Categoria: Teste de profilometria
Inspeção de Rugosidade de Superfície de Comprimidos (Indústria Farmacêutica)
Comprimidos (Indústria Farmacêutica)
Inspecionando a rugosidade usando Perfilômetros 3D
Autor:
Jocelyn Esparza
Introdução
Os comprimidos farmacêuticos são a dosagem medicinal mais popular utilizada atualmente. Cada comprimido é composto por uma combinação de substâncias ativas (os produtos químicos que produzem efeito farmacológico) e substâncias inativas (desintegrante, aglutinante, lubrificante, diluente - geralmente na forma de pó). As substâncias ativas e inativas são então comprimidas ou moldadas em um sólido. Depois, dependendo das especificações do fabricante, os comprimidos são ou revestidos ou não revestidos.
Para ser eficaz, os revestimentos das pastilhas precisam seguir os contornos finos dos logotipos ou caracteres gravados nas pastilhas, precisam ser estáveis e robustos o suficiente para sobreviver ao manuseio da pastilha, e não devem fazer com que as pastilhas se colem umas às outras durante o processo de revestimento. As pastilhas atuais normalmente têm um revestimento à base de polissacarídeos e polímeros que incluem substâncias como pigmentos e plastificantes. Os dois tipos mais comuns de revestimento de mesa são revestimentos de filme e revestimento de açúcar. Em comparação com os revestimentos de açúcar, os revestimentos de filme são menos volumosos, mais duráveis e consomem menos tempo para preparar e aplicar. Entretanto, os revestimentos de filme têm mais dificuldade para esconder a aparência de pastilhas.
Os revestimentos de comprimidos são essenciais para a proteção contra umidade, mascarando o sabor dos ingredientes e tornando os comprimidos mais fáceis de engolir. Mais importante ainda, o revestimento dos comprimidos controla o local e a taxa na qual a droga é liberada.
OBJETIVO DA MEDIÇÃO
Nesta aplicação, usamos o Perfilômetro Ótico NANOVEA e o software avançado Mountains para medir e quantificar a topografia de vários comprimidos com nome prensados (1 revestido e 2 não revestidos) para comparar a rugosidade de sua superfície.
Presume-se que o Advil (revestido) terá a rugosidade superficial mais baixa devido ao revestimento de proteção que possui.
NANOVEA
HS2000
Condições de teste
Três lotes de comprimidos comprimidos com nome foram escaneados com o Nanovea HS2000
usando o sensor de linha de alta velocidade para medir vários parâmetros de rugosidade da superfície de acordo com a ISO 25178.
Área de varredura
2 x 2 mm
Resolução da varredura lateral
5 x 5 μm
Tempo de varredura
4 seg.
Exemplos
Resultados & Discussão
Após a digitalização das pastilhas, foi realizado um estudo de rugosidade superficial com o avançado software de análise Mountains para calcular a média da superfície, o valor quadrático da raiz e a altura máxima de cada pastilha.
Os valores calculados suportam a suposição de que o Advil tem uma rugosidade superficial menor devido ao revestimento de proteção que reveste seus ingredientes. O Tylenol mostra ter a maior rugosidade superficial de todas as três pastilhas medidas.
Foi produzido um mapa de altura 2D e 3D da topografia da superfície de cada pastilha que mostram as distribuições das altura medidas. Uma das cinco pastilhas foi selecionada para representar os mapas de altura para cada marca. Estes mapas de altura constituem uma ótima ferramenta para a detecção visual de características da superfície externa, como poços ou picos.
Conclusão
Neste estudo, analisamos e comparamos a rugosidade da superfície de três comprimidos com nome prensado: Advil, Tylenol, e Excedrin. Advil provou ter a rugosidade média de superfície mais baixa. Isto pode ser atribuído à presença do revestimento laranja que incide sobre o medicamento. Em contraste, tanto Excedrin quanto Tylenol não possuem revestimentos, entretanto, sua rugosidade superficial ainda difere uma da outra. O Tylenol provou ter a maior rugosidade média de superfície de todas as pastilhas estudadas.
Usando o NANOVEA HS2000 com sensor de linha de alta velocidade, fomos capazes de medir 5 comprimidos em menos de 1 minuto. Isto pode ser útil para testes de controle de qualidade de centenas de comprimidos em uma produção atual.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Ferramentas Odontológicas: Análise de Rugosidade Dimensional e Superficial
INTRODUÇÃO
Ter dimensões precisas e rugosidade superficial ideal são vitais para a funcionalidade dos parafusos dentários. Muitas dimensões de parafusos dentários exigem alta precisão, como raios, ângulos, distâncias e alturas de degraus. Compreender a rugosidade da superfície local também é muito importante para qualquer ferramenta ou peça médica inserida dentro do corpo humano para minimizar o atrito de deslizamento.
PERFILOMETRIA SEM CONTATO PARA ESTUDO DIMENSIONAL
Nanovea Perfiladores 3D sem contato use uma tecnologia cromática baseada em luz para medir qualquer superfície de material: transparente, opaca, especular, difusiva, polida ou áspera. Ao contrário da técnica de sonda de toque, a técnica sem contato pode medir dentro de áreas apertadas e não adicionará quaisquer erros intrínsecos devido à deformação causada pela pressão da ponta em um material plástico mais macio. A tecnologia baseada em luz cromática também oferece precisões laterais e de altura superiores em comparação com a tecnologia de variação de foco. Os Nanovea Profilers podem digitalizar grandes superfícies diretamente, sem costura, e perfilar o comprimento de uma peça em poucos segundos. Características de superfície de nano a macro faixa e ângulos de superfície elevados podem ser medidos devido à capacidade do perfilador de medir superfícies sem nenhum algoritmo complexo manipulando os resultados.
OBJETIVO DA MEDIÇÃO
Nesta aplicação, o perfilador óptico Nanovea ST400 foi usado para medir um parafuso dentário ao longo de características planas e roscadas em uma única medição. A rugosidade da superfície foi calculada a partir da área plana e foram determinadas várias dimensões das características roscadas.
Amostra de parafuso dentário analisada por NANOVEA Perfilador óptico.
Amostra de parafuso dentário analisada.
RESULTADOS
Superfície 3D
A visualização 3D e a visualização em cores falsas do parafuso dentário mostram uma área plana com rosqueamento começando em ambos os lados. Ele fornece aos usuários uma ferramenta simples para observar diretamente a morfologia do parafuso de diferentes ângulos. A área plana foi extraída da varredura completa para medir sua rugosidade superficial.
Análise de superfície 2D
Perfis de linha também podem ser extraídos da superfície para mostrar uma vista em corte transversal do parafuso. A análise de contorno e estudos de altura do degrau foram utilizados para medir dimensões precisas em um determinado local do parafuso.
CONCLUSÃO
Nesta aplicação, demonstramos a capacidade do Nanovea 3D Non-Contact Profiler de calcular com precisão a rugosidade da superfície local e medir grandes características dimensionais em uma única varredura.
Os dados mostram uma rugosidade superficial local de 0,9637 μm. O raio do parafuso entre as roscas foi de 1,729 mm e as roscas tinham altura média de 0,413 mm. O ângulo médio entre os fios foi determinado em 61,3°.
Os dados mostrados aqui representam apenas uma parte dos cálculos disponíveis no software de análise.
Preparado por
Duanjie Li, PhD., Jonathan Thomas e Pierre Leroux
Inspeção de rugosidade em linha
Saiba mais
IMPORTÂNCIA DO PERFILADOR SEM CONTATO PARA A INSPEÇÃO DE RUGOSIDADE EM LINHA
Os defeitos superficiais derivam do processamento de materiais e da fabricação de produtos. A inspeção de qualidade de superfície em linha garante o mais rígido controle de qualidade dos produtos finais. A Nanovea Perfilômetros 3D sem contato utilizam tecnologia confocal cromática com capacidade única de determinar a rugosidade de uma amostra sem contato. Vários sensores perfiladores podem ser instalados para monitorar a rugosidade e a textura de diferentes áreas do produto ao mesmo tempo. O limite de rugosidade calculado em tempo real pelo software de análise serve como uma ferramenta de aprovação/reprovação rápida e confiável.
OBJETIVO DA MEDIÇÃO
Neste estudo, o sistema transportador de inspeção de rugosidade Nanovea equipado com um sensor de ponto é usado para inspecionar a rugosidade superficial das amostras de acrílico e lixa. Mostramos a capacidade do profilômetro sem contato da Nanovea em fornecer uma inspeção rápida e confiável da rugosidade em linha em tempo real em uma linha de produção.
RESULTADOS E DISCUSSÃO
O sistema de profilômetro do transportador pode operar em dois modos, a saber, o Modo Gatilho e o Modo Contínuo. Como ilustrado na Figura 2, a rugosidade da superfície das amostras é medida quando elas passam sob as cabeças do profilômetro óptico sob o Modo Trigger. Em comparação, o Modo Contínuo permite a medição sem parar da rugosidade da superfície da amostra contínua, como por exemplo, folha metálica e tecido. Vários sensores ópticos de perfil podem ser instalados para monitorar e registrar a rugosidade de diferentes áreas de amostra.
Durante a medição da rugosidade em tempo real, os alertas de aprovação e falha são exibidos nas janelas do software, como mostrado na Figura 4 e na Figura 5. Quando o valor de rugosidade está dentro dos limites indicados, a rugosidade medida é destacada na cor verde. Entretanto, o destaque fica vermelho quando a rugosidade da superfície medida está fora da faixa dos valores limiares estabelecidos. Isto fornece uma ferramenta para o usuário determinar a qualidade do acabamento superficial de um produto.
Nas seções seguintes, dois tipos de amostras, por exemplo, Acrílico e Lixa são usados para demonstrar os modos de Gatilho e Contínuo do sistema de Inspeção.
Modo disparo: Inspeção da superfície da amostra de acrílico
Uma série de amostras acrílicas são alinhadas na esteira transportadora e se movem sob a cabeça do profiler óptico como mostrado na Figura 1. A falsa vista colorida na Figura 6 mostra a mudança da altura da superfície. Algumas das amostras de acrílico com acabamento espelhado foram lixadas para criar uma textura de superfície rugosa, como mostrado na Figura 6b.
Como as amostras acrílicas se movem a uma velocidade constante sob a cabeça do profiler óptico, o perfil de superfície é medido como mostrado na Figura 7 e na Figura 8. O valor da rugosidade do perfil medido é calculado ao mesmo tempo e comparado com os valores limiares. O alerta vermelho de falha é lançado quando o valor de rugosidade estiver acima do limite estabelecido, permitindo aos usuários detectar e localizar imediatamente o produto defeituoso na linha de produção.
Modo Contínuo: Inspeção da superfície da amostra de lixa
Mapa de Altura da Superfície, Mapa de Distribuição de Rugosidade e Mapa de Limite de Rugosidade de Passo/Falha da superfície da amostra de lixa, como mostrado na Figura 9. A amostra de lixa tem um par de picos mais altos na parte usada, como mostrado no mapa da altura da superfície. As diferentes cores no palete da Figura 9C representam o valor de rugosidade da superfície local. O Mapa de Rugosidade exibe uma rugosidade homogênea na área intacta da amostra de lixa, enquanto a área usada é destacada na cor azul escuro, indicando o valor reduzido de rugosidade nesta região. Um limiar de rugosidade Pass/Failness threshold pode ser estabelecido para localizar tais regiões, como mostrado na Figura 9D.
Como a lixa passa continuamente sob o sensor de perfil em linha, o valor da rugosidade local em tempo real é calculado e registrado como plotado na Figura 10. Os alertas de aprovação/falha são exibidos na tela do software com base nos valores limiares de rugosidade definidos, servindo como uma ferramenta rápida e confiável para o controle de qualidade. A qualidade da superfície do produto na linha de produção é inspecionada in situ para descobrir áreas defeituosas a tempo.
Nesta aplicação, mostramos o Nanovea Conveyor Profilometer equipado com um sensor óptico sem contato funciona como uma ferramenta confiável de controle de qualidade em linha de forma eficaz e eficiente.
O sistema de inspeção pode ser instalado na linha de produção para monitorar a qualidade da superfície dos produtos in situ. O limiar de rugosidade funciona como um critério confiável para determinar a qualidade da superfície dos produtos, permitindo aos usuários perceberem os produtos defeituosos a tempo. Dois modos de inspeção, o Modo Trigger e o Modo Contínuo, são fornecidos para atender à exigência de inspeção em diferentes tipos de produtos.
Os dados mostrados aqui representam apenas uma parte dos cálculos disponíveis no software de análise. Os Nanovea Profilometers medem praticamente qualquer superfície em campos como Semicondutor, Microeletrônica, Solar, Fibra Óptica, Automotivo, Aeroespacial, Metalurgia, Usinagem, Revestimentos, Farmacêutico, Biomédico, Ambiental e muitos outros.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Teste de Desgaste Block-On-Ring
IMPORTÂNCIA DA AVALIAÇÃO DO DESGASTE POR BLOCOS SOBRE ANÉIS
O teste Block-on-Ring (ASTM G77) é uma técnica amplamente utilizada que avalia os comportamentos de desgaste por deslizamento de materiais em diferentes condições simuladas, permitindo uma classificação confiável de pares de materiais para aplicações tribológicas específicas.
OBJETIVO DA MEDIÇÃO
Nesta aplicação, o Nanovea Mechanical Tester mede o YS e UTS de aço inoxidável SS304 e amostras de liga metálica de alumínio Al6061. As amostras foram escolhidas por seus valores de YS e UTS comumente reconhecidos mostrando a confiabilidade dos métodos de indentação da Nanovea.
O comportamento do desgaste por deslizamento de um bloco H-30 em um anel S-10 foi avaliado pelo tribômetro da Nanovea usando o módulo Block-on-Ring. O bloco H-30 é feito de 01 aço ferramenta de dureza 30HRC, enquanto o anel S-10 é de aço tipo 4620 de dureza superficial de 58 a 63 HRC e diâmetro do anel de ~34,98 mm. Os testes Block-on-Ring foram realizados em ambientes secos e lubrificados para investigar o efeito no comportamento do desgaste. Os testes de lubrificação foram realizados em óleo mineral pesado USP. A trilha de desgaste foi examinada usando o Nanovea Perfilômetro 3D sem contato. Os parâmetros de teste estão resumidos na Tabela 1. A taxa de desgaste (K) foi avaliada usando a fórmula K=V/(F×s), onde V é o volume desgastado, F é a carga normal, s é a distância de deslizamento.
RESULTADOS E DISCUSSÃO
A Figura 2 compara o coeficiente de atrito (COF) dos testes Block-on-Ring em ambientes secos e lubrificados. O bloco tem significativamente mais atrito em um ambiente seco do que em um ambiente lubrificado. COF
flutua durante o período de rodagem nas primeiras 50 rotações e atinge um COF constante de ~0,8 para o restante do teste de desgaste de 200 rotações. Em comparação, o teste Block-on-Ring realizado na lubrificação com óleo mineral pesado da USP exibe COF baixo e constante de 0,09 ao longo do teste de desgaste de 500.000 rotações. O lubrificante reduz significativamente o COF entre as superfícies em aproximadamente 90 vezes.
As figuras 3 e 4 mostram as imagens ópticas e os perfis 2D da seção transversal das cicatrizes de desgaste nos blocos após os testes de desgaste seco e lubrificado. Os volumes e taxas de desgaste das faixas de desgaste estão listados na Tabela 2. O bloco de aço após o teste de desgaste a seco a uma velocidade de rotação menor de 72 rpm para 200 rotações exibe um grande volume de cicatriz de desgaste de 9,45 mm˙. Em comparação, o teste de desgaste realizado a uma velocidade maior de 197 rpm para 500.000 rotações no lubrificante de óleo mineral cria um volume de pista de desgaste substancialmente menor de 0,03 mm˙.
As imagens em ÿgure 3 mostram que o desgaste severo ocorre durante os testes em condições secas em comparação com o desgaste leve do teste de desgaste lubrificado. O calor elevado e as vibrações intensas geradas durante o teste de desgaste a seco promovem a oxidação dos detritos metálicos resultando em abrasão severa de três corpos. No teste de lubrificação, o óleo mineral reduz o atrito e esfria a face de contato, além de transportar os detritos abrasivos criados durante o desgaste. Isto leva a uma redução significativa da taxa de desgaste por um fator de ~8×10ˆ. Um di˛erence tão substancial na resistência ao desgaste em ambientes di˛erent mostra a importância de uma simulação de desgaste deslizante adequada em condições de serviço realistas.
O comportamento de desgaste pode mudar drasticamente quando pequenas mudanças nas condições de teste são introduzidas. A versatilidade do tribômetro Nanovea permite a medição do desgaste em condições de alta temperatura, lubrificação e tribocorrosão. O controle preciso de velocidade e posição pelo motor avançado permite que testes de desgaste sejam realizados a velocidades que variam de 0,001 a 5000 rpm, tornando-o uma ferramenta ideal para laboratórios de pesquisa/teste para investigar o desgaste em di˛erent condições tribológicas.
A condição superficial das amostras foi examinada pelo proÿlômetro ótico sem contato da Nanovea. A figura 5 mostra a morfologia da superfície dos anéis após os testes de desgaste. A forma do cilindro é removida para melhor apresentar a morfologia da superfície e a rugosidade criada pelo processo de desgaste deslizante. O rugosidade da superfície do cilindro ocorreu devido ao processo de abrasão de três corpos durante o teste de desgaste a seco de 200 rotações. O bloco e o anel após o teste de desgaste a seco apresentam uma rugosidade Ra de 14,1 e 18,1 µm, respectivamente, em comparação com 5,7 e 9,1 µm para o teste de desgaste lubrificado a longo prazo de 500.000 - revolução a uma velocidade maior. Este teste demonstra a importância de uma lubrificação adequada do contato do cilindro de anéis do pistão. O desgaste severo danifica rapidamente a superfície de contato sem lubrificação e leva à deterioração irreversível da qualidade do serviço e até mesmo à quebra do motor.
CONCLUSÃO
Neste estudo mostramos como o Tribômetro da Nanovea é usado para avaliar o comportamento do desgaste por deslizamento de um par de aço metálico usando o módulo Block-on-Ring seguindo a norma ASTM G77. O lubrificante desempenha um papel crítico nas propriedades de desgaste do par de materiais. O óleo mineral reduz a taxa de desgaste do bloco H-30 em um fator de ~8×10ˆ e o COF em ~90 vezes. A versatilidade do Tribômetro da Nanovea o torna uma ferramenta ideal para medir o comportamento do desgaste sob diversas condições de lubrificação, alta temperatura e tribocorrosão.
O Tribômetro da Nanovea oferece testes de desgaste e fricção precisos e repetíveis usando modos rotativos e lineares em conformidade com ISO e ASTM, com módulos opcionais de desgaste em alta temperatura, lubrificação e tribocorrosão disponíveis em um sistema pré-integrado. A linha incomparável da Nanovea é uma solução ideal para determinar toda a gama de propriedades tribológicas de revestimentos, películas e substratos finos ou espessos, macios ou duros.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Análise de materiais compósitos usando a Profilometria 3D
Importância da profilometria sem contato para materiais compósitos
Os defeitos cruciais são minimizados para que os materiais compostos sejam tão fortes quanto possível nas aplicações de reforço. Como um material anisotrópico, a direção crítica da trama é consistente para manter a previsibilidade de alto desempenho. Os materiais compósitos têm uma das maiores proporções de resistência a peso, tornando-o mais forte do que o aço em alguns casos. É importante limitar a área de superfície exposta nos compósitos para minimizar a vulnerabilidade química e os efeitos de expansão térmica. A inspeção da superfície de perfilometria é fundamental para o controle de qualidade da produção de compósitos para garantir um forte desempenho durante um longo tempo de serviço.
Nanovea's Perfilômetro 3D sem contato é diferente de outras técnicas de medição de superfície, como sondas de toque ou interferometria. Nossos perfilômetros usam cromatismo axial para medir praticamente qualquer superfície e a preparação aberta permite amostras de qualquer tamanho sem necessidade de preparação. Medições nano a macro são obtidas durante a medição do perfil da superfície com influência zero da refletividade ou absorção da amostra. Nossos perfilômetros medem facilmente qualquer material: transparente, opaco, especular, difusivo, polido e áspero, com a capacidade avançada de medir ângulos de superfície elevados sem manipulação de software. A técnica de perfilômetro sem contato fornece a capacidade ideal e fácil de usar para maximizar estudos de superfície de materiais compósitos; juntamente com os benefícios da capacidade combinada de 2D e 3D.
