USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Analiza powierzchni 3D groszku za pomocą profilometrii bezdotykowej

Znaczenie profilometrii bezkontaktowej dla monet

Waluta jest bardzo ceniona we współczesnym społeczeństwie, ponieważ wymienia się ją na towary i usługi. Monety i banknoty krążą w rękach wielu ludzi. Ciągły transfer waluty fizycznej powoduje deformację powierzchni. Nanovea 3D Profilometr skanuje topografię monet bitych w różnych latach w celu zbadania różnic w ich powierzchni.

Cechy monet są łatwo rozpoznawalne dla ogółu społeczeństwa, ponieważ są to zwykłe przedmioty. Grosz jest idealny, aby przedstawić możliwości zaawansowanego oprogramowania do analizy powierzchni Nanovea: Mountains 3D. Dane powierzchniowe zebrane za pomocą naszego Profilometru 3D pozwalają na zaawansowane analizy złożonej geometrii z odejmowaniem powierzchni i ekstrakcją konturów 2D. Odejmowanie powierzchni za pomocą kontrolowanej maski, stempla lub formy porównuje jakość procesów produkcyjnych, podczas gdy ekstrakcja konturów identyfikuje tolerancje na podstawie analizy wymiarowej. Profilometr 3D i oprogramowanie Mountains 3D firmy Nanovea badają submikronową topografię pozornie prostych obiektów, takich jak grosze.



Cel pomiaru

Pełna górna powierzchnia pięciu groszy została zeskanowana przy użyciu High-Speed Line Sensor firmy Nanovea. Wewnętrzny i zewnętrzny promień każdego grosza został zmierzony przy użyciu oprogramowania do zaawansowanej analizy Mountains. Ekstrakcja z powierzchni każdego grosza w obszarze zainteresowania z bezpośrednim odejmowaniem powierzchni pozwoliła na ilościowe określenie deformacji powierzchni.

 



Wyniki i dyskusja

Powierzchnia 3D

Profilometr Nanovea HS2000 potrzebował zaledwie 24 sekund na zeskanowanie 4 milionów punktów w obszarze 20mm x 20mm z krokiem 10um x 10um, aby pozyskać powierzchnię grosza. Poniżej znajduje się mapa wysokości i wizualizacja 3D skanowania. Widok 3D pokazuje zdolność czujnika High-Speed do wychwytywania drobnych szczegółów niewidocznych dla oka. Na powierzchni monety widoczne jest wiele małych rys. Tekstura i chropowatość monety widoczne w widoku 3D są badane.

 










Analiza wymiarowa

Wyodrębniono kontury grosza i w wyniku analizy wymiarowej uzyskano średnicę wewnętrzną i zewnętrzną cechy krawędziowej. Promień zewnętrzny wynosił średnio 9.500 mm ± 0.024, podczas gdy promień wewnętrzny wynosił średnio 8.960 mm ± 0.032. Dodatkowe analizy wymiarowe, jakie może przeprowadzić Mountains 3D na źródłach danych 2D i 3D to pomiary odległości, wysokości stopni, planarności i obliczanie kątów.







Odejmowanie powierzchni

Rysunek 5 przedstawia obszar zainteresowania dla analizy odejmowania powierzchni. Grosz z 2007 roku został użyty jako powierzchnia referencyjna dla czterech starszych groszy. Odejmowanie powierzchni od powierzchni grosza z 2007 roku pokazuje różnice pomiędzy groszami z otworami/dziurkami. Całkowita różnica objętości powierzchni jest uzyskiwana z dodania objętości otworów/szczytów. Błąd RMS odnosi się do tego, jak blisko powierzchnie groszy zgadzają się ze sobą.


 









Wniosek





Nanovea's High-Speed HS2000L zeskanowała pięć groszy wybitych w różnych latach. Oprogramowanie Mountains 3D porównało powierzchnie każdej monety wykorzystując ekstrakcję konturów, analizę wymiarową i odejmowanie powierzchni. Analiza wyraźnie określa wewnętrzny i zewnętrzny promień pomiędzy groszami, jednocześnie bezpośrednio porównując różnice cech powierzchni. Dzięki zdolności profilometru 3D Nanovea do pomiaru dowolnych powierzchni z rozdzielczością na poziomie nanometrów, w połączeniu z możliwościami analizy Mountains 3D, możliwe zastosowania w badaniach i kontroli jakości są nieskończone.

