EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Tribologia de carga dinâmica

Tribologia de carga dinâmica

Introdução

O desgaste ocorre em praticamente todos os setores industriais e impõe custos de ~0,75% do PIB1. A pesquisa em tribologia é vital para melhorar a eficiência da produção, o desempenho da aplicação, assim como a conservação do material, da energia e do meio ambiente. Vibração e oscilação ocorrem inevitavelmente em uma ampla gama de aplicações tribológicas. A vibração externa excessiva acelera o processo de desgaste e reduz o desempenho de serviço, o que leva a falhas catastróficas nas peças mecânicas.

Os tribômetros convencionais de carga morta aplicam cargas normais por pesos de massa. Tal técnica de carga não apenas limita as opções de carga a uma carga constante, mas também cria intensas vibrações não controladas a altas cargas e velocidades, levando a avaliações de comportamento de desgaste limitadas e inconsistentes. Uma avaliação confiável do efeito da oscilação controlada no comportamento de desgaste dos materiais é desejável para P&D e CQ em diferentes aplicações industriais.

Alta carga inovadora da Nanovea tribômetro tem capacidade de carga máxima de 2.000 N com sistema de controle de carga dinâmico. O avançado sistema pneumático de carregamento de ar comprimido permite aos usuários avaliar o comportamento tribológico de um material sob altas cargas normais com a vantagem de amortecer vibrações indesejadas criadas durante o processo de desgaste. Portanto, a carga é medida diretamente, sem necessidade de molas amortecedoras usadas em projetos mais antigos. Um módulo de carregamento oscilante eletroímã paralelo aplica oscilação bem controlada de amplitude desejada de até 20 N e frequência de até 150 Hz.

O atrito é medido com alta precisão diretamente pela força lateral aplicada ao suporte superior. O deslocamento é monitorado in situ, fornecendo informações sobre a evolução do comportamento de desgaste das amostras de teste. O teste de desgaste sob carga oscilatória controlada também pode ser realizado em ambientes de corrosão, alta temperatura, umidade e lubrificação para simular as condições reais de trabalho para as aplicações tribológicas. Uma alta velocidade integrada perfilômetro sem contato mede automaticamente a morfologia da trilha de desgaste e o volume de desgaste em poucos segundos.

Objetivo da medição

Neste estudo, mostramos a capacidade do Tribômetro de Carga Dinâmica Nanovea T2000 em estudar o comportamento tribológico de diferentes revestimentos e amostras de metal sob condições de carga com oscilação controlada.

 

Procedimento de teste

O comportamento tribológico, por exemplo, coeficiente de atrito, COF e resistência ao desgaste de um revestimento resistente ao desgaste de 300 µm de espessura foi avaliado e comparado pelo Tribômetro Nanovea T2000 com um tribômetro convencional de carga morta usando um pino na configuração de disco seguindo a ASTM G992.

Amostras separadas revestidas com Cu e TiN contra uma bola de Al₂0₃ de 6 mm sob oscilação controlada foram avaliadas pelo Modo Tribologia de Carga Dinâmica do Tribômetro Nanovea T2000.

Os parâmetros de teste estão resumidos na Tabela 1.

O profilômetro 3D integrado equipado com um sensor de linha varre automaticamente a pista de desgaste após os testes, proporcionando a medição mais precisa do volume de desgaste em segundos.

Resultados e Discussão

 

Sistema de carga pneumática vs. Sistema de carga morta

 

O comportamento tribológico de um revestimento resistente ao desgaste usando Nanovea T2000 Tribometer é comparado a um tribômetro convencional de carga morta (DL). A evolução do COF do revestimento é mostrada na Fig. 2. Observamos que o revestimento exibe um valor de COF comparável de ~0,6 durante o teste de desgaste. Entretanto, os 20 perfis de seção transversal em diferentes locais da pista de desgaste na Fig. 3 indicam que o revestimento sofreu um desgaste muito mais severo sob o sistema de carga morta.

Vibrações intensas foram geradas pelo processo de desgaste do sistema de carga morta em alta carga e velocidade. A enorme pressão concentrada na face de contato combinada com uma alta velocidade de deslizamento cria um peso substancial e uma vibração na estrutura que leva a um desgaste acelerado. O tribômetro convencional de carga morta aplica carga usando pesos de massa. Este método é confiável em cargas de contato mais baixas sob condições de desgaste suave; entretanto, sob condições de desgaste agressivo em cargas e velocidades maiores, a vibração significativa faz com que os pesos saltem repetidamente, resultando em uma pista de desgaste desigual causando uma avaliação tribológica não confiável. A taxa de desgaste calculada é de 8,0±2,4 x 10-4 mm3/N m, mostrando uma alta taxa de desgaste e grande desvio padrão.

O tribômetro Nanovea T2000 é projetado com um sistema de carga de controle dinâmico para amortecer as oscilações. Ele aplica a carga normal com ar comprimido que minimiza a vibração indesejada criada durante o processo de desgaste. Além disso, o controle ativo de carga em loop fechado garante que uma carga constante seja aplicada durante todo o teste de desgaste e a ponta segue a mudança de profundidade da pista de desgaste. Um perfil de pista de desgaste significativamente mais consistente é medido como mostrado na Fig. 3a, resultando em uma baixa taxa de desgaste de 3,4±0,5 x 10-4 mm3/N m.

A análise da pista de desgaste mostrada na Fig. 4 confirma o teste de desgaste realizado pelo sistema de carga pneumática de ar comprimido do Nanovea T2000 Tribometer cria uma pista de desgaste mais suave e mais consistente em comparação com o tribômetro convencional de carga morta. Além disso, o tribômetro Nanovea T2000 mede o deslocamento da ponta durante o processo de desgaste, fornecendo uma visão mais detalhada do progresso do comportamento do desgaste in situ.

 

 

Oscilação controlada sobre o desgaste da amostra de Cu

O módulo eletroímã de carga oscilante paralelo do Nanovea T2000 Tribômetro permite aos usuários investigar o efeito das oscilações de amplitude e freqüência controladas sobre o comportamento de desgaste dos materiais. O COF das amostras do Cu é registrado in situ, como mostrado na Fig. 6. A amostra Cu exibe um COF constante de ~0,3 durante a primeira medição de 330 voltas, significando a formação de um contato estável na interface e uma pista de desgaste relativamente suave. Enquanto o teste de desgaste continua, a variação do COF indica uma mudança no mecanismo de desgaste. Em comparação, os testes de desgaste sob uma oscilação controlada em amplitude de 5 N a 50 N apresentam um comportamento de desgaste diferente: o COF aumenta prontamente no início do processo de desgaste, e mostra uma variação significativa ao longo do teste de desgaste. Tal comportamento do COF indica que a oscilação imposta na carga normal desempenha um papel no estado de deslizamento instável no contato.

A Fig. 7 compara a morfologia da via de desgaste medida pelo profilômetro óptico integrado sem contato. Pode-se observar que a amostra Cu sob uma amplitude de oscilação controlada de 5 N exibe uma pista de desgaste muito maior com um volume de 1,35 x 109 µm3, em comparação com 5,03 x 108 µm3 sob nenhuma oscilação imposta. A oscilação controlada acelera significativamente a taxa de desgaste por um fator de ~2,7, mostrando o efeito crítico da oscilação sobre o comportamento de desgaste.

 

Oscilação Controlada no Desgaste do Revestimento TiN

As faixas de COF e de desgaste da amostra de revestimento TiN são mostradas na Fig. 8. O revestimento de TiN apresenta comportamentos de desgaste significativamente diferentes sob oscilação, conforme indicado pela evolução do COF durante os testes. O revestimento de TiN mostra um COF constante de ~0,3 após o período de rodagem no início do teste de desgaste, devido ao contato deslizante estável na interface entre o revestimento de TiN e a esfera Al₂O₃. Entretanto, quando o revestimento de TiN começa a falhar, a esfera Al₂O₃ penetra através do revestimento e desliza contra o substrato de aço fresco embaixo. Uma quantidade significativa de resíduos de revestimento TiN duro é gerada na pista de desgaste ao mesmo tempo, transformando um desgaste estável de deslizamento de dois corpos em desgaste por abrasão de três corpos. Tal mudança das características do par de materiais leva ao aumento das variações na evolução do COF. A oscilação imposta de 5 N e 10 N acelera a falha do revestimento de TiN de ~400 rotações para menos de 100 rotações. Os maiores rastros de desgaste nas amostras de revestimento TiN após os testes de desgaste sob a oscilação controlada estão de acordo com tal mudança no COF.

Conclusão

O avançado sistema de carga pneumática do Nanovea T2000 Tribômetro possui uma vantagem intrínseca como um amortecedor de vibrações naturalmente rápido em comparação com os sistemas tradicionais de carga morta. Esta vantagem tecnológica dos sistemas pneumáticos é verdadeira em comparação com os sistemas controlados por carga que utilizam uma combinação de servomotores e molas para aplicar a carga. A tecnologia garante uma avaliação de desgaste confiável e melhor controlada em cargas elevadas, como demonstrado neste estudo. Além disso, o sistema ativo de carga em circuito fechado pode alterar a carga normal para um valor desejado durante testes de desgaste para simular aplicações da vida real vistas em sistemas de freio.

Em vez de ter influência das condições de vibração descontrolada durante os testes, mostramos o Nanovea T2000 Dynamic-Load Tribometer que permite aos usuários avaliar quantitativamente os comportamentos tribológicos dos materiais sob diferentes condições de oscilação controlada. As vibrações têm um papel significativo no comportamento de desgaste das amostras de metal e revestimento cerâmico.

O módulo de carga oscilante de eletroímã paralelo fornece oscilações controladas com precisão em amplitudes e frequências definidas, permitindo aos usuários simular o processo de desgaste sob condições reais quando as vibrações ambientais são freqüentemente um fator importante. Na presença de oscilações impostas durante o desgaste, tanto o Cu quanto as amostras de revestimento TiN exibem uma taxa de desgaste substancialmente maior. A evolução do coeficiente de atrito e do deslocamento da ponta medida in situ são indicadores importantes para o desempenho do material durante as aplicações tribológicas. O profilômetro 3D integrado sem contato oferece uma ferramenta para medir com precisão o volume de desgaste e analisar a morfologia detalhada das faixas de desgaste em segundos, fornecendo mais informações sobre o entendimento fundamental do mecanismo de desgaste.

O T2000 é equipado com um motor auto-ajustável, de alta qualidade e alto torque com uma velocidade interna de 20 bits e um codificador de posição externa de 16 bits. Ele permite que o tribômetro forneça uma faixa inigualável de velocidades de rotação de 0,01 a 5000 rpm que podem mudar em saltos escalonados ou em taxas contínuas. Ao contrário dos sistemas que utilizam um sensor de torque localizado em baixo, o Tribômetro Nanovea utiliza uma célula de carga de alta precisão localizada em cima para medir com precisão e separadamente as forças de atrito.

Os Tribômetros Nanovea oferecem testes de desgaste e atrito precisos e repetíveis usando os modos rotativo e linear compatíveis com ISO e ASTM (incluindo testes de 4 esferas, arruela de pressão e bloco sobre anel), com módulos opcionais de desgaste em alta temperatura, lubrificação e tribo-corrosão disponíveis em um sistema pré-integrado. A gama inigualável do Nanovea T2000 é uma solução ideal para determinar a gama completa de propriedades tribológicas de revestimentos, filmes e substratos finos ou grossos, macios ou duros.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Comentário