Objetivo da medição
O Nanovea HS2000L Profilometer utilizado nesta aplicação mediu a superfície de duas tecelagens de compósitos de fibra de carbono. A rugosidade da superfície, comprimento de trama, isotropia, análise fractal e outros parâmetros de superfície são usados para caracterizar os compósitos. A área medida foi selecionada aleatoriamente e assumiu que os valores de propriedade podem ser comparados usando o poderoso software de análise de superfície da Nanovea.
Resultados e Discussão
Análise de Superfície
A isotropia mostra a direcionalidade da trama para determinar os valores de propriedade esperados. Nosso estudo mostra como o composto bidirecional é isotrópico ~60%, como esperado. Enquanto isso, o composto unidirecional é ~13% isotrópico devido à forte fibra única com direção de fibra.
O tamanho da trama determina a consistência da embalagem e a largura das fibras utilizadas no composto. Nosso estudo mostra como podemos medir facilmente o tamanho da trama até uma precisão de micron para garantir peças de qualidade.
A análise da textura do comprimento de onda dominante sugere que o tamanho do fio para ambos os compósitos é de 4,27 microns de espessura. A análise da dimensão fractal da superfície da fibra determina a suavidade para encontrar a facilidade de fixação das fibras em uma matriz. A dimensão fractal da fibra unidirecional é maior do que a fibra bidirecional que pode afetar o processamento de compósitos.
Conclusão
Nesta aplicação, mostramos que o Nanovea HS2000L Non-Contact Profilometer caracteriza com precisão a superfície fibrosa dos materiais compostos. Distinguimos as diferenças entre os tipos de tecido de fibra de carbono com parâmetros de altura, isotropia, análise de textura e medidas de distância, juntamente com muito mais.
Nossas medições de superfície por profilômetro mitigam de forma precisa e rápida os danos compostos que diminuem os defeitos nas peças, maximizando a capacidade do material composto. A velocidade do profilômetro 3D da Nanovea varia de <1mm/s a 500mm/s para adequação em aplicações de pesquisa às necessidades de inspeção de alta velocidade. O profilômetro Nanovea é a solução
a qualquer necessidade de medição composta.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Avaliação de desgaste e arranhões do fio de cobre tratado de superfície
Importância da Avaliação do Desgaste e Raspagem do Arame de Cobre
O cobre tem uma longa história de uso em fiação elétrica desde a invenção do eletroímã e do telégrafo. Os fios de cobre são aplicados em uma ampla gama de equipamentos eletrônicos como painéis, medidores, computadores, máquinas comerciais e aparelhos graças à sua resistência à corrosão, soldabilidade e desempenho em temperaturas elevadas de até 150°C. Aproximadamente metade de todo o cobre extraído é utilizado para a fabricação de fios elétricos e condutores de cabos.
A qualidade da superfície do fio de cobre é crítica para o desempenho do serviço de aplicação e para a vida útil. Micro defeitos nos fios podem levar a desgaste excessivo, início e propagação de rachaduras, diminuição da condutividade e soldabilidade inadequada. O tratamento adequado da superfície dos fios de cobre remove os defeitos superficiais gerados durante a trefilação do fio, melhorando a resistência à corrosão, aos arranhões e ao desgaste. Muitas aplicações aeroespaciais com fios de cobre exigem comportamento controlado para evitar falhas inesperadas no equipamento. Medidas quantificáveis e confiáveis são necessárias para avaliar adequadamente o desgaste e a resistência a riscos da superfície do fio de cobre.
Objetivo da medição
Nesse aplicativo, simulamos um processo de desgaste controlado de diferentes tratamentos de superfície de fios de cobre. Teste de arranhões mede a carga necessária para causar falha na camada superficial tratada. Este estudo apresenta o Nanovea Tribômetro e Testador Mecânico como ferramentas ideais para avaliação e controle de qualidade de fios elétricos.
Procedimento e procedimentos de teste
O coeficiente de atrito (COF) e a resistência ao desgaste de dois diferentes tratamentos de superfície em fios de cobre (fio A e fio B) foram avaliados pelo tribômetro Nanovea usando um módulo de desgaste linear alternativo. Uma esfera de Al₂O₃ (6 mm de diâmetro) é o contramaterial usado nesta aplicação. A trilha de desgaste foi examinada usando o Nanovea Perfilômetro 3D sem contato. Os parâmetros de teste estão resumidos na Tabela 1.
Uma bola suave Al₂O₃ como material de contagem foi usada como exemplo neste estudo. Qualquer material sólido com forma e acabamento superficial diferentes pode ser aplicado utilizando uma fixação personalizada para simular a situação real de aplicação.
Resultados e Discussão
Desgaste de fio de cobre:
A Figura 2 mostra a evolução do COF dos fios de cobre durante os testes de desgaste. O fio A mostra um COF estável de ~0,4 durante o teste de desgaste enquanto o fio B exibe um COF de ~0,35 nas primeiras 100 revoluções e aumenta progressivamente para ~0,4.
A figura 3 compara os rastros de desgaste dos fios de cobre após os testes. O profilômetro 3D sem contato da Nanovea ofereceu uma análise superior da morfologia detalhada dos rastros de desgaste. Ele permite a determinação direta e precisa do volume de rastros de desgaste, fornecendo uma compreensão fundamental do mecanismo de desgaste. A superfície do fio B tem danos significativos nas pistas de desgaste após um teste de desgaste com 600 rotações. A vista 3D do profilômetro mostra a camada tratada da superfície do Fio B removida completamente, o que acelerou substancialmente o processo de desgaste. Isto deixou uma pista de desgaste achatada no Fio B, onde o substrato de cobre é exposto. Isto pode resultar em redução significativa da vida útil do equipamento elétrico onde o Fio B é usado. Em comparação, o Fio A apresenta um desgaste relativamente leve demonstrado por uma pista de desgaste rasa na superfície. A camada tratada na superfície do Fio A não foi removida como a camada no Fio B sob as mesmas condições.
Resistência a arranhões na superfície do fio de cobre:
A figura 4 mostra os rastros de arranhões nos fios após os testes. A camada protetora do arame A apresenta muito boa resistência a arranhões. Ela delamina a uma carga de ~12,6 N. Em comparação, a camada protetora do Fio B falhou a uma carga de ~1,0 N. Tal diferença significativa na resistência a riscos para estes fios contribui para seu desempenho de desgaste, onde o Fio A possui uma resistência ao desgaste substancialmente melhorada. A evolução da força normal, COF e profundidade durante os testes de raspagem mostrados na Fig. 5 fornece mais informações sobre falhas no revestimento durante os testes.
Conclusão
Nesse estudo controlado, apresentamos o tribômetro da Nanovea, que realiza uma avaliação quantitativa da resistência ao desgaste de fios de cobre com tratamento de superfície, e o testador mecânico da Nanovea, que fornece uma avaliação confiável da resistência a arranhões de fios de cobre. O tratamento da superfície do fio desempenha um papel fundamental nas propriedades tribo-mecânicas durante sua vida útil. O tratamento adequado da superfície do fio A melhorou significativamente a resistência ao desgaste e a arranhões, o que é fundamental para o desempenho e a vida útil dos fios elétricos em ambientes difíceis.
O tribômetro da Nanovea oferece testes precisos e repetíveis de desgaste e atrito usando modos rotativos e lineares em conformidade com as normas ISO e ASTM, com módulos opcionais de desgaste em alta temperatura, lubrificação e tribocorrosão disponíveis em um sistema pré-integrado. A linha inigualável da Nanovea é a solução ideal para determinar toda a gama de propriedades tribológicas de revestimentos, filmes e substratos finos ou espessos, macios ou duros.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Tribologia de carga dinâmica
Tribologia de carga dinâmica
Introdução
O desgaste ocorre em praticamente todos os setores industriais e impõe custos de ~0,75% do PIB1. A pesquisa em tribologia é vital para melhorar a eficiência da produção, o desempenho da aplicação, assim como a conservação do material, da energia e do meio ambiente. Vibração e oscilação ocorrem inevitavelmente em uma ampla gama de aplicações tribológicas. A vibração externa excessiva acelera o processo de desgaste e reduz o desempenho de serviço, o que leva a falhas catastróficas nas peças mecânicas.
Os tribômetros convencionais de carga morta aplicam cargas normais por pesos de massa. Tal técnica de carga não apenas limita as opções de carga a uma carga constante, mas também cria intensas vibrações não controladas a altas cargas e velocidades, levando a avaliações de comportamento de desgaste limitadas e inconsistentes. Uma avaliação confiável do efeito da oscilação controlada no comportamento de desgaste dos materiais é desejável para P&D e CQ em diferentes aplicações industriais.
Alta carga inovadora da Nanovea tribômetro tem capacidade de carga máxima de 2.000 N com sistema de controle de carga dinâmico. O avançado sistema pneumático de carregamento de ar comprimido permite aos usuários avaliar o comportamento tribológico de um material sob altas cargas normais com a vantagem de amortecer vibrações indesejadas criadas durante o processo de desgaste. Portanto, a carga é medida diretamente, sem necessidade de molas amortecedoras usadas em projetos mais antigos. Um módulo de carregamento oscilante eletroímã paralelo aplica oscilação bem controlada de amplitude desejada de até 20 N e frequência de até 150 Hz.
O atrito é medido com alta precisão diretamente pela força lateral aplicada ao suporte superior. O deslocamento é monitorado in situ, fornecendo informações sobre a evolução do comportamento de desgaste das amostras de teste. O teste de desgaste sob carga oscilatória controlada também pode ser realizado em ambientes de corrosão, alta temperatura, umidade e lubrificação para simular as condições reais de trabalho para as aplicações tribológicas. Uma alta velocidade integrada perfilômetro sem contato mede automaticamente a morfologia da trilha de desgaste e o volume de desgaste em poucos segundos.
Objetivo da medição
Neste estudo, mostramos a capacidade do Tribômetro de Carga Dinâmica Nanovea T2000 em estudar o comportamento tribológico de diferentes revestimentos e amostras de metal sob condições de carga com oscilação controlada.
Procedimento de teste
O comportamento tribológico, por exemplo, coeficiente de atrito, COF e resistência ao desgaste de um revestimento resistente ao desgaste de 300 µm de espessura foi avaliado e comparado pelo Tribômetro Nanovea T2000 com um tribômetro convencional de carga morta usando um pino na configuração de disco seguindo a ASTM G992.
Amostras separadas revestidas com Cu e TiN contra uma bola de Al₂0₃ de 6 mm sob oscilação controlada foram avaliadas pelo Modo Tribologia de Carga Dinâmica do Tribômetro Nanovea T2000.
Os parâmetros de teste estão resumidos na Tabela 1.
O profilômetro 3D integrado equipado com um sensor de linha varre automaticamente a pista de desgaste após os testes, proporcionando a medição mais precisa do volume de desgaste em segundos.
Resultados e Discussão
Sistema de carga pneumática vs. Sistema de carga morta
O comportamento tribológico de um revestimento resistente ao desgaste usando Nanovea T2000 Tribometer é comparado a um tribômetro convencional de carga morta (DL). A evolução do COF do revestimento é mostrada na Fig. 2. Observamos que o revestimento exibe um valor de COF comparável de ~0,6 durante o teste de desgaste. Entretanto, os 20 perfis de seção transversal em diferentes locais da pista de desgaste na Fig. 3 indicam que o revestimento sofreu um desgaste muito mais severo sob o sistema de carga morta.
Vibrações intensas foram geradas pelo processo de desgaste do sistema de carga morta em alta carga e velocidade. A enorme pressão concentrada na face de contato combinada com uma alta velocidade de deslizamento cria um peso substancial e uma vibração na estrutura que leva a um desgaste acelerado. O tribômetro convencional de carga morta aplica carga usando pesos de massa. Este método é confiável em cargas de contato mais baixas sob condições de desgaste suave; entretanto, sob condições de desgaste agressivo em cargas e velocidades maiores, a vibração significativa faz com que os pesos saltem repetidamente, resultando em uma pista de desgaste desigual causando uma avaliação tribológica não confiável. A taxa de desgaste calculada é de 8,0±2,4 x 10-4 mm3/N m, mostrando uma alta taxa de desgaste e grande desvio padrão.
O tribômetro Nanovea T2000 é projetado com um sistema de carga de controle dinâmico para amortecer as oscilações. Ele aplica a carga normal com ar comprimido que minimiza a vibração indesejada criada durante o processo de desgaste. Além disso, o controle ativo de carga em loop fechado garante que uma carga constante seja aplicada durante todo o teste de desgaste e a ponta segue a mudança de profundidade da pista de desgaste. Um perfil de pista de desgaste significativamente mais consistente é medido como mostrado na Fig. 3a, resultando em uma baixa taxa de desgaste de 3,4±0,5 x 10-4 mm3/N m.
A análise da pista de desgaste mostrada na Fig. 4 confirma o teste de desgaste realizado pelo sistema de carga pneumática de ar comprimido do Nanovea T2000 Tribometer cria uma pista de desgaste mais suave e mais consistente em comparação com o tribômetro convencional de carga morta. Além disso, o tribômetro Nanovea T2000 mede o deslocamento da ponta durante o processo de desgaste, fornecendo uma visão mais detalhada do progresso do comportamento do desgaste in situ.
Oscilação controlada sobre o desgaste da amostra de Cu
O módulo eletroímã de carga oscilante paralelo do Nanovea T2000 Tribômetro permite aos usuários investigar o efeito das oscilações de amplitude e freqüência controladas sobre o comportamento de desgaste dos materiais. O COF das amostras do Cu é registrado in situ, como mostrado na Fig. 6. A amostra Cu exibe um COF constante de ~0,3 durante a primeira medição de 330 voltas, significando a formação de um contato estável na interface e uma pista de desgaste relativamente suave. Enquanto o teste de desgaste continua, a variação do COF indica uma mudança no mecanismo de desgaste. Em comparação, os testes de desgaste sob uma oscilação controlada em amplitude de 5 N a 50 N apresentam um comportamento de desgaste diferente: o COF aumenta prontamente no início do processo de desgaste, e mostra uma variação significativa ao longo do teste de desgaste. Tal comportamento do COF indica que a oscilação imposta na carga normal desempenha um papel no estado de deslizamento instável no contato.
A Fig. 7 compara a morfologia da via de desgaste medida pelo profilômetro óptico integrado sem contato. Pode-se observar que a amostra Cu sob uma amplitude de oscilação controlada de 5 N exibe uma pista de desgaste muito maior com um volume de 1,35 x 109 µm3, em comparação com 5,03 x 108 µm3 sob nenhuma oscilação imposta. A oscilação controlada acelera significativamente a taxa de desgaste por um fator de ~2,7, mostrando o efeito crítico da oscilação sobre o comportamento de desgaste.
Oscilação Controlada no Desgaste do Revestimento TiN
As faixas de COF e de desgaste da amostra de revestimento TiN são mostradas na Fig. 8. O revestimento de TiN apresenta comportamentos de desgaste significativamente diferentes sob oscilação, conforme indicado pela evolução do COF durante os testes. O revestimento de TiN mostra um COF constante de ~0,3 após o período de rodagem no início do teste de desgaste, devido ao contato deslizante estável na interface entre o revestimento de TiN e a esfera Al₂O₃. Entretanto, quando o revestimento de TiN começa a falhar, a esfera Al₂O₃ penetra através do revestimento e desliza contra o substrato de aço fresco embaixo. Uma quantidade significativa de resíduos de revestimento TiN duro é gerada na pista de desgaste ao mesmo tempo, transformando um desgaste estável de deslizamento de dois corpos em desgaste por abrasão de três corpos. Tal mudança das características do par de materiais leva ao aumento das variações na evolução do COF. A oscilação imposta de 5 N e 10 N acelera a falha do revestimento de TiN de ~400 rotações para menos de 100 rotações. Os maiores rastros de desgaste nas amostras de revestimento TiN após os testes de desgaste sob a oscilação controlada estão de acordo com tal mudança no COF.
O avançado sistema de carga pneumática do Nanovea T2000 Tribômetro possui uma vantagem intrínseca como um amortecedor de vibrações naturalmente rápido em comparação com os sistemas tradicionais de carga morta. Esta vantagem tecnológica dos sistemas pneumáticos é verdadeira em comparação com os sistemas controlados por carga que utilizam uma combinação de servomotores e molas para aplicar a carga. A tecnologia garante uma avaliação de desgaste confiável e melhor controlada em cargas elevadas, como demonstrado neste estudo. Além disso, o sistema ativo de carga em circuito fechado pode alterar a carga normal para um valor desejado durante testes de desgaste para simular aplicações da vida real vistas em sistemas de freio.
Em vez de ter influência das condições de vibração descontrolada durante os testes, mostramos o Nanovea T2000 Dynamic-Load Tribometer que permite aos usuários avaliar quantitativamente os comportamentos tribológicos dos materiais sob diferentes condições de oscilação controlada. As vibrações têm um papel significativo no comportamento de desgaste das amostras de metal e revestimento cerâmico.
O módulo de carga oscilante de eletroímã paralelo fornece oscilações controladas com precisão em amplitudes e frequências definidas, permitindo aos usuários simular o processo de desgaste sob condições reais quando as vibrações ambientais são freqüentemente um fator importante. Na presença de oscilações impostas durante o desgaste, tanto o Cu quanto as amostras de revestimento TiN exibem uma taxa de desgaste substancialmente maior. A evolução do coeficiente de atrito e do deslocamento da ponta medida in situ são indicadores importantes para o desempenho do material durante as aplicações tribológicas. O profilômetro 3D integrado sem contato oferece uma ferramenta para medir com precisão o volume de desgaste e analisar a morfologia detalhada das faixas de desgaste em segundos, fornecendo mais informações sobre o entendimento fundamental do mecanismo de desgaste.
O T2000 é equipado com um motor auto-ajustável, de alta qualidade e alto torque com uma velocidade interna de 20 bits e um codificador de posição externa de 16 bits. Ele permite que o tribômetro forneça uma faixa inigualável de velocidades de rotação de 0,01 a 5000 rpm que podem mudar em saltos escalonados ou em taxas contínuas. Ao contrário dos sistemas que utilizam um sensor de torque localizado em baixo, o Tribômetro Nanovea utiliza uma célula de carga de alta precisão localizada em cima para medir com precisão e separadamente as forças de atrito.
Os Tribômetros Nanovea oferecem testes de desgaste e atrito precisos e repetíveis usando os modos rotativo e linear compatíveis com ISO e ASTM (incluindo testes de 4 esferas, arruela de pressão e bloco sobre anel), com módulos opcionais de desgaste em alta temperatura, lubrificação e tribo-corrosão disponíveis em um sistema pré-integrado. A gama inigualável do Nanovea T2000 é uma solução ideal para determinar a gama completa de propriedades tribológicas de revestimentos, filmes e substratos finos ou grossos, macios ou duros.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Análise de textura de casca de laranja para pintura usando Perfilometria 3D
Análise de textura de casca de laranja para pintura usando Perfilometria 3D
Introdução
O tamanho e a frequência das estruturas de superfície sobre os substratos afetam a qualidade dos revestimentos brilhantes. A textura de casca de laranja da tinta, nomeada por sua aparência, pode se desenvolver a partir da influência do substrato e da técnica de aplicação da tinta. Os problemas de textura são geralmente quantificados pela ondulação, comprimento de onda e o efeito visual que eles têm sobre os revestimentos brilhantes. As menores texturas resultam na redução do brilho enquanto as maiores resultam em ondulações visíveis na superfície revestida. A compreensão do desenvolvimento dessas texturas e sua relação com substratos e técnicas é fundamental para o controle de qualidade.
Importância da Perfilometria para Medição de Textura
Diferentemente dos instrumentos 2D tradicionais usados para medir a textura do brilho, a medição 3D sem contato fornece rapidamente uma imagem 3D usada para entender as características da superfície com a capacidade adicional de investigar rapidamente as áreas de interesse. Sem a velocidade e a análise em 3D, um ambiente de controle de qualidade dependeria apenas de informações em 2D que oferecem pouca previsibilidade de toda a superfície. A compreensão das texturas em 3D permite a melhor seleção de medidas de processamento e controle. A garantia do controle de qualidade de tais parâmetros depende muito de uma inspeção quantificável, reproduzível e confiável. Nanovea 3D sem contato Perfilômetros utilizam a tecnologia confocal cromática para ter a capacidade exclusiva de medir os ângulos acentuados encontrados durante a medição rápida. Os Profilômetros Nanovea são bem-sucedidos onde outras técnicas não conseguem fornecer dados confiáveis devido ao contato da sonda, à variação da superfície, ao ângulo ou à refletividade.
Objetivo da medição
Nesta aplicação, a Nanovea HS2000L mede a textura de casca de laranja de uma tinta brilhante. Há infinitos parâmetros de superfície calculados automaticamente a partir da varredura da superfície 3D. Aqui analisamos uma superfície 3D escaneada quantificando as características da textura de casca de laranja da tinta.
O Nanovea HS2000L quantificou os parâmetros de isotropia e altura da tinta de casca de laranja. A textura de casca de laranja quantificou a direção do padrão aleatório com a isotropia 94,4%. Os parâmetros de altura quantificam a textura com uma diferença de altura de 24,84µm.
A curva da relação de rolamento na Figura 4 é uma representação gráfica da distribuição de profundidade. Esta é uma característica interativa dentro do software que permite ao usuário visualizar as distribuições e porcentagens em profundidades variáveis. Um perfil extraído na Figura 5 fornece valores úteis de rugosidade para a textura de casca de laranja. A extração de pico acima de um limiar de 144 mícrons mostra a textura de casca de laranja. Estes parâmetros são facilmente ajustados a outras áreas ou parâmetros de interesse.
Conclusão
Nesta aplicação, o Perfilômetro Nanovea HS2000L 3D Sem-Contato caracteriza com precisão tanto a topografia quanto os detalhes nanométricos da textura da casca de laranja da tinta em um revestimento brilhante. As áreas de interesse das medidas de superfície 3D são rapidamente identificadas e analisadas com muitas medidas úteis (Dimensão, Textura de acabamento rugoso, Topografia de forma, Planaridade de deformação plana, Área de volume, Passo-Altura, etc.). As seções transversais 2D escolhidas rapidamente fornecem um conjunto completo de recursos de medição de superfície sobre a textura de brilho. Áreas especiais de interesse podem ser analisadas posteriormente com um módulo AFM integrado. A velocidade do Perfilômetro Nanovea 3D varia de <1 mm/s a 500 mm/s para adequação em aplicações de pesquisa para as necessidades de inspeção de alta velocidade. Os Perfilômetros Nanovea 3D têm uma ampla gama de configurações para se adequar à sua aplicação.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Análise de superfície 3D de um centavo com Perfilometria sem contato
Importância da Profilometria Sem Contato para Moedas
A moeda é altamente valorizada na sociedade moderna porque é trocada por bens e serviços. Moedas e notas de papel circulam nas mãos de muitas pessoas. A transferência constante de moeda física cria deformação superficial. 3D da Nanovea Profilômetro varre a topografia de moedas cunhadas em anos diferentes para investigar diferenças de superfície.
As características das moedas são facilmente reconhecíveis pelo público em geral, uma vez que são objetos comuns. Um centavo é ideal para apresentar a força do software avançado de análise de superfície da Nanovea: Mountains 3D. Os dados de superfície coletados com nosso perfilômetro 3D permitem análises de alto nível em geometria complexa com subtração de superfície e extração de contorno 2D. A subtração de superfície com máscara, carimbo ou molde controlado compara a qualidade dos processos de fabricação, enquanto a extração de contorno identifica tolerâncias com análise dimensional. O software 3D Profilometer e Mountains 3D da Nanovea investiga a topografia submicrométrica de objetos aparentemente simples, como moedas de um centavo.
Objetivo da medição
A superfície superior completa de cinco centavos foi escaneada usando o sensor de linha de alta velocidade da Nanovea. O raio interno e externo de cada centavo foi medido usando o Software de Análise Avançada Mountains. Uma extração de cada centavo de superfície em uma área de interesse com subtração direta da superfície quantificou a deformação da superfície.
Resultados e Discussão
Superfície 3D
O profilômetro Nanovea HS2000 levou apenas 24 segundos para digitalizar 4 milhões de pontos em uma área de 20mm x 20mm com um passo de 10um x 10um para adquirir a superfície de um centavo. Abaixo está um mapa de altura e uma visualização 3D da varredura. A visualização 3D mostra a capacidade do sensor de alta velocidade de captar pequenos detalhes impenetráveis ao olho. Muitos pequenos arranhões são visíveis em toda a superfície do centavo. Textura e rugosidade da moeda vista na visualização 3D são investigadas.
Os contornos do centavo foram extraídos e a análise dimensional obteve diâmetros internos e externos da característica da borda. O raio externo foi em média 9.500 mm ± 0.024 enquanto o raio interno foi em média 8.960 mm ± 0.032. Análises dimensionais adicionais As montanhas 3D podem fazer em fontes de dados 2D e 3D são medições de distância, altura dos degraus, planaridade e cálculos de ângulo.
A Figura 5 mostra a área de interesse para a análise da subtração de superfície. O centavo de 2007 foi usado como superfície de referência para os quatro centavos mais antigos. A subtração de superfície da superfície de 2007 mostra diferenças entre centavos com furos/picos. A diferença de volume total da superfície é obtida pela adição de volumes dos furos/picos. O erro RMS refere-se ao quão próximas as superfícies de centavos estão umas das outras.
Conclusão
O HS2000L de Alta Velocidade da Nanovea digitalizou cinco centavos cunhados em anos diferentes. O software Mountains 3D comparou as superfícies de cada moeda usando extração de contorno, análise dimensional e subtração de superfície. A análise define claramente o raio interno e externo entre os centavos enquanto compara diretamente as diferenças de características da superfície. Com a capacidade do profilômetro 3D da Nanovea de medir qualquer superfície com resolução em nível nanométrico, combinada com a capacidade de análise 3D das Montanhas, as possíveis aplicações de Pesquisa e Controle de Qualidade são infinitas.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Acabamento Dimensional e de Superfície de Tubos Poliméricos
Importância da Análise Dimensional e de Superfície de Tubos Poliméricos
Tubos feitos de material polimérico são comumente usados em muitas indústrias, desde automotiva, médica, elétrica e muitas outras categorias. Neste estudo foram estudados cateteres médicos confeccionados com diferentes materiais poliméricos utilizando o Nanovea Perfilômetro 3D sem contato para medir a rugosidade da superfície, a morfologia e as dimensões. A rugosidade superficial é crucial para os cateteres, pois muitos problemas com cateteres, incluindo infecção, trauma físico e inflamação, podem ser ligados à superfície do cateter. As propriedades mecânicas, como o coeficiente de atrito, também podem ser estudadas observando-se as propriedades da superfície. Estes dados quantificáveis podem ser obtidos para garantir que o cateter possa ser utilizado para aplicações médicas.
Em comparação com a microscopia óptica e a microscopia eletrônica, a Profilometria 3D sem contato utilizando cromatografia axial é altamente preferível para caracterizar superfícies de cateteres devido a sua capacidade de medir ângulos/curvatura, capacidade de medir superfícies de materiais apesar da transparência ou refletividade, preparação mínima da amostra e natureza não invasiva. Ao contrário da microscopia óptica convencional, a altura da superfície pode ser obtida e utilizada para análise computacional; por exemplo, encontrar dimensões e remover forma para encontrar rugosidade da superfície. Ter pouco preparo de amostra, em contraste com a microscopia eletrônica, e a natureza sem contato também permite uma rápida coleta de dados sem temer contaminação e erro no preparo da amostra.
Objetivo da medição
Nesta aplicação, o Nanovea 3D Non-Contact Profilometer é utilizado para escanear a superfície de dois cateteres: um feito de TPE (Elastômero Termoplástico) e o outro de PVC (Cloreto de Polivinila). A morfologia, dimensão radial e parâmetros de altura dos dois cateteres serão obtidos e comparados.
Resultados e Discussão
Superfície 3D
Apesar da curvatura dos tubos poliméricos, o Nanovea 3D Non-contact profilometer pode escanear a superfície dos cateteres. A partir do escaneamento feito, uma imagem 3D pode ser obtida para uma inspeção visual rápida e direta da superfície.
A dimensão radial externa foi obtida extraindo um perfil da varredura original e ajustando um arco ao perfil. Isto mostra a capacidade do profilômetro 3D sem contato na realização de análise dimensional rápida para aplicações de controle de qualidade. Também podem ser obtidos facilmente perfis múltiplos ao longo do comprimento do cateter.
A dimensão radial externa foi obtida extraindo um perfil da varredura original e ajustando um arco ao perfil. Isto mostra a capacidade do profilômetro 3D sem contato na realização de análise dimensional rápida para aplicações de controle de qualidade. Também podem ser obtidos facilmente perfis múltiplos ao longo do comprimento do cateter.
Conclusão
Nesta aplicação, mostramos como o Nanovea 3D Non-contact profilometer pode ser usado para caracterizar os tubos poliméricos. Especificamente, foram obtidas metrologia de superfície, dimensões radiais e rugosidade de superfície para cateteres médicos. O raio externo do cateter TPE foi encontrado em 2,40mm enquanto o cateter de PVC era de 1,27mm. A superfície do cateter de TPE foi considerada mais áspera do que a do cateter de PVC. O Sa de TPE era de 0,9740µm comparado com 0,1791µm de PVC. Enquanto cateteres médicos foram usados para esta aplicação, a Profilometria 3D sem contato também pode ser aplicada em uma grande variedade de superfícies. Os dados e cálculos obtidos não estão limitados ao que é mostrado.
AGORA, VAMOS FALAR SOBRE SUA APLICAÇÃO
Categorias
- Notas de Aplicação
- Tribologia Block-on-Ring
- Tribologia da Corrosão
- Teste de Fricção | Coeficiente de Fricção
- Testes Mecânicos de Alta Temperatura
- Tribologia de Alta Temperatura
- Tribologia em Umidade e Gases
- Testes Mecânico de Umidade
- Indentação | Deslizamento e Relaxamento
- Indentação | Resistência à Fratura
- Indentação | Dureza e Elástico
- Indentação | Perda e Armazenamento
- Indentação | Stress vs Deformação
- Indentação | Resistência ao Rendimento e Fadiga
- Testes de Laboratório
- Tribologia Linear
- Teste Mecânico em Líquidos
- Tribologia Líquida
- Tribologia de Baixa Temperatura
- Testes Mecânicos
- Comunicado à imprensa
- Perfilometria | Planicidade e Distorções
- Perfilometria | Geometria e Forma
- Perfilometria | Rugosidade e Acabamento
- Perfilometria | Altura e Espessura dos degraus
- Perfilometria | Textura e Grão
- Perfilometria | Volume e Área
- Teste de Perfilometria
- Tribologia Ring-on-Ring
- Tribologia Rotacional
- Teste de Arranhões | Falha Adesiva
- Teste de Arranhões | Falha Coesiva
- Teste de Arranhão | Desgaste Multi-Pass
- Teste de Arranhão | Dureza de Arranhão
- Tribologia de Teste de Arranhões
- Feiras e Eventos
- Testes de Tribologia
- Sem Categoria
Arquivos
- setembro 2023
- agosto 2023
- junho 2023
- maio 2023
- julho 2022
- maio 2022
- abril 2022
- janeiro 2022
- dezembro 2021
- novembro 2021
- outubro 2021
- setembro 2021
- agosto 2021
- julho 2021
- junho 2021
- maio 2021
- março 2021
- fevereiro 2021
- dezembro 2020
- novembro 2020
- outubro 2020
- setembro 2020
- julho 2020
- maio 2020
- abril 2020
- março 2020
- fevereiro 2020
- janeiro 2020
- novembro 2019
- outubro 2019
- setembro 2019
- agosto 2019
- julho 2019
- junho 2019
- maio 2019
- abril 2019
- março 2019
- janeiro 2019
- dezembro 2018
- novembro 2018
- outubro 2018
- setembro 2018
- julho 2018
- junho 2018
- maio 2018
- abril 2018
- março 2018
- fevereiro 2018
- novembro 2017
- outubro 2017
- setembro 2017
- agosto 2017
- junho 2017
- maio 2017
- abril 2017
- março 2017
- fevereiro 2017
- janeiro 2017
- novembro 2016
- outubro 2016
- agosto 2016
- julho 2016
- junho 2016
- maio 2016
- abril 2016
- março 2016
- fevereiro 2016
- janeiro 2016
- dezembro 2015
- novembro 2015
- outubro 2015
- setembro 2015
- agosto 2015
- julho 2015
- junho 2015
- maio 2015
- abril 2015
- março 2015
- fevereiro 2015
- janeiro 2015
- novembro 2014
- outubro 2014
- setembro 2014
- agosto 2014
- julho 2014
- junho 2014
- maio 2014
- abril 2014
- março 2014
- fevereiro 2014
- janeiro 2014
- dezembro 2013
- novembro 2013
- outubro 2013
- setembro 2013
- agosto 2013
- julho 2013
- junho 2013
- maio 2013
- abril 2013
- março 2013
- fevereiro 2013
- janeiro 2013
- dezembro 2012
- novembro 2012
- outubro 2012
- setembro 2012
- agosto 2012
- julho 2012
- junho 2012
- maio 2012
- abril 2012
- março 2012
- fevereiro 2012
- janeiro 2012
- dezembro 2011
- novembro 2011
- outubro 2011
- setembro 2011
- agosto 2011
- julho 2011
- junho 2011
- maio 2011
- novembro 2010
- janeiro 2010
- abril 2009
- março 2009
- janeiro 2009
- dezembro 2008
- outubro 2008
- agosto 2007
- julho 2006
- março 2006
- janeiro 2005
- abril 2004