Kategoria: Uncategorized
Ściskanie na miękkich, elastycznych materiałach
Znaczenie badań miękkich, elastycznych materiałów
Przykładem bardzo miękkich i elastycznych próbek jest układ mikroelektromechaniczny. MEMS są wykorzystywane w codziennych produktach komercyjnych, takich jak drukarki, telefony komórkowe czy samochody [1]. Ich zastosowania obejmują również funkcje specjalne, takie jak biosensory [2] czy zbieranie energii [3]. Dla swoich zastosowań MEMS muszą być w stanie wielokrotnie odwracalnie przechodzić między swoją oryginalną konfiguracją a konfiguracją skompresowaną [4]. Aby zrozumieć jak struktury będą reagować na siły mechaniczne, można przeprowadzić próbę ściskania. Próba ściskania może być wykorzystana do badania i dostrajania różnych konfiguracji MEMS, jak również do badania górnej i dolnej granicy sił dla tych próbek.
Cel pomiaru
W tym studium przypadku, Nanovea przeprowadziła testy ściskania na dwóch unikalnie różnych elastycznych, sprężystych próbkach. Zaprezentowano naszą zdolność do prowadzenia badań ściskania przy bardzo małych obciążeniach i rejestrowania dużych przemieszczeń przy jednoczesnym dokładnym uzyskiwaniu danych przy małych obciążeniach oraz jak to może być zastosowane w przemyśle MEMS. Ze względu na politykę prywatności, próbki i ich pochodzenie nie będą ujawnione w tym badaniu.
Parametry pomiarowe
Uwaga: Szybkość ładowania 1 V/min jest proporcjonalna do około 100μm przemieszczenia, gdy wgłębnik znajduje się w powietrzu.
Wyniki i dyskusja
Odpowiedź próbki na działanie sił mechanicznych można zobaczyć na wykresach zależności obciążenia od głębokości. Próbka A wykazuje tylko liniowe odkształcenie sprężyste przy parametrach testu wymienionych powyżej. Rysunek 2 jest doskonałym przykładem stabilności, którą można osiągnąć dla krzywej zależności obciążenia od głębokości przy 75μN. Ze względu na stabilność czujników obciążenia i głębokości, łatwo jest dostrzec jakąkolwiek znaczącą odpowiedź mechaniczną próbki.
Próbka B wykazuje inną odpowiedź mechaniczną niż próbka A. Po przekroczeniu 750 μm głębokości, na wykresie zaczyna pojawiać się zachowanie przypominające pęknięcie. Widoczne jest to przy gwałtownych spadkach obciążenia na głębokości 850 i 975 μm. Pomimo przemieszczania się z dużą prędkością obciążenia przez ponad 1mm w zakresie 8mN, nasze wysoce czułe czujniki obciążenia i głębokości umożliwiają użytkownikowi uzyskanie poniższych krzywych zależności obciążenia od głębokości.
Sztywność obliczono z części nieobciążającej krzywych zależności obciążenia od głębokości. Sztywność odzwierciedla siłę potrzebną do zdeformowania próbki. Do obliczeń sztywności użyto pseudo współczynnika Poissona o wartości 0,3, ponieważ rzeczywisty współczynnik materiału nie jest znany. W tym przypadku, próbka B okazała się sztywniejsza niż próbka A.
Wniosek
Dwie różne elastyczne próbki zostały poddane testom ściskania przy użyciu modułu Nanovea Mechanical Tester. Badania przeprowadzono przy bardzo małych obciążeniach (1mm). Badania ściskania w skali nano z użyciem Nano Modułu wykazały zdolność modułu do badania bardzo miękkich i elastycznych próbek. Dodatkowe badania w ramach tej pracy mogą dotyczyć wpływu powtarzających się cyklicznie obciążeń na aspekt odzyskiwania sprężystości przez próbki sprężyste dzięki opcji wielokrotnego obciążania oferowanej przez Nanovea Mechanical Tester.
Aby uzyskać więcej informacji na temat tej metody badawczej, prosimy o kontakt z nami pod adresem info@nanovea.com, a w celu uzyskania dodatkowych not aplikacyjnych prosimy o przejrzenie naszej obszernej biblioteki cyfrowej not aplikacyjnych.
Referencje
[1] "Wprowadzenie i obszary zastosowań MEMS." EEHerald, 1 Mar. 2017, www.eeherald.com/section/design-guide/mems_application_introduction.html.
[2] Louizos, Louizos-Alexandros; Athanasopoulos, Panagiotis G.; Varty, Kevin (2012). "Microelectromechanical Systems and Nanotechnology. A Platform for the Next Stent Technological Era". Vasc Endovascular Surg.46 (8): 605–609. doi:10.1177/1538574412462637. PMID 23047818.
[3] Hajati, Arman; Sang-Gook Kim (2011). "Ultra-wide bandwidth piezoelectric energy harvesting". AppliedPhysics Letters. 99 (8): 083105. doi:10.1063/1.3629551.
[4] Fu, Haoran, et al. "Morphable 3D mesostructures and microelectronic devices by multistable bucklingmechanics." Nature materials 17.3 (2018): 268.
TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI
Ocena klocków hamulcowych za pomocą trybologii
Znaczenie oceny wydajności poduszek przeciwodłamkowych
Klocki hamulcowe to kompozyty, czyli materiał składający się z wielu składników, który musi spełniać wiele wymogów bezpieczeństwa. Idealne klocki hamulcowe mają wysoki współczynnik tarcia (COF), niski wskaźnik zużycia, minimalny hałas i pozostają niezawodne w zmiennych warunkach. Aby zapewnić, że jakość klocków hamulcowych jest w stanie spełnić ich wymagania, badania tribologiczne mogą być wykorzystane do identyfikacji krytycznych specyfikacji.
Znaczenie niezawodności klocków hamulcowych jest stawiane bardzo wysoko; bezpieczeństwo pasażerów nigdy nie powinno być zaniedbywane. Dlatego kluczowe jest odtworzenie warunków pracy i zidentyfikowanie możliwych punktów awarii.
Z Nanoveą Tribometr, pomiędzy sworzniem, kulką lub płaską powierzchnią a stale poruszającym się materiałem przeciwstawnym przykładane jest stałe obciążenie. Tarcie między dwoma materiałami rejestruje się za pomocą sztywnego czujnika tensometrycznego, co pozwala na zbieranie właściwości materiału przy różnych obciążeniach i prędkościach oraz testuje je w środowiskach o wysokiej temperaturze, korozyjnym lub ciekłym.
Cel pomiaru
W niniejszej pracy badano współczynnik tarcia klocków hamulcowych w środowisku o stale wzrastającej temperaturze od temperatury pokojowej do 700°C. Temperatura środowiska była podnoszona in-situ do momentu zaobserwowania zauważalnego uszkodzenia klocka hamulcowego. Do tylnej strony trzpienia przymocowano termoparę, aby zmierzyć temperaturę w pobliżu interfejsu ślizgowego.
Wyniki i dyskusja
W tym badaniu skupiono się głównie na temperaturze, w której klocki hamulcowe zaczynają się psuć. Uzyskane współczynniki COF nie reprezentują wartości rzeczywistych; materiał sworznia nie jest taki sam jak wirników hamulcowych. Należy również zauważyć, że zebrane dane dotyczące temperatury to temperatura sworznia, a nie temperatura interfejsu ślizgowego.
Na początku badania (temperatura pokojowa) współczynnik COF pomiędzy trzpieniem SS440C a klockiem hamulcowym miał stałą wartość około 0,2. Wraz ze wzrostem temperatury współczynnik COF stale wzrastał i osiągnął wartość szczytową 0,26 w pobliżu 350°C. Po przekroczeniu temperatury 390°C współczynnik COF zaczął się szybko zmniejszać. W temperaturze 450°C współczynnik COF zaczął ponownie wzrastać do wartości 0,2, ale wkrótce potem zaczął spadać do wartości 0,05.
Temperatura, przy której klocki hamulcowe stale ulegały uszkodzeniu, została określona na poziomie powyżej 500°C. Po przekroczeniu tej temperatury współczynnik COF nie był już w stanie utrzymać początkowego współczynnika COF wynoszącego 0,2.
Wniosek
Klocki hamulcowe wykazały konsekwentne uszkodzenie w temperaturze powyżej 500°C. Współczynnik COF wynoszący 0,2 powoli wzrasta do wartości 0,26, a następnie spada do 0,05 pod koniec badania (580°C). Różnica pomiędzy 0,05 a 0,2 jest 4-krotna. Oznacza to, że siła normalna w temperaturze 580°C musi być czterokrotnie większa niż w temperaturze pokojowej, aby uzyskać taką samą siłę hamowania!
Chociaż nie jest to uwzględnione w tym badaniu, Tribometr Nanovea jest również w stanie przeprowadzić badania w celu obserwacji innej ważnej właściwości klocków hamulcowych: szybkości zużycia. Wykorzystując nasze bezkontaktowe profilometry 3D, można uzyskać objętość śladu zużycia, aby obliczyć jak szybko zużywają się próbki. Testy zużycia mogą być przeprowadzone za pomocą Tribometru Nanovea w różnych warunkach i środowiskach, aby jak najlepiej zasymulować warunki pracy.
TERAZ POROZMAWIAJMY O TWOJEJ APLIKACJI
Analiza jakościowa metali obrabianych elektroerozyjnie
Obróbka elektroerozyjna (EDM) to proces produkcyjny, w którym materiał jest usuwany za pomocą prądu elektrycznego.
wyładowania [1]. Ten proces obróbki stosuje się zazwyczaj do metali przewodzących, które trudno byłoby
do obróbki konwencjonalnymi metodami.
Jak w przypadku wszystkich procesów obróbki, precyzja i dokładność muszą być wysokie, aby spełnić akceptowalne
poziomy tolerancji. W tej nocie aplikacyjnej, jakość obrabianych metali będzie oceniana za pomocą
Nanovea Bezkontaktowy profilometr 3D.
Analiza lepkosprężystości gumy
Analiza lepkosprężystości gumy
Dowiedz się więcej
Opony są narażone na cykliczne duże odkształcenia podczas jazdy pojazdów po drogach. W przypadku narażenia na trudne warunki drogowe, żywotność opon jest zagrożona przez wiele czynników, takich jak zużycie gwintu, ciepło powstające w wyniku tarcia, starzenie się gumy i inne.
W rezultacie, opony zwykle mają kompozytowe struktury warstwowe wykonane z gumy wypełnionej węglem, nylonowych kordu, stalowych drutów itp. W szczególności, skład gumy w różnych obszarach układów opon jest optymalizowany w celu zapewnienia różnych właściwości funkcjonalnych, w tym, ale nie tylko, nici odpornej na zużycie, warstwy gumy amortyzującej i warstwy bazowej z twardej gumy.
Wiarygodny i powtarzalny test lepkosprężystego zachowania gumy ma kluczowe znaczenie w kontroli jakości oraz badaniach i rozwoju nowych opon, a także ocenie żywotności starych opon. Dynamiczna analiza mechaniczna (DMA) podczas Nanoindentacja jest techniką charakteryzowania lepkosprężystości. Po zastosowaniu kontrolowanego naprężenia oscylacyjnego mierzone jest powstałe odkształcenie, co pozwala użytkownikom określić moduł zespolony badanych materiałów.
Lepsze spojrzenie na papier
Papier odgrywa dużą rolę w dystrybucji informacji od czasu jego wynalezienia w II wieku [1]. Papier składa się ze splecionych włókien, zwykle pozyskiwanych z drzew, które zostały wysuszone w cienkie arkusze. Jako medium do przechowywania informacji, papier umożliwił rozprzestrzenianie się idei, sztuki i historii na duże odległości i poprzez upływ czasu.
Obecnie papier jest powszechnie używany do produkcji walut, książek, przyborów toaletowych, opakowań i nie tylko. Papier przetwarza się na różne sposoby, aby uzyskać właściwości odpowiadające jego zastosowaniu. Na przykład atrakcyjny wizualnie, błyszczący papier z magazynu różni się od szorstkiego, tłoczonego na zimno papieru akwarelowego. Metoda produkcji papieru ma wpływ na właściwości powierzchni papieru. Ma to wpływ na osadzanie się atramentu (lub innego nośnika) na papierze i jego wygląd. Aby sprawdzić, jak różne procesy wytwarzania papieru wpływają na właściwości powierzchni, Nanovea sprawdzała chropowatość i teksturę różnych rodzajów papieru, przeprowadzając skanowanie dużego obszaru za pomocą naszego Bezkontaktowy profilometr 3D.
Kliknij, aby dowiedzieć się o Chropowatość powierzchni papieru!
Lepsze spojrzenie na soczewki poliwęglanowe
Rebranding Nanovea 2018 Odwiedź nas na MRS Boston
Odwiedź Nanovea @ MRS BostonNanovea z dumą zaprezentuje każdą linię przyrządów! W tym całkowicie przeprojektowany tester mechaniczny PB1000 oraz przemianowane profilometr PS50 i trybometr T50. Wraz z nowym brandingiem, wszystkie przyrządy otrzymały nowe etapy dla zwiększenia dokładności i tłumienia akustycznego. Bądź na bieżąco, Nanovea wkrótce wprowadzi kilka innych przełomowych rozwiązań technicznych! Aby uzyskać więcej informacji Kontakt Nanovea.
Cykliczny pomiar naprężeń i odkształceń metodą nanoindentacji
Cykliczny pomiar naprężeń i odkształceń metodą nanoindentacji
Dowiedz się więcej
Znaczenie nanoindentacji
Ciągłe pomiary sztywności (CSM) uzyskane przez nanoindentacja ujawnia zależność naprężenie-odkształcenie materiałów za pomocą minimalnie inwazyjnych metod. W przeciwieństwie do tradycyjnych metod badania wytrzymałości na rozciąganie, nanoindentacja dostarcza danych naprężenie-odkształcenie w nanoskali bez potrzeby stosowania dużego przyrządu. Krzywa naprężenie-odkształcenie dostarcza kluczowych informacji na temat progu między zachowaniem sprężystym a plastycznym, gdy próbka jest poddawana rosnącym obciążeniom. CSM daje możliwość określenia granicy plastyczności materiału bez użycia niebezpiecznego sprzętu.
Nanoindentacja zapewnia niezawodną i przyjazną dla użytkownika metodę szybkiego badania danych naprężenie-odkształcenie. Co więcej, pomiar zachowania naprężenie-odkształcenie w nanoskali umożliwia badanie ważnych właściwości małych powłok i cząstek w materiałach, gdy stają się one bardziej zaawansowane. Nanoindentacja dostarcza informacji na temat granicy sprężystości i granicy plastyczności, a także twardości, modułu sprężystości, pełzania, odporności na pękanie itp. dzięki czemu jest wszechstronnym narzędziem metrologicznym.
Dane naprężenie-odkształcenie dostarczone przez nanoindentację w tym badaniu identyfikują granicę sprężystości materiału, wchodząc tylko 1,2 mikrona w głąb powierzchni. Używamy CSM do określenia, w jaki sposób właściwości mechaniczne materiałów rozwijają się, gdy wgłębnik wnika głębiej w powierzchnię. Jest to szczególnie przydatne w zastosowaniach cienkowarstwowych, gdzie właściwości mogą zależeć od głębokości. Nanoindentacja to minimalnie inwazyjna metoda potwierdzania właściwości materiałów w badanych próbkach.
Test CSM jest przydatny do pomiaru właściwości materiału w zależności od głębokości. Testy cykliczne mogą być wykonywane przy stałym obciążeniu w celu określenia bardziej złożonych właściwości materiału. Może to być przydatne do badania zmęczenia lub wyeliminowania wpływu porowatości w celu uzyskania rzeczywistego modułu sprężystości.
Cel pomiaru
W tej aplikacji tester mechaniczny Nanovea wykorzystuje CSM do badania twardości i modułu sprężystości w funkcji głębokości oraz danych naprężenie-odkształcenie na standardowej próbce stali. Stal została wybrana ze względu na jej powszechnie uznaną charakterystykę, aby pokazać kontrolę i dokładność danych naprężenie-odkształcenie w nanoskali. Sferyczna końcówka o promieniu 5 mikronów została użyta do osiągnięcia wystarczająco wysokich naprężeń przekraczających granicę sprężystości stali.
Warunki i procedury testowe
Zastosowano następujące parametry wcięcia:
Wyniki:
Wzrost obciążenia podczas oscylacji zapewnia następującą krzywą głębokości w funkcji obciążenia. Podczas obciążenia przeprowadzono ponad 100 oscylacji, aby znaleźć dane naprężenie-odkształcenie, gdy wgłębnik penetruje materiał.
Określiliśmy naprężenie i odkształcenie na podstawie informacji uzyskanych w każdym cyklu. Maksymalne obciążenie i głębokość w każdym cyklu pozwalają nam obliczyć maksymalne naprężenie przyłożone w każdym cyklu do materiału. Odkształcenie jest obliczane na podstawie głębokości resztkowej w każdym cyklu od częściowego rozładowania. Pozwala nam to obliczyć promień pozostałego odcisku poprzez podzielenie promienia końcówki w celu uzyskania współczynnika odkształcenia. Wykres zależności naprężenia od odkształcenia dla materiału pokazuje strefy sprężyste i plastyczne z odpowiadającym im naprężeniem granicznym sprężystości. Nasze testy wykazały, że przejście między strefą sprężystą i plastyczną materiału wynosi około 0,076 odkształcenia przy granicy sprężystości 1,45 GPa.
Każdy cykl działa jak pojedyncze wgłębienie, więc w miarę zwiększania obciążenia przeprowadzamy testy na różnych kontrolowanych głębokościach w stali. Twardość i moduł sprężystości w zależności od głębokości można więc wykreślić bezpośrednio z danych uzyskanych dla każdego cyklu.
Gdy wgłębnik przemieszcza się w głąb materiału, obserwujemy wzrost twardości i spadek modułu sprężystości.
Wniosek
Wykazaliśmy, że tester mechaniczny Nanovea zapewnia wiarygodne dane naprężenie-odkształcenie. Zastosowanie kulistej końcówki z wgłębieniem CSM pozwala na pomiar właściwości materiału przy zwiększonym naprężeniu. Obciążenie i promień wgłębnika można zmieniać w celu testowania różnych materiałów na kontrolowanych głębokościach. Testery mechaniczne Nanovea zapewniają testy wgłębień w zakresie od poniżej mN do 400N.
5 Osiowy chromatyczny pomiar konfokalny
Firma Nanovea zrealizowała zamówienie na 5-osiowy system pomiarowy w połączeniu z chromatycznym konfokalnym czujnikiem liniowym do szybkiej kontroli jakości specjalistycznych części. Obejrzyj krótki film Wideo. Aby dowiedzieć się więcej o profilometrach Nanovea Dowiedz się więcej
Nanovea Asia Visit 2016
Nanovea właśnie zakończyła udane seminarium w Japonii, a obecnie spotyka się w Chinach. Chcielibyśmy podziękować naszym dystrybutorom i obecnym/potencjalnym klientom za poświęcony czas i gościnność.
Kategorie
- Uwagi do zastosowania
- Blok dotyczący trybologii pierścieniowej
- Korozja Tribologia
- Badanie tarcia | Współczynnik tarcia
- Badanie mechaniczne w wysokiej temperaturze
- Tribologia w wysokich temperaturach
- Wilgotność i gazy Tribologia
- Wilgotność Testy mechaniczne
- Wgłębianie | Pełzanie i odprężanie
- Wytrzymałość na wgniatanie | Wytrzymałość na złamanie
- Wgłębianie | Twardość i sprężystość
- Wgniecenie | Utrata i przechowywanie
- Wgłębianie | Stress vs Strain
- Wytrzymałość na wgniecenia | Granica plastyczności i zmęczenie
- Badania laboratoryjne
- Tribologia liniowa
- Badanie mechaniczne cieczy
- Tribologia cieczy
- Tribologia w niskich temperaturach
- Badania mechaniczne
- Informacja prasowa
- Profilometria | Płaskość i wypaczenie
- Profilometria | Geometria i kształt
- Profilometria | Chropowatość i Wykończenie
- Profilometria | Wysokość i grubość stopnia
- Profilometria | Tekstura i ziarno
- Profilometria | objętość i powierzchnia
- Badanie profilometryczne
- Tribologia "pierścień na pierścieniu
- Tribologia rotacyjna
- Testy na zarysowania | Błąd kleju
- Testy na zarysowania | Uszkodzenie spoiwa
- Próba zarysowania | zużycie wieloprzebiegowe
- Testy na zarysowania | Twardość na zarysowania
- Badanie zarysowań Tribologia
- Tradeshow
- Badania tribologiczne
- Uncategorized
Archiwa
- wrzesień 2023
- sierpień 2023
- czerwiec 2023
- maj 2023
- lipiec 2022
- maj 2022
- kwiecień 2022
- styczeń 2022
- grudzień 2021
- listopad 2021
- październik 2021
- wrzesień 2021
- sierpień 2021
- lipiec 2021
- czerwiec 2021
- maj 2021
- marzec 2021
- luty 2021
- grudzień 2020
- listopad 2020
- październik 2020
- wrzesień 2020
- lipiec 2020
- maj 2020
- kwiecień 2020
- marzec 2020
- luty 2020
- styczeń 2020
- listopad 2019
- październik 2019
- wrzesień 2019
- sierpień 2019
- lipiec 2019
- czerwiec 2019
- maj 2019
- kwiecień 2019
- marzec 2019
- styczeń 2019
- grudzień 2018
- listopad 2018
- październik 2018
- wrzesień 2018
- lipiec 2018
- czerwiec 2018
- maj 2018
- kwiecień 2018
- marzec 2018
- luty 2018
- listopad 2017
- październik 2017
- wrzesień 2017
- sierpień 2017
- czerwiec 2017
- maj 2017
- kwiecień 2017
- marzec 2017
- luty 2017
- styczeń 2017
- listopad 2016
- październik 2016
- sierpień 2016
- lipiec 2016
- czerwiec 2016
- maj 2016
- kwiecień 2016
- marzec 2016
- luty 2016
- styczeń 2016
- grudzień 2015
- listopad 2015
- październik 2015
- wrzesień 2015
- sierpień 2015
- lipiec 2015
- czerwiec 2015
- maj 2015
- kwiecień 2015
- marzec 2015
- luty 2015
- styczeń 2015
- listopad 2014
- październik 2014
- wrzesień 2014
- sierpień 2014
- lipiec 2014
- czerwiec 2014
- maj 2014
- kwiecień 2014
- marzec 2014
- luty 2014
- styczeń 2014
- grudzień 2013
- listopad 2013
- październik 2013
- wrzesień 2013
- sierpień 2013
- lipiec 2013
- czerwiec 2013
- maj 2013
- kwiecień 2013
- marzec 2013
- luty 2013
- styczeń 2013
- grudzień 2012
- listopad 2012
- październik 2012
- wrzesień 2012
- sierpień 2012
- lipiec 2012
- czerwiec 2012
- maj 2012
- kwiecień 2012
- marzec 2012
- luty 2012
- styczeń 2012
- grudzień 2011
- listopad 2011
- październik 2011
- wrzesień 2011
- sierpień 2011
- lipiec 2011
- czerwiec 2011
- maj 2011
- listopad 2010
- styczeń 2010
- kwiecień 2009
- marzec 2009
- styczeń 2009
- grudzień 2008
- październik 2008
- sierpień 2007
- lipiec 2006
- marzec 2006
- styczeń 2005
- kwiecień 2004