 


TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Ocena twardości zębów za pomocą nanoindentacji

Znaczenie nanoindentacji dla materiałów biologicznych

 
W przypadku wielu tradycyjnych testów mechanicznych (twardość, przyczepność, ściskanie, przebicie, granica plastyczności itp.), dzisiejsze środowiska kontroli jakości z zaawansowanymi materiałami wrażliwymi, od żeli po materiały kruche, wymagają obecnie większej precyzji i kontroli niezawodności. Tradycyjne oprzyrządowanie mechaniczne nie zapewnia wymaganej czułej kontroli obciążenia i rozdzielczości; zaprojektowane do stosowania w materiałach sypkich. Ponieważ wielkość badanego materiału stała się coraz bardziej interesująca, opracowane zostały następujące rozwiązania Nanoindentacja zapewniły niezawodną metodę uzyskiwania istotnych informacji mechanicznych na mniejszych powierzchniach, takich jak badania prowadzone na biomateriałach. Wyzwania związane z biomateriałami wymagały opracowania testów mechanicznych zdolnych do dokładnej kontroli obciążenia na materiałach od bardzo miękkich do kruchych. Ponadto do przeprowadzania różnych testów mechanicznych potrzebnych jest wiele urządzeń, które obecnie mogą być wykonywane w jednym systemie. Nanoindentacja zapewnia szeroki zakres pomiarów z precyzyjną rozdzielczością przy obciążeniach kontrolowanych w skali nano dla wrażliwych zastosowań.

 

 

Cel pomiaru

W tym zastosowaniu Nanovea Tester mechanicznyw trybie Nanoindentation służy do badania twardości i modułu sprężystości zębiny, próchnicy i miazgi zęba. Najbardziej krytycznym aspektem testów nanoindentacyjnych jest zabezpieczenie próbki. W tym przypadku pocięliśmy ząb i zamontowaliśmy go w żywicy epoksydowej, pozostawiając wszystkie trzy interesujące obszary wystawione na próbę.

 

 

Wyniki i dyskusja

Ta część zawiera tabelę podsumowującą, która porównuje główne wyniki liczbowe dla różnych próbek, a następnie pełne zestawienie wyników, w tym każde wykonane wgniecenie, wraz z mikrografami wgniecenia, jeśli są dostępne. Te pełne wyniki przedstawiają zmierzone wartości twardości i modułu Younga jako głębokości penetracji z ich średnimi i odchyleniami standardowymi. Należy wziąć pod uwagę, że duże różnice w wynikach mogą wystąpić w przypadku, gdy chropowatość powierzchni jest w tym samym zakresie wielkości co wgłębienie.

Tabela zbiorcza głównych wyników numerycznych:

 

 

Wniosek

Podsumowując, pokazaliśmy jak Nanovea Mechanical Tester, w trybie Nanoindentacji, zapewnia precyzyjny pomiar właściwości mechanicznych zęba. Dane te mogą być wykorzystane przy opracowywaniu wypełnień, które będą lepiej odpowiadać charakterystyce mechanicznej prawdziwego zęba. Możliwość pozycjonowania Nanovea Mechanical Tester pozwala na pełne odwzorowanie twardości zębów w różnych strefach.

Przy użyciu tego samego systemu możliwe jest badanie odporności na pękanie materiału zęba przy większych obciążeniach do 200N. W przypadku materiałów bardziej porowatych można zastosować wielocyklowy test obciążeniowy w celu oceny pozostałego poziomu elastyczności. Zastosowanie płaskiej, cylindrycznej końcówki diamentowej pozwala uzyskać informację o granicy plastyczności w każdej strefie. Dodatkowo, dzięki dynamicznej analizie mechanicznej DMA, można ocenić właściwości lepkosprężyste, w tym moduł stratności i magazynowania.

Nanomoduł Nanovea jest idealny do tych testów, ponieważ wykorzystuje unikalną reakcję sprzężenia zwrotnego, aby precyzyjnie kontrolować zastosowane obciążenie. Z tego powodu moduł nano może być również stosowany do wykonywania dokładnych testów zarysowania w skali nano. Badanie odporności na zarysowanie i zużycie materiału zęba i materiałów wypełniających zwiększa ogólną przydatność testera Mechanical. Zastosowanie ostrej końcówki o średnicy 2 mikronów do ilościowego porównania marmurkowania na materiałach wypełniających pozwoli na lepsze przewidywanie zachowania w rzeczywistych zastosowaniach. Testy zużycia wieloprzebiegowego lub bezpośredniego zużycia obrotowego są również powszechnie stosowanymi testami dostarczającymi ważnych informacji na temat długoterminowej żywotności.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Ocena tarcia przy ekstremalnie niskich prędkościach

 

Znaczenie oceny tarcia przy małych prędkościach

Tarcie jest siłą, która przeciwstawia się względnemu ruchowi powierzchni stałych ślizgających się względem siebie. Gdy dochodzi do ruchu względnego tych dwóch stykających się powierzchni, tarcie na styku przekształca energię kinetyczną w ciepło. Taki proces może również prowadzić do zużycia materiału, a tym samym pogorszenia wydajności użytkowanych części.
Dzięki dużemu współczynnikowi rozciągliwości, wysokiej sprężystości, a także świetnym właściwościom wodoodpornym i odporności na zużycie, guma jest szeroko stosowana w wielu aplikacjach i produktach, w których tarcie odgrywa ważną rolę, takich jak opony samochodowe, pióra wycieraczek, podeszwy butów i wiele innych. W zależności od charakteru i wymagań tych zastosowań, pożądane jest wysokie lub niskie tarcie o różne materiały. W związku z tym, kontrolowany i wiarygodny pomiar tarcia gumy o różne powierzchnie staje się krytyczny.



