EUA/GLOBAL: +1-949-461-9292
EUROPA: +39-011-3052-794
FALE CONOSCO

Tribologia dos Polímeros

Introdução

Os polímeros têm sido amplamente utilizados em uma ampla variedade de aplicações e se tornaram uma parte indispensável da vida cotidiana. Os polímeros naturais como o âmbar, a seda e a borracha natural têm desempenhado um papel essencial na história da humanidade. O processo de fabricação de polímeros sintéticos pode ser otimizado para alcançar propriedades físicas únicas, tais como tenacidade, viscoelasticidade, autolubrificação, e muitas outras.

Importância do Desgaste e Atrito dos Polímeros

Os polímeros são comumente usados para aplicações tribológicas, tais como pneus, mancais e correias transportadoras.
Diferentes mecanismos de desgaste ocorrem dependendo das propriedades mecânicas do polímero, das condições de contato e das propriedades dos detritos ou da película de transferência formada durante o processo de desgaste. Para garantir que os polímeros possuam resistência suficiente ao desgaste sob as condições de serviço, é necessária uma avaliação tribológica confiável e quantificável. A avaliação tribológica nos permite comparar quantitativamente os comportamentos de desgaste de diferentes polímeros de forma controlada e monitorada para selecionar o material candidato para a aplicação alvo.

O Nanovea Tribometer oferece testes de desgaste e atrito repetíveis usando os modos rotativo e linear compatíveis com ISO e ASTM, com módulos opcionais de desgaste e lubrificação a alta temperatura disponíveis em um sistema pré-integrado. Esta gama incomparável permite aos usuários simular os diferentes ambientes de trabalho dos polímeros, incluindo tensão concentrada, desgaste e alta temperatura, etc.

OBJETIVO DA MEDIÇÃO

Neste estudo, mostramos que o Nanovea Tribômetro é uma ferramenta ideal para comparar a resistência ao atrito e ao desgaste de diferentes polímeros de maneira bem controlada e quantitativa.

PROCEDIMENTO DE TESTE

O coeficiente de atrito (COF) e a resistência ao desgaste de diferentes polímeros comuns foram avaliados pelo Tribômetro Nanovea. Uma bola de Al2O3 foi utilizada como contramaterial (pino, amostra estática). As marcas de desgaste nos polímeros (amostras rotativas dinâmicas) foram medidas usando um perfilômetro 3D sem contato e microscópio óptico após a conclusão dos testes. Deve-se observar que, como opção, um sensor endoscópico sem contato pode ser usado para medir a profundidade em que o pino penetra na amostra dinâmica durante um teste de desgaste. Os parâmetros de teste estão resumidos na Tabela 1. A taxa de desgaste, K, foi avaliada usando a fórmula K=Vl(Fxs), onde V é o volume desgastado, F é a carga normal e s é a distância de deslizamento.

Favor observar que as bolas Al2O3 foram usadas como material de contagem neste estudo. Qualquer material sólido pode ser substituído para simular mais de perto o desempenho de dois espécimes sob condições reais de aplicação.

RESULTADOS E DISCUSSÃO

A taxa de desgaste é um fator vital para determinar a vida útil dos materiais, enquanto o atrito desempenha um papel crítico durante as aplicações tribológicas. A Figura 2 compara a evolução do COF para diferentes polímeros contra a bola Al2O3 durante os testes de desgaste. O COF funciona como um indicador de quando ocorrem falhas e o processo de desgaste entra em uma nova etapa. Entre os polímeros testados, o HDPE mantém o COF mais baixo constante de ~0,15 durante todo o teste de desgaste. O COF suave implica na formação de um tribo-contacto estável.

As figuras 3 e 4 comparam os rastros de desgaste das amostras de polímero após o teste ser medido pelo microscópio ótico. O profilômetro 3D in situ sem contato determina com precisão o volume de desgaste das amostras de polímero, tornando possível calcular com precisão taxas de desgaste de 0,0029, 0,0020 e 0,0032m3/N m, respectivamente. Em comparação, a amostra de CPVC mostra a maior taxa de desgaste de 0,1121m3/N m. As cicatrizes de desgaste paralelo profundo estão presentes na pista de desgaste do CPVC.

CONCLUSÃO

A resistência ao desgaste dos polímeros tem um papel vital em seu desempenho de serviço. Neste estudo, mostramos que o Nanovea Tribometer avalia o coeficiente de atrito e a taxa de desgaste de diferentes polímeros em um
bem controlada e de maneira quantitativa. O PEAD apresenta o menor COF de ~0,15 entre os polímeros testados. As amostras de PEAD, Nylon 66, e Polipropileno possuem baixas taxas de desgaste de 0,0029, 0,0020 e 0,0032 m3/N m, respectivamente. A combinação de baixo atrito e grande resistência ao desgaste faz do PEAD um bom candidato para aplicações tribológicas de polímeros.

O profilômetro 3D sem contato in situ permite a medição precisa do volume de desgaste e oferece uma ferramenta para analisar a morfologia detalhada das faixas de desgaste, fornecendo mais informações sobre a compreensão fundamental dos mecanismos de desgaste

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Acabamento da superfície do painel do favo de mel com perfilometria 3D

INTRODUÇÃO


A rugosidade, porosidade e textura da superfície do painel alveolar são fundamentais para quantificar o design final do painel. Estas qualidades de superfície podem se correlacionar diretamente com a estética e as características funcionais da superfície do painel. Um melhor entendimento da textura e porosidade da superfície pode ajudar a otimizar o processamento e a fabricação da superfície do painel. Uma medição quantitativa, precisa e confiável da superfície do painel alveolar é necessária para controlar os parâmetros da superfície para aplicação e requisitos de pintura. Os sensores Nanovea 3D Non-Contact utilizam tecnologia cromática confocal única capaz de medir com precisão estas superfícies do painel.



OBJETIVO DA MEDIÇÃO


Neste estudo, a plataforma Nanovea HS2000 equipada com um Sensor de Linha de alta velocidade foi utilizada para medir e comparar dois painéis alveolares com diferentes acabamentos superficiais. Apresentamos o Nanovea perfilômetro sem contatoa capacidade de fornecer medições de perfil 3D rápidas e precisas e análise abrangente e aprofundada do acabamento da superfície.



RESULTADOS E DISCUSSÃO

Foram medidas as superfícies de duas amostras de painel alveolar com acabamento superficial variado, a saber, Amostra 1 e Amostra 2. A falsa cor e a vista 3D das superfícies da Amostra 1 e 2 são mostradas na Figura 3 e na Figura 4, respectivamente. Os valores de rugosidade e planicidade foram calculados pelo software de análise avançada e são comparados na Tabela 1. A amostra 2 apresenta uma superfície mais porosa em comparação com a amostra 1. Como resultado, a Amostra 2 possui uma rugosidade Sa maior de 14,7 µm, comparada com um valor Sa de 4,27 µm para a Amostra 1.

Os perfis 2D das superfícies do painel alveolar foram comparados na figura 5, permitindo aos usuários uma comparação visual da mudança de altura em diferentes locais da superfície da amostra. Podemos observar que a amostra 1 tem uma variação de altura de ~25 µm entre o pico mais alto e o local mais baixo do vale. Por outro lado, a Amostra 2 mostra vários poros profundos ao longo do perfil 2D. O software de análise avançada tem a capacidade de localizar e medir automaticamente a profundidade de seis poros relativamente profundos, como mostrado na tabela da Figura 4.b Amostra 2. O poro mais profundo entre os seis possui uma profundidade máxima de quase 90 µm (Passo 4).

Para investigar melhor o tamanho dos poros e a distribuição da Amostra 2, a avaliação da porosidade foi realizada e discutida na seção seguinte. A visão fatiada é mostrada na Figura 5 e os resultados estão resumidos na Tabela 2. Podemos observar que os poros, marcados na cor azul na Figura 5, têm uma distribuição relativamente homogênea na superfície da amostra. A área projetada dos poros constitui 18,9% de toda a superfície da amostra. O volume por mm² do total de poros é de ~0,06 mm³. Os poros têm uma profundidade média de 42,2 µm, e a profundidade máxima é de 108,1 µm.

CONCLUSÃO



Nesta aplicação, mostramos que a plataforma Nanovea HS2000 equipada com um sensor de linha de alta velocidade é uma ferramenta ideal para analisar e comparar o acabamento superficial de amostras de painel alveolar de forma rápida e precisa. As varreduras de profilometria de alta resolução pareadas com um avançado software de análise permitem uma avaliação abrangente e quantitativa do acabamento superficial das amostras do painel favo de mel.

Os dados mostrados aqui representam apenas uma pequena parte dos cálculos disponíveis no software de análise. Os Profilômetros Nanovea medem praticamente qualquer superfície para uma ampla gama de aplicações nas indústrias de Semicondutores, Microeletrônica, Solar, Fibras Ópticas, Automotiva, Aeroespacial, Metalúrgica, Usinagem, Revestimentos, Farmacêutica, Biomédica, Ambiental e muitas outras.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO

Medição de Relaxamento de Tensão usando Nanoindentação

INTRODUÇÃO

Os materiais viscoelásticos são caracterizados por possuírem propriedades tanto viscosas quanto elásticas. Estes materiais estão sujeitos a uma diminuição da tensão dependente do tempo (stress 'relaxation') sob tensão constante, levando a uma perda significativa da força de contato inicial. O relaxamento de tensão depende do tipo de material, da textura, da temperatura, da tensão inicial e do tempo. A compreensão do relaxamento de tensão é fundamental na seleção de materiais ideais que tenham a força e a flexibilidade (relaxamento) necessárias para aplicações específicas.

Importância da Medição do Relaxamento de Estresse

De acordo com a norma ASTM E328i, "Standard Test Methods for Stress Relaxation for Materials and Structures" (Métodos de teste padrão para relaxamento de tensão em materiais e estruturas), uma força externa é aplicada inicialmente em um material ou estrutura com um indentador até atingir uma força máxima predeterminada. Quando a força máxima é atingida, a posição do indentador é mantida constante nessa profundidade. Em seguida, a alteração na força externa necessária para manter a posição do indentador é medida em função do tempo. A dificuldade no teste de relaxamento de tensão é manter a profundidade constante. O testador mecânico da Nanovea nanoindentação O módulo mede com precisão o relaxamento da tensão aplicando um controle de loop fechado (feedback) da profundidade com um atuador piezoelétrico. O atuador reage em tempo real para manter a profundidade constante, enquanto a alteração na carga é medida e registrada por um sensor de carga altamente sensível. Esse teste pode ser realizado em praticamente todos os tipos de materiais sem a necessidade de requisitos rigorosos de dimensão da amostra. Além disso, vários testes podem ser realizados em uma única amostra plana para garantir a repetibilidade do teste

OBJETIVO DA MEDIÇÃO

Nesta aplicação, o módulo de nanoindentação do Nanovea Mechanical Tester mede o comportamento de relaxamento de tensão de uma amostra de acrílico e cobre. Mostramos que a Nanovea Testador Mecânico é uma ferramenta ideal para avaliar o comportamento viscoelástico dependente do tempo de materiais poliméricos e metálicos.

CONDIÇÕES DE TESTE

O relaxamento de tensão de uma amostra de acrílico e cobre foi medido pelo módulo de nanoindentação do Nanovea Mechanical Tester. Diferentes taxas de carga de indentação foram aplicadas variando de 1 a 10 µm/min. O relaxamento foi medido a uma profundidade fixa, uma vez atingida a carga máxima desejada. Um período de retenção de 100 segundos foi implementado a uma profundidade fixa e a mudança na carga foi registrada conforme o tempo de retenção transcorrido. Todos os testes foram realizados em condições ambientais (temperatura ambiente de 23 °C) e os parâmetros do teste de indentação estão resumidos na Tabela 1.

RESULTADOS E DISCUSSÃO

Figura 2 mostra a evolução do deslocamento e da carga em função do tempo durante a medição do relaxamento de tensão de uma amostra de acrílico e uma taxa de carga de indentação de 3 µm/min, como exemplo. A totalidade deste teste pode ser decomposta em três etapas: Carregamento, Relaxamento e Descarregamento. Durante a fase de Carregamento, a profundidade aumentou linearmente à medida que a carga aumentava progressivamente. O estágio de Relaxamento foi iniciado assim que a carga máxima foi atingida. Durante este estágio, uma profundidade constante foi mantida por 100 segundos usando o recurso de controle de profundidade do circuito fechado de feedback do instrumento e foi observado que a carga diminuiu ao longo do tempo. Todo o teste foi concluído com uma etapa de descarga a fim de remover o indentro da amostra de acrílico.

Testes adicionais de indentação foram conduzidos utilizando as mesmas taxas de carga indentada, mas excluindo um período de relaxamento (creep). Os lotes de carga vs. deslocamento foram adquiridos destes testes e foram combinados nos gráficos da Figura 3 para as amostras de acrílico e cobre. Como a taxa de carga indentada diminuiu de 10 para 1 µm/min, a curva de carga-deslocamento se deslocou progressivamente para profundidades de penetração mais altas tanto para Acrílico como para Cobre. Tal aumento de tensão dependente do tempo resulta do efeito de fluência viscoelástica dos materiais. Uma menor taxa de carga permite que um material viscoelástico tenha mais tempo para reagir à tensão externa que experimenta e para deformar de acordo...

A evolução da carga a uma tensão constante usando diferentes taxas de carga de recuo foram plotadas na Figura 4 para ambos os materiais testados. A carga diminuiu a uma taxa maior nos estágios iniciais da fase de relaxamento (período de retenção de 100 segundos) dos testes e diminuiu uma vez que o tempo de retenção atingiu ~50 segundos. Materiais viscoelásticos, tais como polímeros e metais, apresentam maior taxa de perda de carga quando são submetidos a taxas de carga de indentação mais altas. A taxa de perda de carga durante o relaxamento aumentou de 51,5 para 103,2 mN para Acrílico, e de 15,0 para 27,4 mN para Cobre, respectivamente, à medida que a taxa de carga de indentação aumentou de 1 para 10 µm/min, conforme resumido em Figura 5.

Como mencionado na Norma ASTM E328ii, o principal problema encontrado nos testes de relaxamento de estresse é a incapacidade do instrumento de manter uma tensão/profundidade constante. O Testador Mecânico Nanovea proporciona excelentes medições precisas de relaxamento de tensão devido a sua capacidade de aplicar um controle fechado de loop de realimentação da profundidade entre o atuador piezoelétrico de ação rápida e o sensor de profundidade do capacitor independente. Durante o estágio de relaxamento, o atuador piezoelétrico ajusta o indentro para manter sua constante restrição de profundidade em tempo real enquanto a mudança de carga é medida e registrada por um sensor de carga independente de alta precisão.

CONCLUSÃO

O relaxamento de tensão de uma amostra de acrílico e cobre foi medido usando o módulo de nanoindentação do Nanovea Mechanical Tester a diferentes taxas de carga. Uma profundidade máxima maior é atingida quando as reentrâncias são realizadas com taxas de carga menores devido ao efeito de rastejamento do material durante a carga. Tanto o acrílico quanto a amostra de cobre apresentam comportamento de relaxamento de tensão quando a posição de indentação a uma carga máxima alvo é mantida constante. Maiores mudanças na perda de carga durante a fase de relaxamento foram observadas para os testes com maiores taxas de carga de indentação.

O teste de relaxamento de tensão produzido pelo Nanovea Mechanical Tester mostra a capacidade dos instrumentos de quantificar e medir de forma confiável o comportamento viscoelástico dependente do tempo dos materiais de polímeros e metais. Ele possui um Nano e Micro módulos multifuncionais inigualáveis em uma única plataforma. Os módulos de controle de umidade e temperatura podem ser emparelhados com estes instrumentos para capacidades de testes ambientais aplicáveis a uma ampla gama de indústrias. Ambos os módulos Nano e Micro incluem testes de arranhões, testes de dureza e modos de testes de desgaste, proporcionando a mais ampla e mais amigável gama de capacidades de testes mecânicos disponíveis em um único sistema.

AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO