USA/GLOBALNE: +1-949-461-9292
EUROPA: +39-011-3052-794
KONTAKT

Nano Scratch & Mar Testowanie farby na metalowym podłożu

Nano Scratch & Mar Testing

farby na metalowym podłożu

Przygotowane przez

SUSANA CABELLO

WPROWADZENIE

Farba z twardą powłoką lub bez jest jedną z najczęściej używanych powłok. Widzimy je na samochodach, ścianach, urządzeniach i praktycznie wszystkim, co wymaga jakiejś powłoki ochronnej lub po prostu w celach estetycznych. Farby przeznaczone do ochrony podłoża często zawierają substancje chemiczne, które zapobiegają zapaleniu się farby lub po prostu zapobiegają utracie koloru lub pękaniu. Często farby używane do celów estetycznych są dostępne w różnych kolorach, ale niekoniecznie muszą być przeznaczone do ochrony podłoża lub długiej żywotności.

Niemniej jednak każda farba ulega z czasem pewnym wpływom atmosferycznym. Warunki atmosferyczne na farbie mogą często zmieniać jej właściwości w stosunku do zamierzonych przez producentów. Może szybciej odpryskiwać, łuszczyć się pod wpływem ciepła, tracić kolor lub pękać. Różne zmiany właściwości farby w czasie są powodem, dla którego producenci oferują tak szeroki wybór. Farby są dostosowane do różnych wymagań poszczególnych klientów.

ZNACZENIE TESTÓW NANOZARYSOWAŃ DLA KONTROLI JAKOŚCI

Głównym zmartwieniem producentów farb jest odporność ich produktów na pękanie. Gdy farba zaczyna pękać, nie chroni podłoża, na które została nałożona, a tym samym nie zadowala klienta. Na przykład, jeśli gałąź uderzy w bok samochodu i natychmiast po tym, jak farba zacznie odpryskiwać, producenci farby stracą biznes z powodu niskiej jakości farby. Jakość farby jest bardzo ważna, ponieważ jeśli metal pod farbą zostanie odsłonięty, może zacząć rdzewieć lub korodować z powodu nowej ekspozycji.

 

Takie powody mają zastosowanie do kilku innych dziedzin, takich jak artykuły gospodarstwa domowego i biurowe oraz elektronika, zabawki, narzędzia badawcze i inne. Chociaż farba może być odporna na pękanie, gdy po raz pierwszy nakłada się ją na powłoki metalowe, jej właściwości mogą ulec zmianie w miarę upływu czasu, gdy na próbce wystąpią pewne warunki atmosferyczne. Dlatego bardzo ważne jest, aby próbki farby były testowane w stanie zwietrzałym. Chociaż pękanie pod dużym obciążeniem może być nieuniknione, producent musi przewidzieć, jak słabe mogą być zmiany w czasie i jak głębokie muszą być rysy, aby zapewnić swoim konsumentom najlepsze możliwe produkty.

CEL POMIARU

Musimy symulować proces zarysowania w kontrolowany i monitorowany sposób, aby obserwować efekty zachowania próbki. W tym zastosowaniu tester mechaniczny NANOVEA PB1000 w trybie testowania nanozarysowań jest używany do pomiaru obciążenia wymaganego do spowodowania uszkodzenia około 7-letniej próbki farby o grubości 30-50 μm na metalowym podłożu.

Do zarysowania powłoki użyto trzpienia pomiarowego z końcówką diamentową o średnicy 2 μm przy progresywnym obciążeniu w zakresie od 0,015 mN do 20,00 mN. Wykonaliśmy skanowanie farby przed i po obciążeniu 0,2 mN w celu określenia wartości rzeczywistej głębokości zarysowania. Rzeczywista głębokość analizuje odkształcenie plastyczne i sprężyste próbki podczas testowania; podczas gdy skanowanie po analizuje tylko odkształcenie plastyczne zadrapania. Punkt, w którym powłoka ulega uszkodzeniu w wyniku pęknięcia, jest przyjmowany jako punkt uszkodzenia. Użyliśmy ASTMD7187 jako przewodnika do określenia naszych parametrów testowych.

 

Możemy stwierdzić, że użycie zwietrzałej próbki, a zatem testowanie próbki farby w jej słabszym stadium, dało nam niższe punkty awarii.

 

Na tej próbce przeprowadzono pięć testów w celu

określić dokładne obciążenia krytyczne.

NANOVEA

PB1000

PARAMETRY BADANIA

następujący ASTM D7027

Powierzchnia wzorca chropowatości została zeskanowana za pomocą urządzenia NANOVEA ST400 wyposażonego w szybki czujnik, który generuje jasną linię 192 punktów, jak pokazano na RYSUNKU 1. Te 192 punkty skanują powierzchnię próbki w tym samym czasie, co prowadzi do znacznego zwiększenia prędkości skanowania.

TYP OBCIĄŻENIA Postępowe
OBCIĄŻENIE POCZĄTKOWE 0,015 mN
OBCIĄŻENIE KOŃCOWE 20 mN
PRĘDKOŚĆ ZAŁADUNKU 20 mN/min
DŁUGOŚĆ SKRATKI 1,6 mm
PRĘDKOŚĆ SKRATANIA, dx/dt 1,601 mm/min
ŁADOWANIE PRZED SKANOWANIEM 0,2 mN
ŁADOWANIE PO SKANOWANIU 0,2 mN
Wgłębnik stożkowy 90° Stożek o promieniu końcówki 2 µm

typ wgłębnika

Stożkowa

Stożek diamentowy 90

Promień końcówki 2 µm

Wgłębnik stożkowy Diamentowy stożek 90° Promień końcówki 2 µm

WYNIKI

W tej sekcji przedstawiono dane zebrane na temat awarii podczas testu zarysowania. W pierwszej części opisano awarie zaobserwowane podczas zarysowania i zdefiniowano zgłoszone obciążenia krytyczne. Kolejna część zawiera tabelę podsumowującą obciążenia krytyczne dla wszystkich próbek oraz reprezentację graficzną. Ostatnia część przedstawia szczegółowe wyniki dla każdej próbki: obciążenia krytyczne dla każdej rysy, mikrografy każdego uszkodzenia i wykres testu.

ZAOBSERWOWANE AWARIE I DEFINICJA OBCIĄŻEŃ KRYTYCZNYCH

KRYTYCZNA AWARIA:

SZKODA POCZĄTKOWA

Jest to pierwszy punkt, w którym uszkodzenie jest obserwowane wzdłuż ścieżki zarysowania.

nano zarysowanie uszkodzenie krytyczne uszkodzenie początkowe

KRYTYCZNA AWARIA:

CAŁKOWITE USZKODZENIE

W tym momencie uszkodzenia są bardziej znaczące, gdzie farba odpryskuje i pęka wzdłuż śladu zarysowania.

nano zarysowanie krytyczne uszkodzenie całkowite uszkodzenie

SZCZEGÓŁOWE WYNIKI

* Wartości uszkodzeń w punkcie pęknięcia podłoża.

KRYTYCZNE OBCIĄŻENIA
SCRATCH USZKODZENIE WSTĘPNE [mN] USZKODZENIE CAŁKOWITE [µm]
1 14.513 4.932
2 3.895 4.838
3 3.917 4.930
ŚREDNIA 3.988 4.900
STD DEV 0.143 0.054
Mikrograf pełnego zarysowania z testu nano zarysowania (powiększenie 1000x).

RYSUNEK 2: Mikrografia pełnej rysy (powiększenie 1000x).

Mikrograf początkowego uszkodzenia z testu nano-zarysowania (powiększenie 1000x)

RYSUNEK 3: Mikrograf początkowego uszkodzenia (powiększenie 1000x).

Mikrograf całkowitego uszkodzenia z testu nano-zarysowania (powiększenie 1000x).

RYSUNEK 4: Mikrograf całkowitego uszkodzenia (powiększenie 1000x).

Liniowy test nanodrapania - siła tarcia i współczynnik tarcia

RYSUNEK 5: Siła tarcia i współczynnik tarcia.

Liniowy profil powierzchni Nano Scratch

RYSUNEK 6: Profil powierzchni.

Liniowy test nanodrapania Prawdziwa głębokość i głębokość resztkowa

RYSUNEK 7: Głębokość rzeczywista i głębokość resztkowa.

PODSUMOWANIE

NANOVEA Tester mechaniczny w Nano Scratch Tester umożliwia symulację wielu rzeczywistych uszkodzeń powłok malarskich i twardych powłok. Stosując rosnące obciążenia w kontrolowany i ściśle monitorowany sposób, urządzenie pozwala określić, przy jakim obciążeniu występują awarie. Można to następnie wykorzystać jako sposób na określenie ilościowych wartości odporności na zarysowania. Wiadomo, że testowana powłoka, bez czynników atmosferycznych, ma pierwsze pęknięcie przy około 22 mN. Przy wartościach zbliżonych do 5 mN jasne jest, że 7-letnie docieranie spowodowało degradację farby.

Kompensacja oryginalnego profilu pozwala uzyskać skorygowaną głębokość podczas zarysowania i zmierzyć głębokość resztkową po zarysowaniu. Daje to dodatkowe informacje na temat plastycznego i elastycznego zachowania powłoki pod rosnącym obciążeniem. Zarówno pęknięcia, jak i informacje o odkształceniach mogą być bardzo przydatne przy ulepszaniu twardej powłoki. Bardzo małe odchylenia standardowe pokazują również powtarzalność techniki instrumentu, co może pomóc producentom poprawić jakość ich twardej powłoki/farby i zbadać wpływ warunków atmosferycznych.

TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI

Komentarz