Cel pomiaru

Współczynnik tarcia (COF) gumy o różne materiały mierzony jest w sposób kontrolowany i monitorowany za pomocą miernika Nanovea Tribometr. W tym badaniu chcielibyśmy zaprezentować możliwości Tribometru Nanovea do pomiaru współczynnika COF różnych materiałów przy ekstremalnie niskich prędkościach.




Wyniki i dyskusja

Współczynnik tarcia (COF) kulek gumowych (6 mm dia., RubberMill) na trzech materiałach (stal nierdzewna SS 316, Cu 110 i opcjonalnie akryl) został oceniony za pomocą Tribometru Nanovea. Badane próbki metalowe przed pomiarem zostały mechanicznie wypolerowane do lustrzanego wykończenia powierzchni. Niewielkie odkształcenie gumowej kulki pod wpływem przyłożonego obciążenia normalnego tworzyło kontakt powierzchniowy, co również pomaga zredukować wpływ asperytów lub niejednorodności wykończenia powierzchni próbki na pomiary COF. Parametry testu zostały podsumowane w tabeli 1.


 

Współczynnik COF gumowej piłki względem różnych materiałów przy czterech różnych prędkościach pokazano na rysunku. 2, a średnie COF obliczone automatycznie przez oprogramowanie zestawiono i porównano na rysunku 3. Interesujące jest, że próbki metalowe (SS 316 i Cu 110) wykazują znacznie zwiększone COF w miarę wzrostu prędkości obrotowej z bardzo niskiej wartości 0,01 obr/min do 5 obr/min - wartość COF dla pary guma/SS 316 wzrasta z 0,29 do 0,8, a dla pary guma/Cu 110 z 0,65 do 1,1. Stwierdzenie to jest zgodne z wynikami podawanymi w kilku laboratoriach. Zgodnie z propozycją Groscha4 tarcie gumy jest zdeterminowane głównie przez dwa mechanizmy: (1) przyczepność pomiędzy gumą a innym materiałem oraz (2) straty energii spowodowane deformacją gumy wywołaną przez asperity powierzchniowe. Schallamach5 zaobserwowano fale odrywania się gumy od materiału podłoża na styku miękkich kul gumowych i twardej powierzchni. Siła odrywania się gumy od powierzchni podłoża oraz szybkość powstawania fal odrywania może tłumaczyć zróżnicowane tarcie przy różnych prędkościach podczas badania.

Dla porównania, para materiałów gumowo-akrylowych wykazuje wysoki COF przy różnych prędkościach obrotowych. Wartość COF nieznacznie wzrasta z ~ 1,02 do ~ 1,09 wraz ze wzrostem prędkości obrotowej od 0,01 obr/min do 5 obr/min. Tak wysoki współczynnik COF można prawdopodobnie przypisać silniejszemu lokalnemu wiązaniu chemicznemu na powierzchni styku utworzonemu podczas testów.



 
 

 

 




Wniosek



W tej pracy pokazujemy, że przy ekstremalnie małych prędkościach guma wykazuje osobliwe zachowanie tarciowe - jej tarcie o twardą powierzchnię rośnie wraz ze wzrostem prędkości ruchu względnego. Guma wykazuje różne tarcie, gdy ślizga się po różnych materiałach. Tribometr Nanovea może oceniać właściwości tarcia materiałów w sposób kontrolowany i monitorowany przy różnych prędkościach, co pozwala użytkownikom poprawić fundamentalne zrozumienie mechanizmu tarcia materiałów i wybrać najlepszą parę materiałów do docelowych zastosowań w inżynierii trybologicznej.

Tribometr Nanovea oferuje precyzyjne i powtarzalne badania zużycia i tarcia z wykorzystaniem trybów obrotowych i liniowych zgodnych z normami ISO i ASTM, z opcjonalnymi modułami do badań zużycia w wysokiej temperaturze, smarowania i tribo-korozji dostępnymi w jednym wstępnie zintegrowanym systemie. Urządzenie jest w stanie kontrolować etap obrotowy przy ekstremalnie niskich prędkościach do 0,01 rpm i monitorować ewolucję tarcia in situ. Niezrównana oferta Nanovea jest idealnym rozwiązaniem dla określenia pełnego zakresu właściwości trybologicznych cienkich lub grubych, miękkich lub twardych powłok, filmów i podłoży.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Tribologia polimerów

Wstęp

Polimery mają szerokie zastosowanie w wielu dziedzinach i stały się nieodzowną częścią życia codziennego. Polimery naturalne, takie jak bursztyn, jedwab i kauczuk naturalny, odegrały istotną rolę w historii ludzkości. Proces wytwarzania polimerów syntetycznych może być zoptymalizowany w celu uzyskania unikalnych właściwości fizycznych, takich jak wytrzymałość, lepkosprężystość, samosmarowność i wiele innych.

Znaczenie zużycia i tarcia polimerów

Polimery są powszechnie stosowane w aplikacjach trybologicznych, takich jak opony, łożyska i taśmy transportowe.
W zależności od właściwości mechanicznych polimeru, warunków kontaktu oraz właściwości pozostałości lub filmu transferowego powstałego w procesie zużycia, występują różne mechanizmy zużycia. Aby zapewnić, że polimery posiadają wystarczającą odporność na zużycie w warunkach eksploatacji, konieczna jest wiarygodna i wymierna ocena tribologiczna. Ocena tribologiczna pozwala nam na ilościowe porównanie zachowania się różnych polimerów pod względem zużycia w sposób kontrolowany i monitorowany, aby wybrać materiał kandydujący do docelowego zastosowania.

Tribometr Nanovea oferuje powtarzalne badania zużycia i tarcia z wykorzystaniem trybów obrotowych i liniowych zgodnych z normami ISO i ASTM, z opcjonalnymi modułami zużycia w wysokiej temperaturze i smarowania dostępnymi w jednym wstępnie zintegrowanym systemie. Ten niezrównany zakres pozwala użytkownikom symulować różne środowiska pracy polimerów, w tym skoncentrowane naprężenia, zużycie i wysoką temperaturę, itp.

CEL POMIARU

W tym badaniu wykazaliśmy, że Nanovea Tribometr jest idealnym narzędziem do porównywania odporności na tarcie i zużycie różnych polimerów w dobrze kontrolowany i ilościowy sposób.

PROCEDURA TESTOWA

Za pomocą Tribometru Nanovea oceniono współczynnik tarcia (COF) i odporność na zużycie różnych popularnych polimerów. Jako materiał licznika (szpilka, próbka statyczna) zastosowano kulkę Al2O3. Ślady zużycia polimerów (dynamicznie obracające się próbki) mierzono za pomocą a bezkontaktowy profilometr 3D i mikroskop optyczny po zakończeniu badań. Należy zauważyć, że opcjonalnie można zastosować bezdotykowy czujnik endoskopowy do pomiaru głębokości, na jaką pin wnika w próbkę dynamiczną podczas testu zużycia. Parametry badania podsumowano w tabeli 1. Szybkość zużycia K oszacowano za pomocą wzoru K=Vl(Fxs), gdzie V to objętość zużycia, F to normalne obciążenie, a s to droga poślizgu.

Należy pamiętać, że w tym badaniu jako materiał przeciwny zastosowano kulki Al2O3. Każdy materiał stały może być zastąpiony w celu dokładniejszej symulacji działania dwóch próbek w rzeczywistych warunkach zastosowania.

WYNIKI I DYSKUSJA

Szybkość zużycia jest istotnym czynnikiem określającym czas użytkowania materiałów, natomiast tarcie odgrywa krytyczną rolę podczas zastosowań tribologicznych. Na rysunku 2 porównano ewolucję współczynnika COF dla różnych polimerów względem kulki Al2O3 podczas testów zużycia. COF działa jako wskaźnik, kiedy dochodzi do awarii i proces zużycia wchodzi w nowy etap. Spośród badanych polimerów, HDPE utrzymuje najniższy stały COF wynoszący ~0,15 podczas całego testu zużycia. Gładki COF sugeruje, że tworzy się stabilny tribo-kontakt.

Rysunek 3 i rysunek 4 porównują ślady zużycia próbek polimerowych po badaniu mierzonym przez mikroskop optyczny. Bezkontaktowy profilometr 3D In-situ dokładnie określa objętość zużycia próbek polimerowych, umożliwiając dokładne obliczenie wskaźników zużycia odpowiednio 0,0029, 0,0020 i 0,0032m3/N m. Dla porównania, próbka CPVC wykazuje najwyższy współczynnik zużycia 0,1121m3/N m. Głębokie równoległe blizny zużycia są obecne w śladach zużycia CPVC.

PODSUMOWANIE

Odporność polimerów na zużycie odgrywa istotną rolę w ich wydajności użytkowej. W tej pracy pokazaliśmy, że Tribometr Nanovea ocenia współczynnik tarcia i szybkość zużywania się różnych polimerów w sposób następujący
w sposób dobrze kontrolowany i ilościowy. HDPE wykazuje najniższy współczynnik COF wynoszący ~0,15 wśród badanych polimerów. Próbki HDPE, Nylonu 66 i Polipropylenu charakteryzują się niskimi wskaźnikami zużycia wynoszącymi odpowiednio 0.0029, 0.0020 i 0.0032 m3/N m. Połączenie niskiego tarcia i dużej odporności na zużycie czyni HDPE dobrym kandydatem do zastosowań tribologicznych polimerów.

Bezkontaktowy profilometr 3D In-situ umożliwia precyzyjny pomiar objętości zużycia i oferuje narzędzie do analizy szczegółowej morfologii śladów zużycia, zapewniając większy wgląd w podstawowe zrozumienie mechanizmów zużycia.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Wykończenie powierzchni płyty o strukturze plastra miodu za pomocą profilometrii 3D

WPROWADZENIE


Chropowatość, porowatość i tekstura powierzchni panelu o strukturze plastra miodu są krytyczne dla ostatecznego projektu panelu. Te cechy powierzchni mogą być bezpośrednio skorelowane z estetyką i charakterystyką funkcjonalną powierzchni panelu. Lepsze zrozumienie tekstury powierzchni i porowatości może pomóc w optymalizacji obróbki powierzchni płyty i jej produkcji. Ilościowy, precyzyjny i wiarygodny pomiar powierzchni panelu o strukturze plastra miodu jest potrzebny do kontroli parametrów powierzchni dla wymagań aplikacji i malowania. Czujniki Nanovea 3D Non-Contact wykorzystują unikalną chromatyczną technologię konfokalną zdolną do precyzyjnego pomiaru powierzchni tych paneli.



CEL POMIARU


W tym badaniu platforma Nanovea HS2000 wyposażona w szybki czujnik liniowy została wykorzystana do pomiaru i porównania dwóch paneli o strukturze plastra miodu o różnych wykończeniach powierzchni. Przedstawiamy Nanoveę profilometr bezkontaktowyzdolność firmy do zapewnienia szybkich i precyzyjnych pomiarów profilowania 3D oraz kompleksowej, dogłębnej analizy wykończenia powierzchni.



WYNIKI I DYSKUSJA

Zmierzono powierzchnię dwóch próbek płyt o strukturze plastra miodu o zróżnicowanym wykończeniu powierzchni, mianowicie Próbki 1 i Próbki 2. Fałszywy kolor i widok 3D powierzchni próbek 1 i 2 są pokazane odpowiednio na rysunku 3 i rysunku 4. Wartości chropowatości i płaskości zostały obliczone przez zaawansowane oprogramowanie analityczne i są porównane w tabeli 1. Próbka 2 wykazuje bardziej porowatą powierzchnię w porównaniu z próbką 1. W rezultacie próbka 2 ma wyższą chropowatość Sa, wynoszącą 14,7 µm, w porównaniu z wartością Sa wynoszącą 4,27 µm dla próbki 1.

Profile 2D powierzchni płyt o strukturze plastra miodu zostały porównane na rysunku 5, co pozwala użytkownikom na wizualne porównanie zmiany wysokości w różnych miejscach powierzchni próbki. Możemy zauważyć, że próbka 1 ma zmianę wysokości ~25 µm pomiędzy najwyższym szczytem a najniższą doliną. Z drugiej strony, próbka 2 wykazuje kilka głębokich porów w całym profilu 2D. Zaawansowane oprogramowanie analityczne ma możliwość automatycznego zlokalizowania i zmierzenia głębokości sześciu stosunkowo głębokich porów, jak pokazano w tabeli na Rysunku 4.b Próbka 2. Najgłębszy por spośród tych sześciu ma maksymalną głębokość prawie 90 µm (Krok 4).

Aby dokładniej zbadać wielkość i rozkład porów w próbce 2, przeprowadzono ocenę porowatości, którą omówiono w dalszej części artykułu. Widok próbki w plasterkach pokazano na Rysunku 5, a wyniki podsumowano w Tabeli 2. Można zauważyć, że pory, zaznaczone niebieskim kolorem na rysunku 5, mają stosunkowo jednorodne rozmieszczenie na powierzchni próbki. Rzutowana powierzchnia porów stanowi 18,9% całej powierzchni próbki. Objętość na mm² całkowitej powierzchni porów wynosi ~0,06 mm³. Pory mają średnią głębokość 42,2 µm, a maksymalna głębokość wynosi 108,1 µm.

PODSUMOWANIE



W tej aplikacji pokazaliśmy, że platforma Nanovea HS2000 wyposażona w szybki czujnik liniowy jest idealnym narzędziem do analizy i porównywania wykończenia powierzchni próbek płyt o strukturze plastra miodu w szybki i dokładny sposób. Skany profilometrii o wysokiej rozdzielczości sparowane z zaawansowanym oprogramowaniem analitycznym pozwalają na kompleksową i ilościową ocenę wykończenia powierzchni próbek płyt o strukturze plastra miodu.

Przedstawione tu dane stanowią jedynie niewielką część obliczeń dostępnych w oprogramowaniu analitycznym. Profilometry Nanovea mierzą praktycznie każdą powierzchnię w szerokim zakresie zastosowań w przemyśle półprzewodnikowym, mikroelektronicznym, słonecznym, światłowodowym, motoryzacyjnym, lotniczym, metalurgicznym, obróbce mechanicznej, powłokach, przemyśle farmaceutycznym, biomedycznym, środowiskowym i wielu innych.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Pomiar relaksacji naprężeń za pomocą nanoindentacji

WPROWADZENIE

Materiały lepkosprężyste charakteryzują się tym, że posiadają zarówno lepkie, jak i sprężyste właściwości materiałowe. Materiały te podlegają zależnemu od czasu zmniejszeniu naprężenia ("relaksacja" naprężenia) przy stałym naprężeniu, co prowadzi do znacznej utraty początkowej siły kontaktu. Relaksacja naprężeń zależy od rodzaju materiału, tekstury, temperatury, naprężenia początkowego i czasu. Zrozumienie relaksacji naprężeń jest kluczowe w wyborze optymalnych materiałów, które mają wytrzymałość i elastyczność (relaksację) wymaganą w konkretnych zastosowaniach.

Znaczenie pomiaru relaksacji stresu

Zgodnie z normą ASTM E328i "Standardowe metody testowania relaksacji naprężeń w materiałach i strukturach", zewnętrzna siła jest początkowo przykładana do materiału lub struktury za pomocą wgłębnika, aż do osiągnięcia wcześniej określonej maksymalnej siły. Po osiągnięciu maksymalnej siły, pozycja wgłębnika jest utrzymywana na stałej głębokości. Następnie mierzona jest zmiana siły zewnętrznej niezbędnej do utrzymania pozycji wgłębnika w funkcji czasu. Trudność w testowaniu relaksacji naprężeń polega na utrzymaniu stałej głębokości. Tester mechaniczny Nanovea nanoindentacja Moduł dokładnie mierzy relaksację naprężeń poprzez zastosowanie zamkniętej pętli (sprzężenia zwrotnego) kontroli głębokości za pomocą siłownika piezoelektrycznego. Siłownik reaguje w czasie rzeczywistym, aby utrzymać stałą głębokość, podczas gdy zmiana obciążenia jest mierzona i rejestrowana przez bardzo czuły czujnik obciążenia. Test ten może być przeprowadzony na praktycznie wszystkich rodzajach materiałów, bez konieczności spełniania rygorystycznych wymagań dotyczących wymiarów próbki. Ponadto na jednej płaskiej próbce można przeprowadzić wiele testów, aby zapewnić powtarzalność badania

CEL POMIARU

W tym zastosowaniu moduł nanoindentacji testera mechanicznego Nanovea mierzy zachowanie relaksacji naprężeń próbki akrylu i miedzi. Przedstawiamy tę Nanoveę Tester mechaniczny jest idealnym narzędziem do oceny zależnego od czasu zachowania lepkosprężystego materiałów polimerowych i metalowych.

WARUNKI BADANIA

Za pomocą modułu nanoindentacji Nanovea Mechanical Tester zmierzono relaksację naprężeń w próbce akrylowej i miedzianej. Zastosowano różne szybkości obciążenia wgłębnego w zakresie od 1 do 10 µm/min. Po osiągnięciu docelowego maksymalnego obciążenia mierzono relaksację na ustalonej głębokości. Zastosowano 100 sekundowy okres zatrzymania na stałej głębokości, a zmiana obciążenia była rejestrowana w miarę upływu czasu zatrzymania. Wszystkie badania przeprowadzono w warunkach otoczenia (temperatura pokojowa 23 °C), a parametry próby wgniatania zestawiono w tabeli 1.

WYNIKI I DYSKUSJA

Rysunek 2 przedstawia ewolucję przemieszczenia i obciążenia w funkcji czasu podczas pomiaru relaksacji naprężeń dla próbki akrylowej i przykładowej prędkości obciążania wgłębnika 3 µm/min. Całość tego badania można podzielić na trzy etapy: Loading, Relaxation i Unloading. Podczas etapu obciążenia, głębokość liniowo wzrastała wraz z postępującym wzrostem obciążenia. Etap relaksacji rozpoczyna się po osiągnięciu maksymalnego obciążenia. Podczas tego etapu utrzymywano stałą głębokość przez 100 sekund, wykorzystując funkcję kontroli głębokości z zamkniętą pętlą sprzężenia zwrotnego. Cała próba zakończyła się etapem rozładowania w celu usunięcia wgłębnika z próbki akrylowej.

Przeprowadzono dodatkowe próby wgniatania z zastosowaniem tych samych prędkości obciążenia wgłębnika, ale z wyłączeniem okresu relaksacji (pełzania). Z tych badań uzyskano wykresy zależności obciążenia od przemieszczenia, które połączono w wykresy na rysunku 3 dla próbek akrylowych i miedzianych. W miarę zmniejszania szybkości obciążania wgłębnika z 10 do 1 µm/min, krzywa obciążenie-przemieszczenie przesuwała się stopniowo w kierunku większych głębokości penetracji zarówno dla akrylu jak i miedzi. Taki zależny od czasu wzrost odkształcenia wynika z efektu lepkosprężystego pełzania materiałów. Niższa prędkość obciążenia pozwala materiałowi lepkosprężystemu mieć więcej czasu na reakcję na naprężenia zewnętrzne, których doświadcza i odpowiednio się odkształcić...

