그림 1 은 마모 테스트 중 벨트의 COF 변화를 보여줍니다. 텍스처가 다른 벨트는 상당히 다른 마모 거동을 보입니다. 흥미로운 점은 COF가 점진적으로 증가하는 런인 기간이 지나면 텍스처 벨트는 10N 및 100N의 하중을 사용하여 수행한 두 테스트 모두에서 ~0.5의 낮은 COF에 도달한다는 것입니다. 이에 비해 10N의 하중으로 테스트한 스무스 벨트는 COF가 안정될 때 ~1.4의 상당히 높은 COF를 나타내며 나머지 테스트 동안 이 값 이상을 유지한다는 것입니다. 100N의 하중을 가하여 테스트한 스무스 벨트는 강철 440 볼에 의해 빠르게 마모되어 큰 마모 트랙을 형성했습니다. 따라서 테스트는 220 회전에서 중단되었습니다.

그림 1: 다양한 하중에서 벨트의 COF의 진화.

그림 2는 100N에서 테스트 후 3D 마모 트랙 이미지를 비교한 것입니다. 나노베아 3D 비접촉식 프로파일로미터는 마모 트랙의 상세한 형태를 분석할 수 있는 도구를 제공하여 마모 메커니즘에 대한 근본적인 이해에 더 많은 통찰력을 제공합니다.

표 1: 마모 트랙 분석 결과.

그림 2:  두 벨트의 3D 보기
100N에서 테스트한 후

3D 마모 트랙 프로파일을 사용하면 표 1과 같이 고급 분석 소프트웨어에서 계산한 마모 트랙 부피를 직접 정확하게 측정할 수 있습니다. 220회전 마모 테스트에서 스무스 벨트는 600회전 마모 테스트 후 텍스처드 벨트의 마모 부피가 14.0mm3인 것에 비해 75.7mm3의 부피로 훨씬 더 크고 깊은 마모 트랙을 가집니다. 스틸 볼에 대한 스무스 벨트의 마찰이 훨씬 더 높기 때문에 텍스쳐드 벨트에 비해 마모율이 15배 더 높습니다.

 

텍스처 벨트와 스무스 벨트 사이의 이러한 급격한 COF 차이는 벨트와 스틸 볼 사이의 접촉 면적 크기와 관련이 있을 수 있으며, 이는 또한 다른 마모 성능으로 이어집니다. 그림 3은 광학 현미경으로 두 벨트의 마모 트랙을 보여줍니다. 마모 트랙 검사는 COF 진화에 대한 관찰과 일치합니다: 0.5의 낮은 COF를 유지하는 텍스처드 벨트는 10N의 하중에서 마모 테스트 후 마모 징후가 나타나지 않습니다. 스무스 벨트는 10N에서 작은 마모 트랙을 보여줍니다. 100N에서 수행한 마모 테스트는 텍스처드 벨트와 스무스 벨트 모두에서 상당히 큰 마모 트랙을 생성하며 다음 단락에서 설명하는 대로 3D 프로파일을 사용하여 마모율을 계산합니다.

그림 3:  광학 현미경으로 트랙을 착용합니다.

결론

이 연구에서는 벨트의 마찰 계수와 마모율을 잘 제어되고 정량적인 방식으로 평가할 수 있는 나노베아 T2000 트라이보미터의 성능을 보여주었습니다. 표면 텍스처는 벨트의 서비스 성능 중 마찰 및 내마모성에 중요한 역할을 합니다. 텍스처가 있는 벨트는 마찰 계수가 0.5 정도로 안정적이며 수명이 길기 때문에 공구 수리 또는 교체에 드는 시간과 비용을 절감할 수 있습니다. 이에 비해 매끄러운 벨트와 스틸 볼의 과도한 마찰은 벨트를 빠르게 마모시킵니다. 또한 벨트에 가해지는 하중은 벨트의 수명을 결정짓는 중요한 요소입니다. 과부하는 매우 높은 마찰을 발생시켜 벨트의 마모를 가속화합니다.

나노베아 T2000 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 고온 마모, 윤활 및 마찰 부식 모듈을 하나의 사전 통합된 시스템에서 옵션으로 사용할 수 있습니다. 나노베아의 타의 추종을 불허하는 범위는 얇거나 두꺼운, 연질 또는 경질 코팅, 필름 및 기판의 전체 범위의 마찰 특성을 측정하는 데 이상적인 솔루션입니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

트라이보미터를 사용한 샌드페이퍼 마모 성능

사포 마모 성능

트라이보미터 사용

작성자

DUANJIE LI, PhD

소개

사포는 종이나 천의 한 면에 연마 입자를 붙인 것으로 구성됩니다. 입자에는 가닛, 탄화규소, 산화알루미늄, 다이아몬드 등 다양한 연마재를 사용할 수 있습니다. 사포는 목재, 금속 및 건식 벽체에 특정 표면 마감을 만들기 위해 다양한 산업 분야에서 널리 적용됩니다. 사포는 손이나 전동 공구로 고압의 압력을 가하여 작업하는 경우가 많습니다.

사포 마모 성능 평가의 중요성

사포의 효과는 다양한 조건에서의 연마 성능에 따라 결정되는 경우가 많습니다. 사포에 포함된 연마 입자의 크기인 입자 크기에 따라 사포의 마모 속도와 연마되는 소재의 스크래치 크기가 결정됩니다. 입자 수가 높은 사포는 입자가 작기 때문에 샌딩 속도가 느리고 표면 마감이 더 미세합니다. 입자 수가 같지만 다른 재질로 만들어진 사포는 건조하거나 습한 조건에서 서로 다른 거동을 보일 수 있습니다. 제조된 사포가 의도한 연마 거동을 갖도록 하려면 신뢰할 수 있는 마찰 평가가 필요합니다. 이러한 평가를 통해 사용자는 다양한 유형의 사포의 마모 거동을 통제되고 모니터링된 방식으로 정량적으로 비교하여 대상 용도에 가장 적합한 후보를 선택할 수 있습니다.

측정 목표

이 연구에서는 건식 및 습식 조건에서 다양한 사포 샘플의 마모 성능을 정량적으로 평가할 수 있는 나노베아 트라이보미터의 기능을 소개합니다.

나노베아

T2000

테스트 절차

NANOVEA T100 Tribometer를 사용하여 두 종류의 사포의 마찰계수(COF)와 마모 성능을 평가했습니다. 카운터 재료로는 440 스테인리스 스틸 볼을 사용했습니다. NANOVEA를 사용하여 각 마모 테스트 후에 볼 마모 흉터를 검사했습니다. 3D 비접촉식 광학 프로파일러 정확한 볼륨 손실 측정을 보장합니다.

비교 연구를 위해 440 스테인리스 스틸 볼을 카운터 재료로 선택했지만, 다른 적용 조건을 시뮬레이션하기 위해 다른 고체 재료로 대체할 수 있습니다.

테스트 결과 및 토론

그림 1은 건조하고 습한 환경 조건에서 샌드페이퍼 1과 2의 COF 비교를 보여줍니다. 건조한 조건에서 샌드페이퍼 1은 테스트 초반에 0.4의 COF를 보이다가 점차 감소하여 0.3으로 안정화됩니다. 습한 조건에서 이 샘플은 0.27의 낮은 평균 COF를 나타냅니다. 이와 대조적으로 샘플 2의 COF 결과는 건식 COF 0.27, 습식 COF ~ 0.37을 보여줍니다. 

모든 COF 플롯의 데이터 진동은 거친 사포 표면에 대한 공의 슬라이딩 움직임으로 인해 발생한 진동으로 인해 발생했습니다.

그림 1: 마모 테스트 중 COF의 진화.

그림 2는 마모 흉터 분석 결과를 요약한 것입니다. 마모 흉터는 광학 현미경과 나노베아 3D 비접촉식 광학 프로파일러를 사용하여 측정했습니다. 그림 3과 그림 4는 샌드페이퍼 1과 2(습식 및 건식 조건)에서 마모 테스트 후 마모된 SS440 볼의 마모 흉터를 비교한 것입니다. 그림 4에서 볼 수 있듯이 나노베아 광학 프로파일러는 네 개의 볼과 각각의 마모 트랙의 표면 지형을 정밀하게 캡처한 다음 나노베아 마운틴 고급 분석 소프트웨어로 처리하여 체적 손실과 마모율을 계산합니다. 볼의 현미경과 프로파일 이미지에서 샌드페이퍼 1(건식) 테스트에 사용된 볼이 다른 볼에 비해 0.313의 체적 손실로 더 큰 평평한 마모 흉터를 보이는 것을 관찰할 수 있습니다. mm3. 반면, 샌드페이퍼 1(습식)의 볼륨 손실은 0.131이었습니다. mm3. 샌드페이퍼 2(건식)의 경우 볼륨 손실은 0.163이었습니다. mm3 샌드페이퍼 2(습식)의 경우 볼륨 손실이 0.237로 증가했습니다. mm3.

또한 COF가 사포의 마모 성능에 중요한 역할을 하는 것을 관찰한 것도 흥미롭습니다. 샌드페이퍼 1은 건조한 조건에서 더 높은 COF를 보였고, 이는 테스트에 사용된 SS440 볼의 마모율 상승으로 이어졌습니다. 이에 비해 습한 조건에서 샌드페이퍼 2의 COF가 높을수록 마모율이 더 높았습니다. 측정 후 샌드페이퍼의 마모 트랙은 그림 5에 표시되어 있습니다.

Sandpapers 1과 2는 모두 건조하고 습한 환경에서 작동한다고 주장합니다. 그러나 건조조건과 습윤조건에서 서로 다른 마모성능을 보였다. 나노베아 트라이보미터 재현 가능한 마모 평가를 보장하는 잘 제어된 정량화 가능하고 신뢰할 수 있는 마모 평가 기능을 제공합니다. 또한 현장 COF 측정 기능을 통해 사용자는 마모 프로세스의 다양한 단계를 COF의 진화와 연관시킬 수 있습니다. 이는 사포의 마모 메커니즘 및 마찰 특성에 대한 근본적인 이해를 높이는 데 중요합니다.

그림 2: 다양한 조건에서 볼의 마모 흉터 부피와 평균 COF를 확인합니다.

그림 3: 테스트 후 공의 흉터를 착용하십시오.

그림 4: 공의 마모 흉터의 3D 형태.

그림 5: 다양한 조건에서 샌드페이퍼에 트랙을 착용하세요.

결론

이 연구에서는 동일한 입자 수를 가진 두 종류의 사포의 마모 성능을 건식 및 습식 조건에서 평가했습니다. 사포의 사용 조건은 작업 성능의 효과에 중요한 역할을 합니다. 사포 1은 건조한 조건에서 마모 거동이 훨씬 우수했고, 사포 2는 습한 조건에서 더 우수한 성능을 보였습니다. 샌딩 공정 중 마찰은 마모 성능을 평가할 때 고려해야 할 중요한 요소입니다. 나노베아 광학 프로파일러는 공의 마모 흉터와 같은 모든 표면의 3D 형태를 정밀하게 측정하여 이 연구에서 샌드페이퍼의 마모 성능을 신뢰할 수 있게 평가합니다. 나노베아 트라이보미터는 마모 테스트 중 현장에서 마찰 계수를 측정하여 마모 공정의 여러 단계에 대한 통찰력을 제공합니다. 또한 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 반복 가능한 마모 및 마찰 테스트를 제공하며, 사전 통합된 하나의 시스템에서 고온 마모 및 윤활 모듈을 옵션으로 사용할 수 있습니다. 이 독보적인 제품군을 통해 사용자는 높은 응력, 마모 및 고온 등 볼 베어링의 다양한 가혹한 작업 환경을 시뮬레이션할 수 있습니다. 또한 고하중 하에서 우수한 내마모성 소재의 마찰 거동을 정량적으로 평가할 수 있는 이상적인 도구를 제공합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

피스톤 마모 테스트

피스톤 마모 테스트

트라이보미터 사용

작성자

프랭크 리우

소개

마찰 손실은 디젤 엔진 연료의 총 에너지 중 약 10%를 차지합니다.[1]. 마찰 손실의 40-55%는 파워 실린더 시스템에서 발생합니다. 마찰로 인한 에너지 손실은 파워 실린더 시스템에서 발생하는 마찰학적 상호 작용을 더 잘 이해하면 줄일 수 있습니다.

파워 실린더 시스템에서 발생하는 마찰 손실의 상당 부분은 피스톤 스커트와 실린더 라이너 사이의 접촉에서 비롯됩니다. 피스톤 스커트, 윤활유, 실린더 인터페이스 간의 상호 작용은 실제 엔진에서 힘, 온도, 속도가 지속적으로 변화하기 때문에 매우 복잡합니다. 각 요소를 최적화하는 것이 최적의 엔진 성능을 얻기 위한 핵심입니다. 이 연구는 피스톤 스커트-윤활유-실린더 라이너(P-L-C) 인터페이스에서 마찰력과 마모를 유발하는 메커니즘을 재현하는 데 중점을 둡니다.

 파워 실린더 시스템 및 피스톤 스커트-윤활유-실린더 라이너 인터페이스의 개략도.

[1] 바이, 동팡. 내연 기관의 피스톤 스커트 윤활 모델링. Diss. MIT, 2012

트라이보미터를 이용한 피스톤 테스트의 중요성

모터 오일은 용도에 맞게 잘 설계된 윤활유입니다. 기유 외에도 세제, 분산제, 점도 개선제(VI), 마모 방지/마찰 방지제, 부식 방지제 등의 첨가제가 첨가되어 성능을 향상시킵니다. 이러한 첨가제는 다양한 작동 조건에서 오일이 작동하는 방식에 영향을 미칩니다. 오일의 거동은 P-L-C 계면에 영향을 미치며 금속과 금속의 접촉으로 인한 심각한 마모가 발생하는지 또는 유체 역학적 윤활(마모가 거의 발생하지 않음)이 발생하는지를 결정합니다.

외부 변수로부터 영역을 분리하지 않고는 P-L-C 인터페이스를 이해하기 어렵습니다. 실제 적용을 대표하는 조건으로 이벤트를 시뮬레이션하는 것이 더 실용적입니다. P-L-C 인터페이스의 나노베아 트라이보미터 이것에 이상적입니다. 다중 힘 센서, 깊이 센서, 적하식 윤활 모듈 및 선형 왕복 스테이지를 갖추고 있습니다. 나노베아 T2000은 엔진 블록 내에서 발생하는 이벤트를 면밀히 모방하고 P-L-C 인터페이스를 더 잘 이해하기 위한 귀중한 데이터를 얻을 수 있습니다.

나노베아 T2000 트라이보미터의 액체 모듈

드롭 바이 드롭 모듈은 이 연구에서 매우 중요합니다. 피스톤은 매우 빠른 속도(3000rpm 이상)로 움직일 수 있기 때문에 시료를 담가서 윤활유의 얇은 막을 만드는 것이 어렵습니다. 이 문제를 해결하기 위해 드롭 바이 드롭 모듈은 피스톤 스커트 표면에 일정한 양의 윤활제를 일관되게 도포할 수 있습니다.

또한 새로운 윤활유를 바르면 윤활유의 특성에 영향을 미치는 마모 오염 물질이 제거될 염려가 없습니다.

나노베아 T2000

고부하 트라이보미터

측정 목표

이 보고서에서는 피스톤 스커트-윤활유-실린더 라이너 인터페이스에 대해 연구합니다. 드롭 바이 드롭 윤활유 모듈을 사용하여 선형 왕복 마모 테스트를 수행하여 인터페이스를 복제합니다.

윤활유를 실온 및 가열 조건에서 도포하여 콜드 스타트와 최적의 작동 조건을 비교합니다. COF와 마모율을 관찰하여 실제 애플리케이션에서 인터페이스가 어떻게 작동하는지 더 잘 이해할 수 있습니다.

테스트 매개변수

피스톤의 마찰 테스트용

로드 ............................ 100 N

테스트 기간 ............................ 30분

속도 ............................ 2000 rpm

증폭도 ............................ 10 mm

총 거리 ............................ 1200 m

스커트 코팅 ............................ 몰리 그라파이트

비밀번호 자료 ............................ 알루미늄 합금 5052

핀 직경 ............................ 10 mm

윤활유 ............................ 모터 오일(10W-30)

APPROX. 흐름 속도 ............................ 60mL/min

온도 ............................ 실내 온도 및 90°C

선형 왕복 테스트 결과

이 실험에서는 A5052를 카운터 재료로 사용했습니다. 엔진 블록은 일반적으로 A356과 같은 주조 알루미늄으로 제작되지만, A5052는 이 시뮬레이션 테스트에서 A356과 유사한 기계적 특성을 가졌습니다 [2].

테스트 조건에서 상당한 마모가 발생했습니다.
실온에서 피스톤 스커트에서 관찰됨
90°C에서와 비교했습니다. 샘플에서 보이는 깊은 스크래치는 정적 물질과 피스톤 스커트 사이의 접촉이 테스트 내내 자주 발생했음을 시사합니다. 실온에서 점도가 높기 때문에 오일이 계면의 틈새를 완전히 채우고 금속과 금속이 접촉하는 것을 제한할 수 있습니다. 더 높은 온도에서는 오일이 묽어져 핀과 피스톤 사이를 흐를 수 있습니다. 그 결과 고온에서 마모가 현저히 줄어듭니다. 그림 5는 마모 흉터의 한쪽이 다른 쪽보다 훨씬 적게 마모된 것을 보여줍니다. 이는 오일 출력의 위치 때문일 가능성이 높습니다. 윤활막 두께가 한 쪽이 다른 쪽보다 두꺼워서 마모가 고르지 않게 발생했습니다.

 

 

[2] "5052 알루미늄 대 356.0 알루미늄." MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

선형 왕복 마찰 테스트의 COF는 하이패스와 로우패스로 나눌 수 있습니다. 하이 패스는 샘플이 정방향 또는 양의 방향으로 이동하는 것을 의미하고 로우 패스는 샘플이 역방향 또는 음의 방향으로 이동하는 것을 의미합니다. RT 오일의 평균 COF는 두 방향 모두 0.1 미만인 것으로 관찰되었습니다. 패스 간 평균 COF는 0.072와 0.080이었습니다. 90°C 오일의 평균 COF는 패스마다 다른 것으로 나타났습니다. 평균 COF 값은 0.167과 0.09로 관찰되었습니다. COF의 차이는 오일이 핀의 한쪽 면만 제대로 적실 수 있었다는 추가적인 증거를 제공합니다. 유체 역학적 윤활이 발생하여 핀과 피스톤 스커트 사이에 두꺼운 막이 형성되었을 때 높은 COF를 얻을 수 있었습니다. 혼합 윤활이 발생하면 다른 방향에서 낮은 COF가 관찰됩니다. 유체 역학 윤활 및 혼합 윤활에 대한 자세한 내용은 다음 애플리케이션 노트를 참조하십시오. 스트라이벡 커브.

표 1: 피스톤의 윤활 마모 테스트 결과.

그림 1: 상온 오일 마모 테스트용 COF 그래프 A 원시 프로파일 B 하이 패스 C 로우 패스.

그림 2: 90°C 마모 오일 테스트의 COF 그래프 A 원시 프로파일 B 하이 패스 C 로우 패스.

그림 3: RT 모터 오일 마모 테스트의 마모 흉터 광학 이미지.

그림 4: RT 모터 오일 마모 테스트에서 마모 흉터의 구멍 분석 부피.

그림 5: RT 모터 오일 마모 테스트에서 마모 흉터의 프로파일 측정 스캔.

그림 6: 90°C 모터 오일 마모 테스트의 마모 흉터 광학 이미지

그림 7: 90°C 모터 오일 마모 테스트에서 마모 흉터의 구멍 분석 부피.

그림 8: 90°C 모터 오일 마모 테스트에서 마모 흉터에 대한 프로파일 측정 스캔.

결론

윤활 선형 왕복 마모 테스트는 피스톤에 대해 수행되어 피스톤에서 발생하는 이벤트를 시뮬레이션했습니다.
실제 작동하는 엔진. 피스톤 스커트-윤활유-실린더 라이너 인터페이스는 엔진 작동에 매우 중요합니다. 계면의 윤활유 두께는 피스톤 스커트와 실린더 라이너 사이의 마찰 또는 마모로 인한 에너지 손실의 원인이 됩니다. 엔진을 최적화하려면 피스톤 스커트와 실린더 라이너가 닿지 않도록 필름 두께를 가능한 한 얇게 유지해야 합니다. 하지만 온도, 속도, 힘의 변화가 P-L-C 인터페이스에 어떤 영향을 미치는지 파악하는 것이 과제입니다.

나노베아 T2000 트라이보미터는 광범위한 하중(최대 2000N)과 속도(최대 15000rpm)를 통해 엔진에서 가능한 다양한 조건을 시뮬레이션할 수 있습니다. 이 주제에 대한 향후 가능한 연구에는 다양한 정하중, 진동 하중, 윤활유 온도, 속도 및 윤활유 도포 방법에서 P-L-C 인터페이스가 어떻게 작동하는지가 포함됩니다. 이러한 파라미터는 나노베아 T2000 트라이보미터로 쉽게 조정할 수 있어 피스톤 스커트-윤활유-실린더 라이너 인터페이스의 메커니즘을 완벽하게 이해할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

트라이보미터를 이용한 유리 코팅 습도 마모 테스트

트라이보미터를 이용한 유리 코팅 습도 마모 테스트

자세히 알아보기

유리 코팅 습도

트라이보미터를 통한 마모 테스트

작성자

DUANJIE LI, 박사

소개

셀프 클리닝 유리 코팅은 유리 표면을 쉽게 청소할 수 있도록 하여 때, 먼지 및 얼룩이 쌓이는 것을 방지합니다. 셀프 클리닝 기능은 청소 빈도, 시간, 에너지 및 청소 비용을 크게 줄여주므로 유리 외관, 거울, 샤워 유리, 창문, 앞 유리 등 다양한 주거 및 상업용 애플리케이션에 매력적인 선택이 될 수 있습니다.

내마모성의 중요성 자가 세척 유리 코팅의 중요성

셀프 클리닝 코팅의 주요 적용 분야는 고층 빌딩의 유리 외벽 외부 표면입니다. 유리 표면은 종종 강풍에 의해 운반되는 고속 입자에 의해 공격을 받습니다. 기상 조건 또한 유리 코팅의 수명에 중요한 역할을 합니다. 유리를 표면 처리하고 오래된 코팅이 실패했을 때 새 코팅을 적용하는 것은 매우 어렵고 비용이 많이 들 수 있습니다. 따라서 유리 코팅의 내마모성은 다음과 같습니다.
다른 날씨 조건이 중요합니다.


다양한 날씨에서 셀프 클리닝 코팅의 실제 환경 조건을 시뮬레이션하려면 제어 및 모니터링되는 습도에서 반복 가능한 마모 평가가 필요합니다. 이를 통해 사용자는 다양한 습도에 노출된 셀프 클리닝 코팅의 내마모성을 적절히 비교하고 목표 용도에 가장 적합한 후보를 선택할 수 있습니다.

측정 목표

이 연구에서 우리는 나노베아 습도 컨트롤러가 장착된 T100 트라이보미터는 다양한 습도에서 셀프 클리닝 유리 코팅의 내마모성을 조사하는 데 이상적인 도구입니다.

나노베아

T100

테스트 절차

소다석회 유리 현미경 슬라이드는 두 가지 다른 처리 레시피를 사용하여 자가 세척 유리 코팅으로 코팅했습니다. 이 두 가지 코팅은 코팅 1과 코팅 2로 식별됩니다. 비교를 위해 코팅되지 않은 맨 유리 슬라이드도 테스트했습니다.


나노베아 트라이보미터 자체 세척 유리 코팅의 마찰계수, COF 및 내마모성과 같은 마찰학적 거동을 평가하기 위해 습도 제어 모듈이 장착된 장치를 사용했습니다. WC 볼 팁(직경 6mm)을 테스트 샘플에 적용했습니다. COF는 현장에서 기록되었습니다. 트라이보 챔버에 부착된 습도 조절기는 상대 습도(RH) 값을 ±1·% 범위로 정밀하게 제어했습니다. 마모 트랙 형태는 마모 테스트 후 광학 현미경으로 검사되었습니다.

최대 부하 40mN
결과 및 토론

다양한 습도 조건에서의 핀 온 디스크 마모 테스트는 코팅 유리와 비코팅 유리에 대해 수행되었습니다.
샘플. 마모 테스트가 진행되는 동안 COF는 다음과 같이 현장에서 기록되었습니다.
그림 1 에 요약되어 있으며 평균 COF는 그림 2. 그림 4 마모 테스트 후 마모 트랙을 비교합니다.


에 표시된 것처럼
그림 1코팅되지 않은 유리는 30% RH에서 슬라이딩 동작이 시작되면 ~0.45의 높은 COF를 나타내며, 300회 회전 마모 테스트가 끝날 때 ~0.6까지 점진적으로 증가합니다. 이에 비해
코팅 유리 샘플 코팅 1과 코팅 2는 테스트 시작 시점에 0.2 미만의 낮은 COF를 보였습니다. COF
의 코팅 2는 나머지 테스트 동안 ~ 0.25에서 안정화되는 반면, 코팅 1은 다음에서 COF의 급격한 증가를 나타냅니다.
~250 회전에서 COF는 ~0.5의 값에 도달합니다. 60% RH에서 마모 테스트를 수행하면 다음과 같은 결과가 나타납니다.
코팅되지 않은 유리는 마모 테스트 전체에서 여전히 약 0.45의 더 높은 COF를 보여줍니다. 코팅 1과 2는 각각 0.27과 0.22의 COF 값을 나타냅니다. 90% RH에서 코팅되지 않은 유리는 마모 테스트가 끝날 때 ~0.5의 높은 COF를 보였습니다. 코팅 1과 코팅 2는 마모 테스트가 시작될 때 ~0.1의 비슷한 COF를 나타냅니다. 코팅 1은 ~0.15의 비교적 안정적인 COF를 유지합니다. 그러나 코팅 2는 약 100회 회전에서 실패한 후 마모 테스트가 끝날 무렵에 COF가 약 0.5로 크게 증가합니다.


셀프 클리닝 유리 코팅의 낮은 마찰은 표면 에너지가 낮기 때문입니다. 매우 높은 정전기를 생성합니다.
물 접촉각과 낮은 롤오프 각도. 현미경으로 볼 때 90% RH의 코팅 표면에 작은 물방울이 형성됩니다.
그림 3. 또한 RH 값이 30%에서 90%로 증가함에 따라 코팅 2의 경우 평균 COF가 ~0.23에서 ~0.15로 감소합니다.

그림 1: 다양한 상대 습도에서 핀 온 디스크 테스트 중 마찰 계수.

그림 2: 다양한 상대 습도에서 핀 온 디스크 테스트 중 평균 COF.

그림 3: 코팅된 유리 표면에 작은 물방울이 형성됩니다.

그림 4 은 다양한 습도에서 마모 테스트 후 유리 표면의 마모 트랙을 비교한 것입니다. 코팅 1은 30% 및 60%의 RH에서 마모 테스트 후 가벼운 마모 징후를 보입니다. 90% RH에서 테스트 후 큰 마모 트랙을 보였으며, 이는 마모 테스트 중 COF의 상당한 증가와 일치합니다. 코팅 2는 건식 및 습식 환경 모두에서 마모 테스트 후 마모 흔적이 거의 나타나지 않았으며, 다양한 습도에서 마모 테스트 중에도 지속적으로 낮은 COF를 나타냈습니다. 우수한 마찰 특성과 낮은 표면 에너지의 조합으로 인해 코팅 2는 열악한 환경에서 셀프 클리닝 유리 코팅 애플리케이션에 적합한 후보입니다. 이에 비해 코팅되지 않은 유리는 다양한 습도에서 더 큰 마모 트랙과 더 높은 COF를 보여 셀프 클리닝 코팅 기술의 필요성을 입증합니다.

그림 4: 다양한 상대 습도(200배 배율)에서 핀 온 디스크 테스트 후 트랙을 마모합니다.

결론

나노베아 T100 트라이보미터는 다양한 습도에서 셀프 클리닝 유리 코팅의 평가 및 품질 관리를 위한 탁월한 도구입니다. 현장 COF 측정 기능을 통해 사용자는 마모 공정의 여러 단계를 COF의 변화와 연관시킬 수 있으며, 이는 유리 코팅의 마모 메커니즘 및 마찰 특성에 대한 근본적인 이해를 향상시키는 데 매우 중요합니다. 다양한 습도에서 테스트한 셀프 클리닝 유리 코팅에 대한 종합적인 마찰학적 분석에 따르면, 코팅 2는 건조 및 습한 환경 모두에서 일정하게 낮은 COF와 우수한 내마모성을 지니고 있어 다양한 날씨에 노출되는 셀프 클리닝 유리 코팅 애플리케이션에 더 적합한 후보임을 보여줍니다.


나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 고온 마모, 윤활 및 트리보 부식 모듈을 사전 통합된 하나의 시스템에서 옵션으로 사용할 수 있습니다. 옵션으로 제공되는 3D 비접촉식 프로파일러를 통해 높은
거칠기와 같은 다른 표면 측정과 더불어 마모 트랙의 해상도 3D 이미징을 제공합니다. 

이제 애플리케이션에 대해 이야기해 보겠습니다.

고온에서의 현장 마모 측정

현장 마모 측정 고온에서

트라이보미터 사용

현장 마모 측정 항공 우주 트라이보미터

작성자

Duanjie Li, PhD

소개

선형 가변 차동 변압기(LVDT)는 선형 변위를 측정하는 데 사용되는 견고한 전기 변압기의 일종입니다. 파워 터빈, 유압, 자동화, 항공기, 인공위성, 원자로 등 다양한 산업 분야에서 널리 사용되고 있습니다.

본 연구에서는 NANOVEA의 LVDT 추가 기능과 고온 모듈을 소개합니다. 트라이보미터 이를 통해 고온에서 마모 과정 중에 테스트된 샘플의 마모 트랙 깊이 변화를 측정할 수 있습니다. 이를 통해 사용자는 마모 프로세스의 여러 단계를 COF의 진화와 연관시킬 수 있으며, 이는 고온 응용 분야용 재료의 마모 메커니즘 및 마찰 특성에 대한 근본적인 이해를 높이는 데 중요합니다.

측정 목표

이 연구에서는 고온에서 재료의 마모 과정의 진화를 현장에서 모니터링할 수 있는 나노베아 T50 트라이보미터의 성능을 선보이고자 합니다.

다양한 온도에서 알루미나 규산염 세라믹의 마모 과정을 제어 및 모니터링하는 방식으로 시뮬레이션합니다.

나노베아

T50

테스트 절차

알루미나 실리케이트 세라믹 플레이트의 마찰 계수, COF 및 내마모성과 같은 마찰 거동을 나노베아 트라이보미터로 평가했습니다. 알루미나 실리케이트 세라믹 플레이트를 상온인 RT에서 고온(400°C 및 800°C)으로 가열한 후 해당 온도에서 마모 테스트를 수행했습니다. 

비교를 위해 샘플을 800°C에서 400°C로 식힌 다음 실온으로 식혔을 때 마모 테스트를 수행했습니다. AI2O3 볼 팁(직경 6mm, 100 등급)을 테스트 샘플에 적용했습니다. COF, 마모 깊이 및 온도는 현장에서 모니터링되었습니다.

테스트 매개변수

핀 온 디스크 측정의

트라이보미터 LVDT 샘플

마모율 K는 K=V/(Fxs)=A/(Fxn) 공식을 사용하여 평가했으며, 여기서 V는 마모 체적, F는 정상 하중, s는 슬라이딩 거리, A는 마모 트랙의 단면적, n은 회전 수입니다. 표면 거칠기와 마모 트랙 프로파일은 나노베아 광학 프로파일러로 평가하고, 마모 트랙 형태는 광학 현미경으로 검사했습니다.

결과 및 토론

현장에서 기록된 COF 및 마모 트랙 깊이는 각각 그림 1과 그림 2에 나와 있습니다. 그림 1에서 "-I"는 RT에서 고온으로 온도를 높였을 때 수행한 테스트를 나타냅니다. "-D"는 800°C의 고온에서 온도가 낮아졌을 때를 나타냅니다.

그림 1에서 볼 수 있듯이, 다양한 온도에서 테스트한 샘플은 측정 전반에 걸쳐 약 0.6의 비슷한 COF를 보였습니다. 이러한 높은 COF는 마모 과정을 가속화하여 상당한 양의 파편을 생성합니다. 마모 트랙 깊이는 그림 2에 표시된 바와 같이 LVDT로 마모 테스트 중에 모니터링되었습니다. 시료 가열 전과 시료 냉각 후 실온에서 수행한 테스트에서 알루미나 규산염 세라믹 플레이트는 RT에서 점진적인 마모 과정을 나타내며, 마모 테스트 내내 마모 트랙 깊이가 각각 ~170 및 ~150 μm로 점차 증가합니다. 

이에 비해 고온(400°C 및 800°C)에서의 마모 테스트는 마모 과정 초기에 마모 트랙 깊이가 즉시 증가하고 테스트가 계속될수록 속도가 느려지는 등 다른 마모 거동을 보입니다. 400°C-I, 800°C 및 400°C-D 온도에서 수행된 테스트의 마모 트랙 깊이는 각각 ~140, ~350 및 ~210 μm입니다.

다양한 온도에서 핀 온 데스크 테스트 중 COF

그림 1. 다양한 온도에서 핀 온 디스크 테스트 중 마찰 계수

다양한 온도에서 알루미나 실리케이트 세라믹 플레이트의 마모 트랙 깊이

그림 2. 다양한 온도에서 알루미나 실리케이트 세라믹 플레이트의 마모 트랙 깊이의 변화

다양한 온도에서 알루미나 규산염 세라믹 플레이트의 평균 마모율과 마모 트랙 깊이를 다음을 사용하여 측정했습니다. 나노베아 에 요약된 광학 프로파일러 그림 3. 마모 트랙 깊이는 LVDT를 사용하여 기록된 것과 일치합니다. 알루미나 규산염 세라믹 플레이트는 400°C 이하의 온도에서 0.2mm3/N 미만의 마모율에 비해 800°C에서 ~0.5mm3/Nm의 상당히 증가된 마모율을 보여줍니다. 규산알루미늄 세라믹 플레이트는 짧은 가열 공정 후에도 기계적/마모 특성이 크게 향상되지 않아 열처리 전후의 마모율이 비슷합니다.

용암과 원더스톤으로도 알려진 알루미나 규산염 세라믹은 열처리 전에는 부드럽고 가공이 가능합니다. 최대 1093°C의 고온에서 장시간 소성하는 과정을 거치면 경도와 강도가 크게 향상되며, 그 후에는 다이아몬드 가공이 필요합니다. 이러한 독특한 특성 덕분에 알루미나 실리케이트 세라믹은 조각에 이상적인 소재입니다.

이 연구에서는 단시간에 소성하는 데 필요한 온도보다 낮은 온도(800°C 대 1093°C)에서 열처리해도 알루미나 실리케이트 세라믹의 기계적 및 마찰학적 특성이 개선되지 않으므로 실제 응용 분야에서 사용하기 전에 적절한 소성이 필수적인 공정임을 보여줍니다.

 
다양한 온도에서 시료의 마모 속도 및 마모 트랙 깊이 1

그림 3. 다양한 온도에서 샘플의 마모 속도 및 마모 트랙 깊이

결론

이 연구의 종합적인 마찰학 분석에 따르면 알루미나 규산염 세라믹 플레이트는 상온에서 800°C에 이르는 다양한 온도에서 비슷한 마찰 계수를 나타냅니다. 그러나 800°C에서 마모율이 ~0.5mm3/Nm로 크게 증가하여 이 세라믹의 적절한 열처리가 중요하다는 것을 보여줍니다.

나노베아 트라이보미터는 최대 1000°C의 고온 응용 분야에서 재료의 마찰 특성을 평가할 수 있습니다. 현장 COF 및 마모 트랙 깊이 측정 기능을 통해 사용자는 고온에서 사용되는 재료의 마모 메커니즘 및 마찰 특성에 대한 근본적인 이해를 향상시키는 데 중요한 마모 공정의 여러 단계를 COF의 진화와 상호 연관시킬 수 있습니다.

나노베아 트라이보미터는 ISO 및 ASTM을 준수하는 회전 및 선형 모드를 사용하여 정밀하고 반복 가능한 마모 및 마찰 테스트를 제공하며, 고온 마모, 윤활 및 트리보 부식 모듈을 하나의 사전 통합된 시스템에서 옵션으로 사용할 수 있습니다. 나노베아의 탁월한 제품군은 얇거나 두꺼운, 연질 또는 경질 코팅, 필름 및 기판의 모든 범위의 마찰 특성을 측정하는 데 이상적인 솔루션입니다.

옵션으로 제공되는 3D 비접촉식 프로파일러는 거칠기와 같은 기타 표면 측정 외에도 마모 트랙의 고해상도 3D 이미징에 사용할 수 있습니다.

현장 마모 측정

이제 애플리케이션에 대해 이야기해 보겠습니다.