美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

类别。机械测试

 

用纳米压痕法研究聚合物的蠕动变形

用纳米压痕法研究聚合物的蠕动变形

了解更多

蠕变变形

使用纳米压痕的聚合物

编写者

杜安杰-李硕士,博士

简介

作为粘弹性材料,聚合物在一定的外加载荷下经常发生随时间变化的变形,也称为蠕变。当聚合物部件被设计为暴露在持续的压力下时,蠕变就成为一个关键因素,如结构部件、连接件和配件以及静水压力容器。

蠕变测量对聚合物的重要性 聚合物

粘弹性的固有性质对聚合物的性能起着至关重要的作用,并直接影响其使用可靠性。负载和温度等环境条件影响聚合物的蠕变行为。由于缺乏对特定使用条件下使用的聚合物材料随时间变化的蠕变行为的警惕性,经常会发生蠕变失效。因此,开发一种可靠且定量的聚合物粘弹性机械行为测试方法非常重要。 NANOVEA 的 Nano 模块 微纳米力学测试系统 通过高精度压电元件施加负载,并直接测量原位力和位移的演变。准确性和可重复性的结合使其成为蠕变测量的理想工具。

测量目标

在这个应用中,我们展示了
NANOVEA PB1000机械测试仪
纳米压痕 模式是一个理想的工具
用于研究粘弹性机械性能
包括硬度、杨氏模量
和高分子材料的蠕变。

NANOVEA

PB1000

测试条件

使用NANOVEA PB1000机械测试仪,用纳米压痕技术测试了8种不同的聚合物样品。当载荷从0到40毫牛线性增加时,深度在加载阶段逐渐增加。然后通过在最大载荷40 mN的30秒内压痕深度的变化来测量蠕变。

最大负荷 40 mN
装载率
80 mN/min
卸载率 80 mN/min
哭的时候
30 s

缩略语类型

贝尔科维奇

钻石

*纳米压痕测试的设置

结果与讨论

不同聚合物样品的纳米压痕试验的载荷与位移图见图1,蠕变曲线比较见图2。硬度和杨氏模量总结于图3,蠕变深度显示于图4。作为图1中的一个例子,纳米压痕测量的载荷-位移曲线的AB、BC和CD部分分别代表加载、蠕变和卸载过程。

在测试的聚合物中,Delrin和PVC的硬度最高,分别为0.23和0.22GPa,而LDPE的硬度最低,为0.026GPa。一般来说,较硬的聚合物显示出较低的蠕变率。最软的LDPE具有最高的798纳米的蠕变深度,而Delrin的蠕变深度约为120纳米。

当聚合物被用于结构件时,其蠕变特性是至关重要的。通过精确测量聚合物的硬度和蠕变,可以更好地了解聚合物随时间变化的可靠性。使用NANOVEA PB1000机械测试仪也可以在不同的高温和湿度下测量蠕变,即给定载荷下的位移变化,为定量和可靠地测量聚合物的粘弹性机械行为提供一个理想的工具。
在模拟的现实应用环境中。

图1: 负荷与位移的关系图
不同的聚合物。

图2: 在最大负荷为40 mN的情况下蠕动30秒。

图3: 聚合物的硬度和杨氏模量。

图4: 聚合物的蠕变深度。

结论

在这项研究中,我们展示了NANOVEA PB1000
机械测试仪测量不同聚合物的机械性能,包括硬度、杨氏模量和蠕变。这种机械性能对于为预期应用选择适当的聚合物材料至关重要。德林和聚氯乙烯的硬度最高,分别为0.23和0.22GPa,而低密度聚乙烯的硬度最低,为0.026GPa。一般来说,较硬的聚合物表现出较低的蠕变率。最软的LDPE显示出最高的蠕变深度为798纳米,而Derlin则为120纳米。

NANOVEA机械测试机在一个平台上提供了无可比拟的多功能纳米和微米模块。纳米和微米模块都包括划痕测试器、硬度测试器和磨损测试器模式,在单一系统上提供了最疯狂和最方便的测试范围。

现在,让我们来谈谈你的申请

使用纳米压痕的多相材料 NANOVEA

多相金属纳米压痕

利用纳米压痕对多相材料的冶金学研究

了解更多

冶金学
多相物质的

使用纳米压痕

编写者

杜安杰-李硕士,博士 & Alexis Celestin

简介

冶金学研究金属元素的物理和化学行为,以及它们的金属间化合物和合金。经历了铸造、锻造、轧制、挤压和机械加工等加工过程的金属,在其相位、微观结构和纹理方面经历了变化。这些变化导致了不同的物理特性,包括材料的硬度、强度、韧性、延展性和耐磨性。金相学经常被用来了解这种特定相、微观结构和纹理的形成机制。

局部机械性能的重要性 材料设计中局部机械性能的重要性

先进材料通常具有特殊微观结构和纹理的多个相,以实现工业实践中目标应用的理想机械性能。 纳米压痕 广泛应用于测量小尺度的材料的机械行为 i ii. 然而,在一个非常小的区域内精确选择特定的压痕位置是具有挑战性和耗时的。我们需要一个可靠的和用户友好的纳米压痕测试程序,以确定材料不同阶段的机械性能,并进行高精度和及时的测量。

测量目标

在这个应用中,我们使用最强大的机械测试仪:NANOVEA PB1000来测量一个多相冶金样品的机械性能。

在这里,我们展示了PB1000在使用我们的高级位置控制器对大型样品表面的多个阶段(晶粒)进行高精度和用户友好的纳米压痕测量的能力。

NANOVEA

PB1000

测试条件

在这项研究中,我们使用了一个具有多相的冶金样品。在进行压痕测试之前,该样品已被抛光至镜面效果。在样品中确定了四个阶段,即第1阶段、第2阶段、第3阶段和第4阶段,如下所示。

高级平台控制器是一个直观的样品导航工具,它可以根据鼠标的位置自动调整光学显微镜下的样品移动速度。鼠标离视野中心越远,平台向鼠标的方向移动的速度就越快。这提供了一种用户友好的方法来浏览整个样品表面并选择预定的位置进行机械测试。测试位置的坐标被保存和编号,以及它们各自的测试设置,如载荷、加载/卸载速率、地图中的测试数量等。这样的测试程序使用户可以在一个大的样品表面检查出特定的压痕感兴趣的区域,并在不同的位置一次性进行所有的压痕测试,使其成为对具有多个阶段的冶金样品进行机械测试的理想工具。

在这项研究中,我们在光学显微镜下定位了样品的特定相位,并将其整合在一起。 NANOVEA 机械测试仪上的编号 图1.所选位置的坐标被保存下来,然后在下面总结的测试条件下一次性进行自动纳米压痕测试

图1: 选择样品表面的纳米压痕位置。
结果。 不同相位上的纳米压痕

下面显示的是样品不同阶段的压痕。我们证明了样品台的出色位置控制在 NANOVEA 机械测试仪 允许用户精确定位机械性能测试的目标位置。

压痕的代表性载荷-位移曲线如图所示。 图2,以及用Oliver和Pharr方法计算的相应硬度和杨氏模量iii 中进行了总结和比较。 图3.


ǞǞǞ
第1、2、3阶段 4 拥有的平均硬度分别为~5.4、19.6、16.2和7.2 GPa。相对较小的尺寸为 第2阶段 导致其硬度和杨氏模量值的标准偏差更高。

图2: 负载-位移曲线
的纳米压痕

图3: 不同阶段的硬度和杨氏模量

结论

在这项研究中,我们展示了NANOVEA机械测试仪使用高级平台控制器对一个大型冶金样品的多个阶段进行纳米压痕测量。精确的位置控制使用户能够轻松地浏览大型样品表面,直接选择感兴趣的区域进行纳米压痕测量。

所有压痕的位置坐标被保存,然后连续进行。这样的测试程序使得在小范围内的局部机械性能的测量,例如本研究中的多相金属样品,大大减少了时间和用户友好。硬质相2、3和4改善了样品的机械性能,分别拥有约19.6、16.2和7.2GPa的平均硬度,而硬质相1则为约5.4GPa。

该仪器的纳米、微观或宏观模块都包括符合ISO和ASTM标准的压痕、划痕和磨损测试仪模式,在一个系统中提供了最广泛和最方便的测试范围。NANOVEA无与伦比的范围是确定薄或厚、软或硬的涂层、薄膜和基材的全部机械性能的理想解决方案,包括硬度、杨氏模量、断裂韧性、附着力、耐磨性和许多其他性能。

i Oliver, W. C.; Pharr, G. M., 《材料研究杂志》,第19卷,第1期,2004年1月,第3-20页。
ii Schuh, C.A., 《今日材料》,第9卷,第5期,2006年5月,第32-40页。
iii Oliver, W. C.; Pharr, G. M., 《材料研究杂志》,第7卷第6期,1992年6月,第1564-1583页

现在,让我们来谈谈你的申请

聚合物的动态机械分析(DMA)频率扫描

DMA频率扫描

在聚合物上使用纳米压痕

编写者

李端杰,博士

简介

动态机械分析的重要性 扫频测试

应力的变化频率通常会导致复数模量的变化,而复数模量是聚合物的关键机械性能。例如,当车辆在道路上行驶时,轮胎会遭受周期性的高变形。当汽车加速到更高的速度时,压力和变形的频率会发生变化。这种变化会导致轮胎粘弹性特性的变化,而轮胎粘弹性特性是汽车性能的重要因素。需要对不同频率下聚合物的粘弹性行为进行可靠且可重复的测试。 NANOVEA 的 Nano 模块 机械测试仪 通过高精度压电执行器产生正弦负载,并使用超灵敏称重传感器和电容器直接测量力和位移的演变。简单的设置和高精度的结合使其成为动态机械分析频率扫描的理想工具。

粘弹性材料在经历变形时同时表现出粘性和弹性特征。高分子材料中的长分子链促成了其独特的粘弹性能,即结合了弹性固体和牛顿流体的特性。应力、温度、频率和其他因素都对粘弹性能起作用。动态机械分析,也被称为DMA,通过施加正弦波应力和测量应变的变化来研究材料的粘弹性行为和复合模量。

测量目标

在此应用中,我们使用最强大的机械测试仪 NANOVEA PB1000 在不同 DMA 频率下研究抛光轮胎样品的粘弹性特性。 纳米压痕 模式。

NANOVEA

PB1000

测试条件

频率(Hz)。

0.1, 1.5, 10, 20

每个频率下的蠕变时间。

50秒

振荡电压

0.1 V

装载电压

1 V

压头类型

球形

金刚石 | 100 μm

结果与讨论

在最大载荷下的动态机械分析频率扫描可以在一次测试中快速简单地测量样品在不同载荷频率下的粘弹性能。不同频率下的载荷和位移波的相移和振幅可以用来计算各种基本的材料粘弹性能,包括 储存模数, 损耗模数谭 (δ) 正如以下图表所总结的那样。 

在本研究中,1、5、10和20赫兹的频率对应于每小时约7、33、67和134公里的速度。随着测试频率从0.1到20赫兹的增加,可以观察到存储模量和损失模量都在逐渐增加。当频率从0.1增加到1赫兹时,Tan(δ)从~0.27下降到0.18,然后在达到20赫兹的频率时,它逐渐增加到~0.55。DMA扫频可以测量储存模量、损失模量和Tan (δ)的趋势,这提供了关于单体运动和交联以及聚合物的玻璃转变的信息。通过在扫频过程中使用加热板提高温度,可以获得不同测试条件下分子运动性质的更完整的图像。

负荷和深度的演变

完整的DMA频率扫描

不同频率下的载荷和深度与时间的关系

存储模量

在不同的频率下

亏损模式

在不同的频率下

TAN (δ)

在不同的频率下

结论

在这项研究中,我们展示了NANOVEA机械测试仪在轮胎样品上进行动态机械分析频率扫描测试的能力。该测试测量了轮胎在不同频率的应力下的粘弹性能。随着加载频率从0.1到20赫兹的增加,轮胎显示出储存和损失模量的增加。它提供了关于轮胎在不同速度下运行的粘弹性行为的有用信息,这对于提高轮胎的性能以实现更平稳、更安全的骑行至关重要。DMA扫频试验可以在不同的温度下进行,以模拟轮胎在不同天气下的真实工作环境。

在NANOVEA机械测试仪的纳米模块中,快速压电的负载应用与单独的高灵敏度应变计的负载测量是独立的。这在动态机械分析中具有明显的优势,因为深度和载荷之间的相位是直接从传感器收集的数据中测量的。相位的计算是直接的,不需要进行数学建模,因为数学建模会增加所产生的损失和存储模量的不精确性。而基于线圈的系统则不是这样。

总之,DMA测量损耗和存储模量、复合模量和Tan(δ)作为接触深度、时间和频率的函数。可选的加热阶段允许在DMA期间测定材料的相变温度。NANOVEA机械测试仪在一个平台上提供无与伦比的多功能纳米和微米模块。纳米和微米模块都包括划痕测试器、硬度测试器和磨损测试器模式,在单个模块上提供了最广泛和最友好的测试范围。

现在,让我们来谈谈你的申请

微粒:压缩强度和微压痕

微小颗粒物

压缩强度和微压痕
通过测试盐类

作者。
Jorge Ramirez

修订者::
Jocelyn Esparza

简介

在开发和改进今天看到的新的和现有的微粒子和微特征(支柱和球体)方面,压缩强度已经成为质量控制测量的关键。微粒子有各种形状和大小,可以由陶瓷、玻璃、聚合物和金属开发。其用途包括药物输送、食品增味、混凝土配方等诸多方面。控制微粒子或微特征的机械性能是其成功的关键,需要有能力定量地描述其机械完整性  

深度与负载压缩强度的重要性

标准的抗压测量仪器不能承受低负荷,不能提供足够的 微粒子的深度数据。通过使用纳米或 显微压痕在这种情况下,纳米或微粒子(软或硬)的压缩强度可以被准确和精确地测量。  

测量目标

在本应用说明中,我们测量了  含有 "盐 "的压缩强度 的 NANOVEA机械测试仪 在微压痕模式下。

NANOVEA

CB500

测试条件

最大力

30 N

装载率

60 N/min

卸载率

60 N/min

压头类型

平板冲床

钢|直径1毫米

载荷与深度曲线

结果与讨论

粒子1和粒子2的高度、破坏力和强度

颗粒失效被确定为力与深度曲线的初始斜率开始明显下降的点。这种行为表明材料已经达到了屈服点,不再能够抵抗所施加的压缩力。一旦超过了屈服点,压痕深度开始在加载期间呈指数级增长。这些行为可以在下面看到 载荷与深度的关系曲线 两个样本都是如此。

结论

综上所述,我们已经说明了如何 NANOVEA 机械测试仪 在微压痕模式下,是对微粒子进行压缩强度测试的一个重要工具。尽管测试的颗粒是由相同的材料制成的,但我们怀疑本研究中测得的不同的失效点可能是由于颗粒中预先存在的微裂缝和不同的颗粒尺寸造成的。应该注意的是,对于脆性材料,声发射传感器可以在测试中测量裂纹扩展的开始。


ǞǞǞ
NANOVEA 机械测试仪 提供的深度位移分辨率低至亚纳米级。
这使得它也成为研究非常脆弱的微观粒子或特征的伟大工具。对于柔软和易碎的
使用我们的纳米压痕模块,可以实现低至0.1mN的负载。

现在,让我们来谈谈你的申请

陶瓷:用于晶粒检测的快速点阵纳米压痕测试

简介

 

纳米压痕 已成为一种广泛应用的小尺度材料机械行为测量技术i ii。纳米压痕测量的高分辨率载荷-位移曲线可以提供各种物理机械特性,包括硬度、杨氏模量、蠕变、断裂韧性等。

 

 

快速映射缩进的重要性

 

纳米压痕技术进一步普及的一个重要瓶颈是时间消耗。通过传统纳米压痕程序绘制机械性能图很容易花费数小时,这阻碍了该技术在大规模生产行业的应用,例如半导体、航空航天、MEMS、瓷砖等消费产品等。

事实证明,快速映射在瓷砖制造行业中至关重要,单个瓷砖上的硬度和杨氏模量映射可以提供表明表面均匀程度的数据分布。可以在此映射中勾勒出瓷砖上较软的区域,并显示更容易因某人住宅中每天发生的物理影响而发生故障的位置。可以在不同类型的瓷砖上进行映射以进行比较研究,并在一批相似的瓷砖上进行映射以测量质量控制过程中瓷砖的一致性。通过快速映射方法,测量设置的组合可以是广泛的、准确且高效的。

 

测量目标

 

在这项研究中,Nanovea 机械测试仪,在 FastMap 模式下用于高速绘制地砖的机械属性。我们展示了 Nanovea 机械测试仪以高精度和可重复性执行两次快速纳米压痕测绘的能力。

 

测试条件

 

Nanovea 机械测试仪用于使用 Berkovich 压头以 FastMap 模式在地砖上执行一系列纳米压痕。下面总结了所创建的两个缩进矩阵的测试参数。

 

表 1:测试参数汇总。

 

结果与讨论 

 

图 1:625 压痕硬度映射的 2D 和 3D 视图。

 

 

 

图 2:625 凹痕基体的显微照片,显示晶粒。

 

 

625 凹痕矩阵在 0.20mm 上进行2 存在大的可见颗粒的区域。该颗粒(图 2)的平均硬度低于瓷砖的整体表面。 Nanovea Mechanical 软件允许用户查看 2D 和 3D 模式下的硬度分布图,如图 1 所示。利用样品台的高精度位置控制,该软件允许用户深入定位此类区域机械特性映射。

图 3:1600 压痕硬度映射的 2D 和 3D 视图。

 

 

图 4:1600 凹痕矩阵的显微照片。

 

 

还在同一块瓷砖上创建了 1600 凹痕矩阵来测量表面的均匀性。在这里,用户再次能够看到 3D 或 2D 模式下的硬度分布(图 3)以及凹痕表面的显微镜图像。根据给出的硬度分布,可以得出结论,由于高硬度和低硬度数据点的均匀分散,该材料是多孔的。

与传统的纳米压痕程序相比,本研究中的 FastMap 模式显着减少了耗时且更具成本效益。它能够快速定量绘制硬度和杨氏模量等机械特性,并提供晶粒检测和材料一致性的解决方案,这对于批量生产中各种材料的质量控制至关重要。

 

 

结论

 

在这项研究中,我们展示了 Nanovea Mechanical Tester 使用 FastMap 模式执行快速、精确的纳米压痕绘图的能力。瓷砖上的机械特性图利用平台的位置控制(精度为 0.2μm)和力模块灵敏度来高速检测表面颗粒并测量表面的均匀性。

本研究中使用的测试参数是根据基体和样品材料的尺寸确定的。可以选择多种测试参数,将总压痕周期时间优化为每个压痕 3 秒(或每 10 个压痕 30 秒)。

Nanovea 机械测试仪的纳米和微米模块均包括符合 ISO 和 ASTM 的压痕、划痕和磨损测试仪模式,可在单个系统中提供最广泛、最用户友好的测试范围。 Nanovea 无与伦比的系列是测定薄或厚、软或硬涂层、薄膜和基材的全方位机械性能的理想解决方案,包括硬度、杨氏模量、断裂韧性、附着力、耐磨性等。

此外,除了粗糙度等其他表面测量之外,可选的 3D 非接触式轮廓仪和 AFM 模块还可用于压痕、划痕和磨损轨迹的高分辨率 3D 成像。

 

作者:Duanjie Li,博士 由 Pierre Leroux 和 Jocelyn Esparza 修订

利用微观建议改进采矿程序

微压痕研究和质量控制

岩石力学是研究岩体的机械行为,应用于采矿、钻探、水库生产和民用建筑行业。先进的仪器对机械性能的精确测量使这些行业的零件和程序得以改进。通过了解微观尺度的岩石力学,可以确保成功的质量控制程序。

显微压痕 是用于岩石力学相关研究的一个重要工具。这些技术通过进一步了解岩体特性来推进挖掘技术。微压痕技术被用来改进钻头,从而改善采矿程序。显微压痕被用来研究矿物的白垩和粉末的形成。微压痕研究可以包括硬度、杨氏模量、蠕变、应力-应变、断裂韧性,以及用一台仪器进行压缩。
 
 

测量目标

在此应用中,Nanovea 机械测试器 测量矿物岩石样品的维氏硬度 (Hv)、杨氏模量和断裂韧性。该岩石由黑云母、长石和石英组成,形成标准的花岗岩复合材料。每个都单独测试。

 

结果和讨论

本节包括一个汇总表,对不同样品的主要数值结果进行比较,然后是完整的结果列表,包括所进行的每一个压痕,如果有的话,还附有压痕的显微照片。这些完整的结果显示了硬度和杨氏模量的测量值,以及穿透深度(Δd)的平均值和标准偏差。应该考虑到,在表面粗糙度与压痕大小相同的情况下,结果会出现较大的变化。


硬度和断裂韧性的主要数值结果汇总表

 

结论

Nanovea机械测试仪在矿物岩石的坚硬表面展示了可重复性和精确的压痕结果。形成花岗岩的每种材料的硬度和杨氏模量是直接从深度与载荷的曲线上测量的。粗糙的表面意味着在更高的载荷下进行测试,可能会引起微裂纹。微裂纹可以解释测量中看到的一些变化。由于样品表面粗糙,通过标准的显微镜观察,裂缝是无法察觉的。因此,不可能计算出需要测量裂纹长度的传统断裂韧度数字。相反,我们使用该系统在增加载荷的同时,通过深度与载荷曲线的位错来检测裂纹的起始。

断裂阈值载荷被报告在发生故障的载荷处。与简单测量裂纹长度的传统断裂韧性测试不同,获得的是阈值断裂开始时的载荷。此外,受控和密切监测的环境允许测量硬度,以作为比较各种样品的定量值。

现在,让我们来谈谈你的申请

用纳米压痕法评估生物组织硬度

生物组织纳米压痕的重要性

传统的力学测试(硬度、粘附、压缩、穿刺、屈服强度等)在今天的质量控制环境中要求更高的精度和可靠性,包括从组织到脆性材料的各种先进材料。传统的机械仪表无法提供先进材料所需的灵敏负载控制和分辨率。与生物材料相关的挑战要求开发能够对极软材料进行精确负载控制的力学测试。这些材料需要非常低的次mN测试负载和大的深度范围,以确保适当的性能测量。此外,许多不同的机械测试类型可以在一个单一的系统上执行,允许更大的功能。这为生物材料提供了一系列重要的测量,包括硬度、弹性模量、损耗和存储模量、蠕变以及抗划伤性和屈服强度失效点。

 

测量目标

在本应用中,Nanovea的机械试验机在纳米压痕模式下,研究了一种生物材料替代品在火腿的脂肪、浅肉和暗肉区域上的硬度和弹性模量。

纳米压痕是基于压痕标准ASTM E2546和ISO 14577。它使用既定的方法,将已知几何形状的压头打入测试材料的特定部位,并控制增加法向载荷。当达到预先设定的最大深度时,法向载荷会减少,直到发生完全松弛。负载由压电致动器施加,并在一个受控的循环中用高灵敏度的称重传感器测量。在实验过程中,压头相对于样品表面的位置由一个高精度的电容式传感器监测。由此产生的负载和位移曲线提供了与被测材料的机械性质相关的数据。已建立的模型通过测量数据计算出定量的硬度和模量值。纳米压痕适用于纳米尺度的低负荷和穿透深度测量。

结果和讨论

下表给出了硬度和杨氏模量的实测值,并附有平均值和标准差。由于压痕尺寸小,高表面粗糙度可能导致结果的大变化。

脂肪区的硬度约为肉区的一半。肉类处理使深色的肉区比浅色的肉区更硬。弹性模量和硬度与脂肪和肉区的口感咀嚼度有直接关系。60秒后,脂肪和浅色肉区的蠕动继续率高于深色肉区。

详细结果-脂肪

详细结果-浅色肉

详细结果-深色肉

总结

在此应用中,Nanovea 的 机械测试器 在纳米压痕模式下,可以可靠地确定脂肪和肉类区域的机械特性,同时克服样品表面粗糙度较高的问题。这证明了 Nanovea 机械测试仪的广泛且无与伦比的功能。该系统同时对极硬的材料和软的生物组织提供精确的机械性能测量。

与压电台闭环控制的负载传感器确保了对1至5kPa的硬或软凝胶材料的精确测量。使用同一系统,可以在更高的负荷下测试生物材料,最高可达400N。多周期加载可用于疲劳测试,使用平坦的圆柱形金刚石尖端可获得每个区域的屈服强度信息。此外,通过动态机械分析(DMA),利用闭环载荷控制,可以高精度地评估粘弹性能损失和储存模量。在同一系统上还可以进行各种温度和液体下的测试。

Nanovea的机械测试仪继续是生物和软聚合物/凝胶应用的最佳测试仪器。

现在,让我们来谈谈你的申请

表面处理过的铜线的磨损和划痕评估

铜线的磨损和划痕评估的重要性

自电磁铁和电报发明以来,铜在电线方面的应用有着悠久的历史。由于铜的耐腐蚀性、可焊性以及在高达150℃的高温下的性能,铜线被广泛用于电子设备,如面板、仪表、计算机、商业机器和电器。所有开采出来的铜大约有一半是用来制造电线和电缆导体的。

铜线的表面质量对应用服务性能和使用寿命至关重要。铜线中的微观缺陷可能导致过度磨损、裂纹的产生和扩展、导电性下降和焊接性不足。适当的铜线表面处理可以消除拉丝过程中产生的表面缺陷,提高耐腐蚀、耐刮擦和耐磨性。许多使用铜线的航空应用需要控制行为以防止意外的设备故障。为了正确评估铜线表面的耐磨性和耐刮擦性,需要进行可量化和可靠的测量。

 
 

 

测量目标

在这个应用中,我们模拟了不同铜线表面处理的受控磨损过程。 划痕测试 测量导致处理过的表面层失效所需的负载。这项研究展示了 Nanovea 摩擦仪 机械测试仪 作为电线评估和质量控制的理想工具。

 

 

测试过程和程序

通过 Nanovea 摩擦磨损试验机使用线性往复磨损模块评估两种不同表面处理的铜线(线 A 和线 B)的摩擦系数 (COF) 和耐磨性。 Al2O3 球(直径 6 毫米)是本应用中使用的计数器材料。使用 Nanovea 的磨损轨迹进行检查 3D非接触式轮廓仪。测试参数总结于表 1 中。

本次研究以Al₂O₃球为例进行了说明。任何具有不同形状和表面光洁度的固体材料都可以使用定制夹具来模拟实际的应用情况。

 

 

Nanovea的机械测试仪配备了罗克韦尔C金刚石触控笔(半径为100 μm),使用微划痕模式对涂层导线进行了渐进负载划痕测试。划痕测试参数和尖端几何形状如表2所示。
 

 

 

 

结果和讨论

铜线的磨损。

图2显示了铜线在磨损测试中的COF变化。A线在整个磨损试验过程中显示出稳定的COF约为0.4,而B线在头100转时显示出约0.35的COF,并逐渐增加到约0.4。

 

图3比较了测试后铜线的磨损轨迹。Nanovea公司的3D非接触式轮廓仪对磨损痕迹的详细形貌进行了出色的分析。通过提供对磨损机理的基本理解,可以直接和准确地确定磨损轨迹体积。经过600转的磨损试验,B线表面有明显的磨损痕迹损伤。剖面仪3D视图显示,B线的表面处理层被完全去除,大大加快了磨损过程。这在铜基板暴露的B线上留下了平坦的磨损痕迹。这可能导致使用B线的电气设备的寿命显著缩短。相比之下,A线的磨损相对较轻,其表面的磨损痕迹较浅。在相同条件下,A线表面处理层不像B线表面处理层那样被去除。

铜线表面的耐刮擦性。

图4显示了测试后导线上的划痕。线材A的保护层表现出非常好的抗划痕能力。相比之下,B线的保护层在约1.0N的载荷下失效。这些线的耐刮擦性有如此大的差异,这有助于它们的磨损性能,其中A线拥有大大增强的耐磨性。图5所示的划痕测试中法向力、COF和深度的演变提供了关于测试中涂层失效的更多信息。

总结

在这项对照研究中,我们展示了Nanovea的摩擦仪对表面处理过的铜线的耐磨性进行定量评估,以及Nanovea的机械测试仪对铜线的耐刮擦性进行可靠评估。铜线的表面处理在其使用寿命中对三者的机械性能起着关键作用。电线A的适当表面处理大大增强了耐磨性和耐刮擦性,这对粗糙环境中的电线的性能和寿命至关重要。

Nanovea的摩擦仪使用符合ISO和ASTM标准的旋转和线性模式,提供精确和可重复的磨损和摩擦测试,在一个预集成的系统中可以选择高温磨损、润滑和三相腐蚀模块。Nanovea无与伦比的范围是确定薄或厚、软或硬的涂层、薄膜和基材的全部摩擦学特性的理想解决方案。

现在,让我们来谈谈你的申请

钢和铝的屈服强度和拉伸强度

使用压痕测量屈服强度和极限拉伸强度的重要性

传统上,屈服强度和极限拉伸强度的测试是使用大型拉伸试验机,需要巨大的力量来拉开测试样品。为一种材料适当地加工许多测试券,而每个样品只能测试一次,这既费钱又费时。样品中的小缺陷会在测试结果中产生明显的差异。市场上不同配置和排列的拉伸试验机往往导致测试力学和结果的巨大差异。

Nanovea的创新压痕方法直接提供了屈服强度和极限拉伸强度值,可与传统拉伸试验测量的值相媲美。这种测量方法为所有行业开辟了一个新的测试可能性领域。与拉伸试验所需的复杂试样形状相比,简单的实验设置大大减少了样品制备时间和成本。通过小的压痕尺寸,可以在一个样品上进行多次测量。它防止了在样品加工过程中产生的拉伸试验券的缺陷的影响。在局部区域的小样品上进行YS和UTS测量,可以在管道或汽车结构中进行测绘和局部缺陷检测。
 
 

测量目标

在这个应用中,Nanovea 机械测试仪 测量不锈钢 SS304 和铝 Al6061 金属合金样品的屈服强度和极限拉伸强度。选择样品是因为其普遍认可的屈服强度和极限拉伸强度值,显示了 Nanovea 压痕方法的可靠性。

测试过程和程序

屈服强度和极限拉伸强度测试是在Nanovea机械测试仪上进行的。 显微压痕 模式。一个直径为200μm的圆柱形扁平金刚石尖端被用于这一应用。SS304和Al6061合金因其广泛的工业应用和公认的屈服强度和极限拉伸强度值而被选中,以显示压痕方法的巨大潜力和可靠性。在测试前,样品被机械地打磨成镜面状,以避免表面粗糙或缺陷对测试结果的影响。测试条件列于表1。每个样品都进行了十次以上的测试,以确保测试值的可重复性。

结果和讨论

SS304和Al6061合金样品的载荷-位移曲线显示在图3中,测试样品上的平面压头印记被插入。使用Nanovea开发的特殊算法分析 "S "形加载曲线,计算屈服强度和极限拉伸强度。数值是由软件自动计算的,如表1所示。通过传统的拉伸试验获得的屈服强度和极限拉伸强度值被列出来进行比较。

 

总结

在这项研究中,我们展示了 Nanovea Mechanical Tester 评估不锈钢和铝合金板材样品的屈服强度和极限拉伸强度的能力。简单的实验设置显着减少了拉伸测试所需的样品制备时间和成本。小压痕尺寸使得可以对一个样品进行多次测量。该方法允许对小样本和局部区域进行YS/UTS测量,为YS/UTS测绘和管道或汽车结构的局部缺陷检测提供解决方案。

Nanovea 机械测试仪的纳米、微观或宏观模块均包括符合 ISO 和 ASTM 的压痕、划痕和磨损测试仪模式,可在单个系统中提供最广泛、最用户友好的测试范围。 Nanovea 无与伦比的系列是测定薄或厚、软或硬涂层、薄膜和基材的全方位机械性能的理想解决方案,包括硬度、杨氏模量、断裂韧性、附着力、耐磨性等。此外,除了粗糙度等其他表面测量之外,可选的 3D 非接触式轮廓仪和 AFM 模块还可用于压痕、划痕和磨损轨迹的高分辨率 3D 成像。

现在,让我们来谈谈你的申请

用纳米压痕法评估牙齿硬度

纳米压痕对生物材料的重要性

 
对于许多传统的机械测试(硬度、附着力、压缩、穿刺、屈服强度等),今天的质量控制环境中的高级敏感材料,从凝胶到脆性材料,现在需要更高的精度和可靠性控制。传统的机械仪器无法提供所需的敏感负载控制和分辨率;设计用于散装材料。随着被测试材料的尺寸变得更加令人关注,开发了 纳米压痕 提供了一种可靠的方法来获取较小表面的基本机械信息,如正在进行的生物材料研究。与生物材料特别相关的挑战要求开发能够对极软至脆性材料进行精确负载控制的机械测试。另外,需要多种仪器来进行各种机械测试,现在可以在一个系统上进行。纳米压痕提供了一个广泛的测量范围,在纳米控制的负载下具有精确的分辨率,用于敏感的应用。

 

 

测量目标

在这个应用中,Nanovea 机械测试仪,在纳米压痕模式下,用于研究牙齿的牙本质、腐烂物和牙髓的硬度和弹性模量。纳米压痕测试最关键的方面是固定样品,在这里我们采用了切片牙齿并安装了环氧树脂,使所有三个感兴趣的区域都暴露出来进行测试。

 

 

结果和讨论

本节包括一个汇总表,对不同样品的主要数值结果进行了比较,然后是完整的结果列表,包括所进行的每一个压痕,如果有的话,还附有压痕的显微照片。这些完整的结果显示了硬度和杨氏模量的测量值,以及它们的平均数和标准偏差。应该考虑到,在表面粗糙度与压痕大小相同的情况下,结果会出现较大的变化。

主要数字结果的汇总表。

 

 

总结

总之,我们已经展示了Nanovea机械测试仪在纳米压痕模式下是如何对牙齿的机械性能进行精确测量的。这些数据可用于开发更符合真实牙齿机械特性的填充物。Nanovea机械测试仪的定位能力允许全面绘制牙齿各区域的硬度图。

使用同一系统,可以在高达200N的较高载荷下测试牙齿材料的断裂韧性。多周期加载试验可用于更多的多孔材料,以评估剩余的弹性水平。使用平坦的圆柱形金刚石尖端可以给出每个区域的屈服强度信息。此外,使用DMA "动态机械分析",可以评估粘弹性能,包括损失和储存模量。

Nanovea纳米模块是这些测试的理想选择,因为它使用一个独特的反馈响应来精确控制所施加的负载。正因为如此,纳米模块也可以用来做精确的纳米划痕测试。研究牙齿材料和填充材料的耐刮擦性和耐磨性,增加了机械测试仪的整体实用性。使用锋利的2微米尖端来定量比较填充材料上的划痕,可以更好地预测实际应用中的行为。多次磨损或直接旋转磨损测试也是常见的测试,提供了关于长期生存能力的重要信息。

现在,让我们来谈谈你的申请