Na rysunku 4 przedstawiono ewolucję obciążenia przy stałym odkształceniu z zastosowaniem różnych szybkości obciążania wgłębnego dla obu badanych materiałów. Obciążenie malało z większą prędkością we wczesnych etapach relaksacji (100-sekundowy okres wstrzymania) badań i zwolniło po osiągnięciu czasu wstrzymania ~50 sekund. Materiały lepkosprężyste, takie jak polimery i metale, wykazują większą szybkość utraty obciążenia, gdy są poddawane wyższym wartościom obciążenia wgłębnego. Szybkość utraty obciążenia podczas relaksacji wzrosła z 51,5 do 103,2 mN dla akrylu i z 15,0 do 27,4 mN dla miedzi, odpowiednio, gdy szybkość obciążenia wgłębnika wzrosła z 1 do 10 µm/min, jak podsumowano w Rysunek 5.

Jak wspomniano w normie ASTM E328ii, głównym problemem napotykanym w badaniach relaksacji naprężeń jest niemożność utrzymania przez urządzenie stałej wartości odkształcenia/głębokości. Tester mechaniczny Nanovea zapewnia bardzo dokładne pomiary relaksacji naprężeń dzięki możliwości zastosowania zamkniętej pętli sprzężenia zwrotnego sterującego głębokością pomiędzy szybko działającym siłownikiem piezoelektrycznym a niezależnym kondensatorowym czujnikiem głębokości. Podczas etapu relaksacji, piezoelektryczny siłownik reguluje wgłębnik w celu utrzymania stałej głębokości w czasie rzeczywistym, podczas gdy zmiana obciążenia jest mierzona i rejestrowana przez niezależny, precyzyjny czujnik obciążenia.

PODSUMOWANIE

Za pomocą modułu nanoindentacji Nanovea Mechanical Tester zmierzono relaksację naprężeń w próbce akrylowej i miedzianej przy różnych prędkościach obciążenia. Większa głębokość maksymalna jest osiągana podczas wgłębiania przy niższych prędkościach obciążania ze względu na efekt pełzania materiału podczas obciążania. Zarówno próbka akrylowa jak i miedziana wykazują zachowanie relaksacyjne, gdy pozycja wgłębnika przy docelowym maksymalnym obciążeniu jest utrzymywana na stałym poziomie. Większe zmiany strat obciążenia w fazie relaksacji zaobserwowano dla prób z wyższymi prędkościami obciążenia wgłębnika.

Testy relaksacji naprężeń wykonane przez Nanovea Mechanical Tester pokazują zdolność urządzenia do ilościowego i wiarygodnego pomiaru zależnego od czasu zachowania lepkosprężystego materiałów polimerowych i metalowych. Posiada niezrównaną wielofunkcyjność modułów Nano i Micro na jednej platformie. Moduły kontroli wilgotności i temperatury mogą być sparowane z tymi urządzeniami w celu zapewnienia możliwości prowadzenia badań środowiskowych w szerokim zakresie branż. Zarówno moduły Nano jak i Micro zawierają tryby do badania zarysowań, twardości i zużycia, zapewniając najszerszy i najbardziej przyjazny dla użytkownika zakres możliwości badań mechanicznych dostępnych w jednym urządzeniu.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Zrozumienie uszkodzeń powłok za pomocą próby zarysowania

Wprowadzenie:

Inżynieria powierzchniowa materiałów odgrywa znaczącą rolę w wielu zastosowaniach funkcjonalnych, począwszy od dekoracyjnego wyglądu do ochrony podłoży przed zużyciem, korozją i innymi formami ataków. Ważnym i nadrzędnym czynnikiem, który decyduje o jakości i żywotności powłok jest ich siła spójności i przyczepności.

Kliknij tutaj, aby przeczytać!

Szybkie skanowanie z profilometrią bezkontaktową

Wprowadzenie:

Szybkie i łatwe pomiary powierzchni pozwalają zaoszczędzić czas, wysiłek i są niezbędne w kontroli jakości, badaniach i rozwoju oraz w zakładach produkcyjnych. Nanovea Profilometr bezkontaktowy jest w stanie wykonywać skanowanie powierzchni zarówno 3D, jak i 2D, aby zmierzyć cechy w skali od nano do makro na dowolnej powierzchni, zapewniając szeroki zakres użyteczności.

Kliknij tutaj, aby przeczytać!

Pomiar ciągłej krzywej Stribecka przy użyciu tribometru Pin-on-Disk

Wprowadzenie:

Kiedy smarowanie jest stosowane w celu zmniejszenia zużycia/tarcia powierzchni ruchomych, kontakt smarowy na interfejsie może zmieniać się z kilku reżimów, takich jak smarowanie graniczne, mieszane i hydrodynamiczne. Grubość filmu cieczy odgrywa główną rolę w tym procesie, głównie zależy od lepkości cieczy, obciążenia przyłożonego na interfejsie i względnej prędkości między dwiema powierzchniami. Jak reżimy smarowania reagują na tarcie, pokazuje tzw. krzywa Stribecka [1-4].

W tym badaniu po raz pierwszy demonstrujemy możliwość pomiaru ciągłej krzywej Stribecka. Korzystanie z Nanovei Tribometr zaawansowana, bezstopniowa kontrola prędkości, od 15 000 do 0,01 obr./min, w ciągu 10 minut oprogramowanie bezpośrednio generuje pełną krzywą Stribecka. Prosta konfiguracja początkowa wymaga jedynie wybrania trybu rampy wykładniczej i wprowadzenia prędkości początkowej i końcowej, zamiast konieczności wykonywania wielu testów lub programowania procedury krokowej przy różnych prędkościach, wymagającej łączenia danych dla konwencjonalnych pomiarów krzywej Stribecka. To udoskonalenie zapewnia dokładne dane podczas oceny reżimu smarowania i znacznie skraca czas i koszty. Test pokazuje ogromny potencjał do wykorzystania w różnych zastosowaniach inżynierii przemysłowej.

 

Kliknij, aby przeczytać więcej!

Chropowatość powierzchni a cechy ogniwa słonecznego

Znaczenie testów paneli słonecznych

Maksymalizacja absorpcji energii przez ogniwa słoneczne jest kluczowa dla przetrwania technologii jako źródła odnawialnego. Wiele warstw powłoki i ochrony szkła pozwala na absorpcję, transmisję i odbicie światła, które jest niezbędne do funkcjonowania ogniw fotowoltaicznych. Biorąc pod uwagę, że większość konsumenckich ogniw słonecznych działa z wydajnością 15-18%, optymalizacja ich wydajności energetycznej jest ciągłą walką.


Badania wykazały, że chropowatość powierzchni odgrywa kluczową rolę w odbijaniu światła. Początkowa warstwa szkła musi być tak gładka, jak to tylko możliwe, aby zmniejszyć współczynnik odbicia światła, ale kolejne warstwy nie spełniają tych wytycznych. Pewien stopień chropowatości jest niezbędny na styku każdej powłoki z inną, aby zwiększyć możliwość rozpraszania światła w odpowiednich strefach zubożenia i zwiększyć absorpcję światła w komórce1. Optymalizacja chropowatości powierzchni w tych regionach pozwala ogniwu słonecznemu działać jak najlepiej, a dzięki szybkiemu czujnikowi Nanovea HS2000 pomiar chropowatości powierzchni można wykonać szybko i dokładnie.



Cel pomiaru

W tym badaniu pokażemy możliwości Nanovea Profilometr HS2000 z czujnikiem High Speed Sensor poprzez pomiar chropowatości powierzchni i cech geometrycznych ogniwa fotowoltaicznego. Na potrzeby tej demonstracji zmierzone zostanie monokrystaliczne ogniwo słoneczne bez ochrony szklanej, ale metodologia ta może być wykorzystywana do różnych innych zastosowań.




Procedura badania i procedury

Do pomiaru powierzchni ogniwa słonecznego zastosowano następujące parametry badawcze.




Wyniki i dyskusja

Poniżej przedstawiono widok ogniwa słonecznego 2D w fałszywym kolorze oraz ekstrakcję powierzchni z odpowiednimi parametrami wysokości. Do obu powierzchni zastosowano filtr gaussowski, a do spłaszczenia wyodrębnionego obszaru użyto bardziej agresywnego indeksu. Wyklucza to formę (lub falistość) większą niż indeks odcięcia, pozostawiając cechy reprezentujące chropowatość ogniwa słonecznego.











Profil został wykonany prostopadle do orientacji linii siatki, aby zmierzyć ich właściwości geometryczne, co zostało przedstawione poniżej. Szerokość linii siatki, wysokość stopnia i nachylenie mogą być mierzone dla każdego konkretnego miejsca na ogniwie słonecznym.









Wniosek





W tym badaniu mogliśmy zaprezentować zdolność czujnika liniowego Nanovea HS2000 do pomiaru chropowatości powierzchni monokrystalicznego ogniwa fotowoltaicznego i jego cech. Dzięki możliwości automatyzacji dokładnych pomiarów wielu próbek i ustawieniu limitów pass fail, czujnik liniowy Nanovea HS2000 jest doskonałym wyborem dla kontroli jakości.

Odnośnik

1 Scholtz, Lubomir. Ladanyi, Libor. Mullerova, Jarmila. "Influence of Surface Roughness on Optical Characteristics of Multilayer Solar Cells " Advances in Electrical and Electronic Engineering, vol. 12, nr 6, 2014, s. 631-638.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI