미국/글로벌: +1-949-461-9292
EUROPE: +39-011-3052-794
문의하기

카테고리: 프로파일 측정 | 거칠기 및 마감

 

사포 거칠기 프로파일 미터

샌드페이퍼: 거칠기 및 입자 지름 분석

샌드페이퍼: 거칠기 및 입자 지름 분석

자세히 알아보기

샌드페이퍼

거칠기 및 입자 직경 분석

작성자

프랭크 리우

소개

사포는 연마제로 사용되는 시중에서 흔히 볼 수 있는 제품입니다. 사포의 가장 일반적인 용도는 코팅을 제거하거나 연마 특성으로 표면을 닦는 것입니다. 이러한 연마 특성은 그릿으로 분류되며, 각 그릿은 얼마나 매끄러운지와 관련이 있습니다.
거친 표면 마감을 제공합니다. 원하는 연마 특성을 얻기 위해 사포 제조업체는 연마 입자가 특정 크기이고 편차가 거의 없는지 확인해야 합니다. 사포의 품질을 정량화하기 위해 나노베아의 3D 비접촉식 프로파일 미터 를 사용하여 샘플 영역의 산술 평균(Sa) 높이 매개변수와 평균 입자 지름을 구할 수 있습니다.

3D 비접촉 광학의 중요성 사포용 프로파일러

사포를 사용할 때 연마 입자와 샌딩되는 표면 사이의 상호작용이 균일해야 일관된 표면 마감을 얻을 수 있습니다. 이를 정량화하기 위해 나노베아의 3D 비접촉 광학 프로파일러로 사포의 표면을 관찰하여 입자 크기, 높이, 간격의 편차를 확인할 수 있습니다.

측정 목표

이 연구에서는 다섯 가지 샌드페이퍼 그릿(120,
180, 320, 800 및 2000)을 사용하여 스캔합니다.
나노베아 ST400 3D 비접촉식 광학 프로파일러.
스캔과 파티클에서 Sa를 추출합니다.
크기는 모티프 분석을 수행하여 다음과 같이 계산됩니다.
등가 직경 찾기

나노베아

ST400

결과 및 토론

사포는 예상대로 그릿이 증가함에 따라 표면 거칠기(Sa)와 입자 크기가 감소합니다. Sa는 42.37μm에서 3.639μm 범위였습니다. 입자 크기는 127 ± 48.7에서 21.27 ± 8.35 범위입니다. 입자가 크고 높이 변화가 크면 높이 변화가 적은 작은 입자와는 반대로 표면에 더 강력한 연마 작용을 합니다.
주어진 높이 매개변수의 모든 정의는 페이지.A.1에 나열되어 있습니다.

표 1: 사포 입자와 높이 매개변수 간의 비교.

표 2: 샌드페이퍼 입자와 입자 지름의 비교.

샌드페이퍼의 2D 및 3D 보기 

아래는 사포 샘플의 가색 및 3D 보기입니다.
0.8mm의 가우시안 필터를 사용하여 형태나 물결 모양을 제거했습니다.

모티프 분석

표면의 입자를 정확하게 찾기 위해 높이 스케일 임계값을 재정의하여 사포의 상층만 표시하도록 했습니다. 그런 다음 모티프 분석을 수행하여 피크를 감지했습니다.

결론

나노베아의 3D 비접촉 광학 프로파일러는 마이크로 및 나노 특징이 있는 표면을 정밀하게 스캔할 수 있기 때문에 다양한 사포 입자의 표면 특성을 검사하는 데 사용되었습니다.

3D 스캔을 분석하기 위해 고급 소프트웨어를 사용하여 각 사포 샘플에서 표면 높이 파라미터와 등가 입자 직경을 얻었습니다. 입자 크기가 증가함에 따라 표면 거칠기(Sa)와 입자 크기는 예상대로 감소하는 것으로 관찰되었습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

스티로폼 표면 경계 측정 프로파일로메트리

표면 경계 측정

3D 프로파일 측정을 이용한 표면 경계 측정

자세히 알아보기

표면 경계 측정

3D 프로파일 측정 사용

작성자

크레이그 라이징

소개

표면 특징, 패턴, 모양 등의 인터페이스를 방향에 대해 평가하는 연구에서는 전체 측정 프로파일에서 관심 영역을 빠르게 식별하는 것이 유용합니다. 표면을 중요한 영역으로 세분화하면 경계, 피크, 구덩이, 면적, 부피 등을 빠르게 평가하여 연구 중인 전체 표면 프로파일에서 기능적 역할을 이해할 수 있습니다. 예를 들어 금속의 입자 경계 이미징과 같이 분석에서 중요한 것은 많은 구조의 인터페이스와 전체적인 방향입니다. 각 관심 영역을 이해함으로써 전체 영역 내의 결함 또는 이상을 식별할 수 있습니다. 입자 경계 이미징은 일반적으로 프로파일로미터 기능을 능가하는 범위에서 연구되며 2D 이미지 분석에 불과하지만, 3D 표면 측정의 장점과 함께 더 큰 규모로 표시되는 개념을 설명하는 데 유용한 참고 자료가 됩니다.

표면 분리 연구를 위한 3D 비접촉식 프로파일로미터의 중요성

터치 프로브나 간섭계와 같은 다른 기술과 달리 3D 비접촉 프로파일로미터, 축 색수차를 사용하여 거의 모든 표면을 측정할 수 있으며, 개방형 스테이징으로 인해 샘플 크기가 크게 달라질 수 있으며 샘플 준비가 필요하지 않습니다. 나노부터 매크로까지의 범위는 샘플 반사나 흡수의 영향이 전혀 없는 표면 프로필 측정 중에 얻어지며, 높은 표면 각도를 측정하는 고급 기능을 갖추고 있으며 결과를 소프트웨어로 조작할 필요가 없습니다. 투명, 불투명, 반사, 확산, 광택, 거친 등 모든 재료를 쉽게 측정합니다. 비접촉 프로파일로미터 기술은 표면 경계 분석이 필요할 때 표면 연구를 극대화할 수 있는 이상적이고 광범위하며 사용자 친화적인 기능을 제공합니다. 2D 및 3D 기능 결합의 이점도 함께 제공됩니다.

측정 목표

이 애플리케이션에서는 나노베아 ST400 프로파일로미터를 사용하여 스티로폼의 표면적을 측정합니다. 나노베아 ST400을 사용하여 동시에 획득한 지형과 함께 반사된 강도 파일을 결합하여 경계를 설정했습니다. 그런 다음 이 데이터를 사용하여 각 스티로폼 "입자"의 다양한 모양과 크기 정보를 계산했습니다.

나노베아

ST400

결과 및 토론: 2D 표면 경계 측정

지형 이미지(왼쪽 아래)를 반사된 강도 이미지(오른쪽 아래)로 마스킹하여 입자 경계를 명확하게 정의합니다. 필터를 적용하여 직경 565µm 이하의 모든 입자는 무시되었습니다.

총 곡물 수: 167
곡물이 차지하는 총 투영 면적: 166.917mm²(64.5962 %)
경계가 차지하는 총 예상 면적: (35.4038 %)
입자의 밀도: 0.646285 입자/mm2

면적 = 0.999500 mm² +/- 0.491846 mm²
둘레 = 9114.15 µm +/- 4570.38 µm
등가 직경 = 1098.61 µm +/- 256.235 µm
평균 직경 = 945.373 µm +/- 248.344 µm
최소 직경 = 675.898 µm +/- 246.850 µm
최대 직경 = 1312.43 µm +/- 295.258 µm

결과 및 토론: 3D 표면 경계 측정

획득한 3D 지형 데이터를 사용하여 각 입자의 부피, 높이, 피크, 종횡비 및 일반 형상 정보를 분석할 수 있습니다. 총 3D 면적: 2.525mm3

결론

이 애플리케이션에서는 나노베아 3D 비접촉식 프로파일로미터가 스티로폼 표면을 정밀하게 특성화할 수 있는 방법을 보여주었습니다. 관심 있는 전체 표면 또는 개별 입자(피크 또는 피트)에 대한 통계 정보를 얻을 수 있습니다. 이 예에서는 사용자가 정의한 크기보다 큰 모든 입자를 사용하여 면적, 둘레, 지름 및 높이를 표시했습니다. 여기에 표시된 기능은 바이오 의료에서 미세 가공 응용 분야에 이르기까지 다양한 자연 표면 및 사전 가공된 표면의 연구 및 품질 관리에 중요할 수 있습니다. 

이제 애플리케이션에 대해 이야기해 보겠습니다.

나노베아의 프로파일로미터를 이용한 윤곽 측정

고무 트레드 윤곽 측정

고무 트레드 윤곽 측정

자세히 알아보기

 

 

 

 

 

 

 

 

 

 

 

 

 

고무 트레드 윤곽 측정

3D 광학 프로파일러 사용

고무 트레드 윤곽 측정 - 나노베아 프로파일러

작성자

안드레아 헤르만

소개

모든 재료와 마찬가지로 고무의 마찰 계수는 다음과 관련이 있습니다. 부분적으로는 표면 거칠기 때문입니다. 차량용 타이어는 노면과의 마찰력이 매우 중요합니다. 표면 거칠기와 타이어 트레드가 모두 중요한 역할을 합니다. 이 연구에서는 고무 표면과 트레드의 거칠기와 치수를 분석합니다.

* 샘플

중요성

3D 비접촉 프로파일 측정의

고무 연구용

터치 프로브나 간섭계와 같은 다른 기술과 달리 NANOVEA의 3D 비접촉식 광학 프로파일러 축 색수차를 사용하여 거의 모든 표면을 측정합니다. 

프로파일러 시스템의 개방형 스테이징은 다양한 시료 크기를 허용하며 시료 전처리가 전혀 필요하지 않습니다. 시료 반사율이나 흡수의 영향을 전혀 받지 않고 한 번의 스캔으로 나노부터 매크로 범위의 특징을 검출할 수 있습니다. 또한 이 프로파일러는 소프트웨어로 결과를 조작할 필요 없이 높은 표면 각도를 측정할 수 있는 고급 기능을 갖추고 있습니다.

투명, 불투명, 반사, 확산, 광택, 거칠기 등 모든 재료를 쉽게 측정할 수 있습니다. 나노베아 3D 비접촉 프로파일러의 측정 기술은 2D 및 3D 기능 결합의 장점과 함께 표면 연구를 극대화할 수 있는 이상적이고 광범위하며 사용자 친화적인 기능을 제공합니다.

측정 목표

이 애플리케이션에서는 나노베아 ST400을 소개합니다, 3D 비접촉식 광학 프로파일러 측정 고무 타이어의 표면과 트레드.

다음을 나타낼 수 있을 만큼 충분히 큰 샘플 표면적 전체 타이어 표면이 무작위로 선택되었습니다. 이 연구를 위해. 

고무의 특성을 정량화하기 위해 다음을 사용했습니다. 나노베아 울트라 3D 분석 소프트웨어로 윤곽선 치수, 깊이를 측정합니다, 표면의 거칠기 및 개발 면적입니다.

나노베아

ST400

분석: 타이어 트레드

트레드의 3D 보기 및 가색 보기는 3D 표면 디자인 매핑의 가치를 보여줍니다. 이 도구는 트레드의 크기와 모양을 다양한 각도에서 직접 관찰할 수 있는 간단한 도구를 제공합니다. 고급 윤곽 분석과 스텝 높이 분석은 샘플 모양과 디자인의 정확한 치수를 측정하는 데 매우 강력한 도구입니다.

고급 윤곽 분석

스텝 높이 분석

분석: 고무 표면

고무 표면은 내장된 소프트웨어 도구를 사용하여 다음 그림과 같이 다양한 방법으로 정량화할 수 있습니다. 표면 거칠기는 2.688 μm이고, 개발 면적 대 투영 면적은 9.410 mm² 대 8.997 mm²임을 확인할 수 있습니다. 이 정보를 통해 표면 마감과 다양한 고무 배합 또는 다양한 표면 마모 정도를 가진 고무의 견인력 사이의 관계를 조사할 수 있습니다.

결론

이 애플리케이션에서는 나노베아(NANOVEA) 3D 비접촉식 광학 프로파일러는 고무의 표면 거칠기와 트레드 치수를 정밀하게 특성화할 수 있습니다.

데이터에 따르면 표면 거칠기는 2.69µm, 개발 면적은 9.41mm², 투영 면적은 9mm²입니다. 고무 트레드의 다양한 치수와 반경은 다음과 같습니다. 도 측정됩니다.

이 연구에 제시된 정보는 트레드 디자인, 배합 또는 마모 정도가 다른 고무 타이어의 성능을 비교하는 데 사용할 수 있습니다. 여기에 표시된 데이터는 전체 데이터의 일부일 뿐입니다. Ultra 3D 분석 소프트웨어에서 계산할 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 광학 프로파일러를 이용한 어류 비늘 표면 분석

3D 광학 프로파일러를 이용한 어류 비늘 표면 분석

자세히 알아보기

어류 비늘 표면 분석

3D 광학 프로파일러 사용

물고기 비늘 프로파일 미터

작성자

안드레아 노비츠키

소개

NANOVEA를 사용하여 물고기 비늘의 형태, 패턴 및 기타 특징을 연구합니다. 3D 비접촉식 광학 프로파일러. 매우 작고 높은 각도의 홈과 함께 이 생물학적 샘플의 섬세한 특성은 프로파일러의 비접촉 기술의 중요성을 강조합니다. 비늘의 홈을 원형이라고 하며 연구하여 물고기의 나이를 추정할 수 있으며 나무의 나이테와 유사하게 성장 속도가 다른 기간을 구별할 수도 있습니다. 이는 남획을 방지하기 위한 야생 어류 개체군 관리에 매우 중요한 정보입니다.

생물학적 연구를 위한 3D 비접촉식 프로파일 측정의 중요성

터치 프로브나 간섭 측정과 같은 다른 기술과 달리 축 색도법을 사용하는 3D 비접촉식 광학 프로파일러는 거의 모든 표면을 측정할 수 있습니다. 개방형 스테이징으로 인해 샘플 크기는 매우 다양할 수 있으며 샘플 준비가 필요하지 않습니다. 시료 반사율이나 흡수의 영향을 전혀 받지 않고 표면 프로파일 측정 중에 나노에서 매크로 범위의 특징을 얻을 수 있습니다. 이 기기는 결과를 소프트웨어로 조작하지 않고도 높은 표면 각도를 측정할 수 있는 고급 기능을 제공합니다. 투명, 불투명, 반사, 확산, 광택 또는 거칠기 등 모든 재료를 쉽게 측정할 수 있습니다. 이 기술은 2D 및 3D 기능 결합의 이점과 함께 표면 연구를 극대화할 수 있는 이상적이고 광범위하며 사용자 친화적인 기능을 제공합니다.

측정 목표

이 애플리케이션에서는 고속 센서가 장착된 3D 비접촉식 프로파일러인 나노베아 ST400을 통해 저울 표면을 종합적으로 분석할 수 있습니다.

이 기기는 전체 샘플을 스캔하는 데 사용되었으며 중앙 영역의 고해상도 스캔도 함께 수행되었습니다. 비교를 위해 저울의 외부 및 내부 표면 거칠기도 함께 측정했습니다.

나노베아

ST400

외부 스케일의 3D 및 2D 표면 특성화

외부 스케일의 3D 보기 및 가색 보기는 지문이나 나무의 나이테와 유사한 복잡한 구조를 보여줍니다. 이를 통해 사용자는 다양한 각도에서 스케일의 표면 특성을 직접 관찰할 수 있는 간단한 도구를 사용할 수 있습니다. 외부 저울의 다양한 측정값과 함께 저울의 바깥쪽과 안쪽을 비교하여 표시합니다.

어류 비늘 스캔 3D 뷰 프로파일로미터
어류 비늘 스캔 볼륨 3D 프로파일로미터
물고기 비늘 스캔 스텝 높이 3D 광학 프로파일러

표면 거칠기 비교

어류 비늘 프로파일로미터 3D 스캐닝

결론

이 애플리케이션에서는 나노베아 3D 비접촉 광학 프로파일러가 다양한 방식으로 어류 비늘의 특성을 분석하는 방법을 보여주었습니다. 

비늘의 외부 표면과 내부 표면은 각각 15.92μm와 1.56μm의 거칠기 값으로 표면 거칠기만으로 쉽게 구분할 수 있습니다. 또한 비늘 외부 표면의 홈, 즉 서큘리를 분석하여 물고기 비늘에 대한 정확하고 정밀한 정보를 얻을 수 있습니다. 중심 초점으로부터 서큘리 띠의 거리를 측정한 결과, 서큘리의 높이는 평균 약 58μm인 것으로 나타났습니다. 

여기에 표시된 데이터는 분석 소프트웨어에서 사용할 수 있는 계산의 일부에 불과합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

제약 정제 표면 거칠기 검사

제약 정제

3D 프로파일 미터를 사용한 거칠기 검사

작성자:

조슬린 에스파르자

소개

의약품 정제는 오늘날 가장 많이 사용되는 약제입니다. 각 정제는 활성 물질(약리 효과를 내는 화학 물질)과 비활성 물질(붕해제, 결합제, 윤활제, 희석제 - 보통 분말 형태)의 조합으로 구성됩니다. 그런 다음 활성 물질과 비활성 물질을 압축하거나 성형하여 고체로 만듭니다. 그런 다음 제조업체 사양에 따라 정제를 코팅하거나 비코팅합니다.

태블릿 코팅이 효과적이려면 태블릿에 엠보싱된 로고나 문자의 미세한 윤곽을 따라가야 하고, 태블릿을 취급해도 견딜 수 있을 만큼 안정적이고 견고해야 하며, 코팅 과정에서 태블릿이 서로 달라붙지 않아야 합니다. 현재 태블릿에는 일반적으로 안료 및 가소제와 같은 물질이 포함된 다당류 및 폴리머 기반 코팅이 사용됩니다. 가장 일반적인 두 가지 유형의 정제 코팅은 필름 코팅과 설탕 코팅입니다. 슈가 코팅에 비해 필름 코팅은 부피가 작고 내구성이 뛰어나며 준비 및 도포에 시간이 덜 걸립니다. 그러나 필름 코팅은 태블릿의 외관을 감추기가 더 어렵습니다.

정제 코팅은 습기를 보호하고, 성분의 맛을 가리고, 정제를 삼키기 쉽게 만드는 데 필수적입니다. 더 중요한 것은 정제 코팅이 약물이 방출되는 위치와 속도를 제어한다는 점입니다.

측정 목표

이 애플리케이션에서는 나노베아 광학 프로파일러 및 고급 마운틴 소프트웨어를 사용하여 다양한 유명 브랜드의 압착 알약(코팅된 알약 1개와 코팅되지 않은 알약 2개)의 지형을 측정하고 정량화하여 표면 거칠기를 비교합니다.

애드빌(코팅)은 보호 코팅이 되어 있기 때문에 표면 거칠기가 가장 낮을 것으로 가정합니다.

나노베아

HS2000

테스트 조건

나노베아 HS2000으로 유명 브랜드 제약사의 프레스 정제 세 배치를 스캔했습니다.
고속 라인 센서를 사용하여 ISO 25178에 따라 다양한 표면 거칠기 매개 변수를 측정합니다.

스캔 영역

2 x 2mm

측면 스캔 해상도

5 x 5 μm

스캔 시간

4초

샘플

결과 및 토론

태블릿을 스캔한 후 고급 산악 분석 소프트웨어로 표면 거칠기 연구를 수행하여 각 태블릿의 표면 평균, 평균 제곱근, 최대 높이를 계산했습니다.

계산된 값은 애드빌이 성분을 감싸고 있는 보호 코팅으로 인해 표면 거칠기가 더 낮다는 가정을 뒷받침합니다. 타이레놀은 측정된 세 가지 정제 중 표면 거칠기가 가장 높은 것으로 나타났습니다.

각 태블릿의 표면 지형에 대한 2D 및 3D 높이 맵을 생성하여 측정된 높이 분포를 표시했습니다. 5개의 태블릿 중 하나를 선택하여 각 브랜드의 높이 지도를 표현했습니다. 이러한 높이 지도는 구덩이나 봉우리와 같은 외곽의 표면 특징을 시각적으로 감지하는 데 유용한 도구입니다.

결론

이 연구에서는 세 가지 유명 브랜드의 압축 알약의 표면 거칠기를 분석하고 비교했습니다: 애드빌, 타이레놀, 엑세드린. 애드빌의 평균 표면 거칠기가 가장 낮은 것으로 나타났습니다. 이는 약을 감싸고 있는 주황색 코팅이 존재하기 때문일 수 있습니다. 반면, 엑세드린과 타이레놀은 코팅이 없지만 표면 거칠기는 여전히 서로 차이가 있었습니다. 타이레놀은 연구 대상 정제 중 평균 표면 거칠기가 가장 높은 것으로 나타났습니다.

사용 나노베아 고속 라인 센서가 장착된 HS2000을 사용하여 1분 이내에 5개의 정제를 측정할 수 있었습니다. 이는 오늘날 생산 공정에서 수백 개의 알약에 대한 품질 관리 테스트에 유용하게 사용될 수 있습니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

치과용 나사-치수-측정-3D-프로파일로미터 사용

치과용 공구: 치수 및 표면 거칠기 분석



소개

 

정확한 치수와 최적의 표면 거칠기를 갖는 것은 치과용 나사의 기능에 매우 중요합니다. 많은 치과용 나사 치수에는 반경, 각도, 거리, 계단 높이 등 높은 정밀도가 필요합니다. 미끄러지는 마찰을 최소화하기 위해 인체 내부에 삽입되는 의료 도구나 부품의 경우 국부적인 표면 거칠기를 이해하는 것도 매우 중요합니다.

 

 

차원 연구를 위한 비접촉 프로파일 측정

 

나노베아 3D 비접촉 프로파일러 유채색광 기반 기술을 사용하여 투명, 불투명, 반사, 확산, 광택 또는 거친 재료 표면을 측정합니다. 터치 프로브 기술과 달리 비접촉 기술은 좁은 영역 내부를 측정할 수 있으며 팁이 부드러운 플라스틱 재료를 눌렀을 때 발생하는 변형으로 인해 본질적인 오류가 추가되지 않습니다. 또한 색광 기반 기술은 초점 변형 기술에 비해 뛰어난 측면 및 높이 정확도를 제공합니다. Nanovea Profilers는 스티칭 없이 직접 큰 표면을 스캔하고 몇 초 안에 부품 길이의 프로파일을 생성할 수 있습니다. 결과를 조작하는 복잡한 알고리즘 없이 표면을 측정하는 프로파일러의 기능으로 인해 나노부터 매크로 범위의 표면 특징과 높은 표면 각도를 측정할 수 있습니다.

 

 

측정 목표

 

이 응용 분야에서는 Nanovea ST400 광학 프로파일러를 사용하여 단일 측정으로 평면 및 나사산 형상을 따라 치과용 나사를 측정했습니다. 평평한 면적으로부터 표면 거칠기를 계산하고 나사산 형상의 다양한 치수를 결정했습니다.

 

치과용 나사 품질 관리

치과용 나사 샘플을 분석한 결과 나노베아 광학 프로파일러.

 

치과용 나사 샘플이 분석되었습니다.

 

결과

 

3D 표면

치과용 나사의 3D 보기 및 가색상 보기에는 나사산이 양쪽에서 시작되는 평평한 영역이 표시됩니다. 이는 사용자에게 다양한 각도에서 나사의 형태를 직접 관찰할 수 있는 간단한 도구를 제공합니다. 표면 거칠기를 측정하기 위해 전체 스캔에서 평평한 영역을 추출했습니다.

 

 

2D 표면 분석

나사의 단면도를 표시하기 위해 표면에서 선 프로파일을 추출할 수도 있습니다. 윤곽 분석 및 계단 높이 연구를 사용하여 나사의 특정 위치에서 정확한 치수를 측정했습니다.

 

 

결론

 

이 응용 프로그램에서는 단일 스캔으로 국소 표면 거칠기를 정확하게 계산하고 큰 차원 특징을 측정하는 Nanovea 3D 비접촉 프로파일러의 기능을 선보였습니다.

데이터는 0.9637μm의 국부적인 표면 거칠기를 보여줍니다. 나사산 사이의 나사 반경은 1.729mm로 나타났으며, 나사산의 평균 높이는 0.413mm로 나타났다. 나사산 사이의 평균 각도는 61.3°로 결정되었습니다.

여기에 표시된 데이터는 분석 소프트웨어에서 사용할 수 있는 계산의 일부에 불과합니다.

 

작성자
Duanjie Li 박사, Jonathan Thomas, Pierre Leroux

인라인 거칠기 검사

인라인 프로파일러를 통한 즉각적인 오류 감지

자세히 알아보기

인라인 거칠기 검사를 위한 비접촉식 프로파일러의 중요성

표면 결함은 재료 가공 및 제품 제조에서 발생합니다. 인라인 표면 품질 검사는 최종 제품의 가장 엄격한 품질 관리를 보장합니다. 나노베아 3D 비접촉 프로파일로미터 접촉 없이 샘플의 거칠기를 결정하는 고유한 기능을 갖춘 색채 공초점 기술을 활용합니다. 여러 프로파일러 센서를 설치하여 제품의 다양한 영역의 거칠기와 질감을 동시에 모니터링할 수 있습니다. 분석 소프트웨어에 의해 실시간으로 계산된 거칠기 임계값은 빠르고 안정적인 합격/불합격 도구 역할을 합니다.

측정 목표

이 연구에서는 포인트 센서가 장착된 나노베아 거칠기 검사 컨베이어 시스템을 사용하여 아크릴 및 사포 샘플의 표면 거칠기를 검사합니다. 생산 라인에서 실시간으로 빠르고 안정적인 인라인 거칠기 검사를 제공하는 나노비아 비접촉식 프로파일로미터의 성능을 보여줍니다.

결과 및 토론

컨베이어 프로파일로미터 시스템은 트리거 모드와 연속 모드의 두 가지 모드로 작동할 수 있습니다. 그림 2에서 볼 수 있듯이 트리거 모드에서는 샘플이 광학 프로파일러 헤드 아래를 통과할 때 표면 거칠기가 측정됩니다. 이에 비해 연속 모드는 금속판이나 직물과 같은 연속 시료의 표면 거칠기를 중단 없이 측정합니다. 여러 광학 프로파일러 센서를 설치하여 다양한 샘플 영역의 거칠기를 모니터링하고 기록할 수 있습니다.

 

실시간 거칠기 검사 측정 중에는 그림 4 및 그림 5와 같이 소프트웨어 창에 합격 및 불합격 경고가 표시됩니다. 거칠기 값이 지정된 임계값 내에 있으면 측정된 거칠기가 녹색으로 강조 표시됩니다. 그러나 측정된 표면 거칠기가 설정된 임계값 범위를 벗어나면 강조 표시가 빨간색으로 바뀝니다. 이 기능은 사용자가 제품의 표면 마감 품질을 확인할 수 있는 도구를 제공합니다.

다음 섹션에서는 아크릴과 사포 등 두 가지 유형의 샘플을 사용하여 검사 시스템의 트리거 및 연속 모드를 시연합니다.

트리거 모드: 아크릴 샘플의 표면 검사

일련의 아크릴 샘플이 컨베이어 벨트 위에 정렬되어 그림 1과 같이 광학 프로파일러 헤드 아래로 이동합니다. 그림 6의 가색 보기는 표면 높이의 변화를 보여줍니다. 거울처럼 완성된 아크릴 샘플 중 일부는 그림 6b와 같이 거친 표면 질감을 만들기 위해 샌딩 처리되었습니다.

아크릴 샘플이 광학 프로파일러 헤드 아래에서 일정한 속도로 움직이면 그림 7과 그림 8과 같이 표면 프로파일이 측정됩니다. 측정된 프로파일의 거칠기 값은 동시에 계산되어 임계값과 비교됩니다. 거칠기 값이 설정된 임계값을 초과하면 빨간색 불합격 경고가 시작되어 사용자가 생산 라인에서 불량 제품을 즉시 감지하고 위치를 파악할 수 있습니다.

연속 모드: 사포 샘플의 표면 검사

그림 9와 같이 사포 샘플 표면의 표면 높이 맵, 거칠기 분포 맵, 합격/불합격 거칠기 임계값 맵을 확인할 수 있습니다. 사포 샘플은 표면 높이 맵에서 볼 수 있듯이 사용된 부분에 몇 개의 높은 피크가 있습니다. 그림 9C의 팔레트에서 다른 색상은 로컬 표면의 거칠기 값을 나타냅니다. 거칠기 맵에서 사포 샘플의 온전한 영역은 균일한 거칠기를 나타내는 반면, 사용된 영역은 진한 파란색으로 강조 표시되어 이 영역의 거칠기 값이 감소되었음을 나타냅니다. 그림 9D와 같이 이러한 영역을 찾기 위해 합격/불합격 거칠기 임계값을 설정할 수 있습니다.

사포가 인라인 프로파일러 센서 아래를 계속 통과하면 그림 10과 같이 실시간 로컬 거칠기 값이 계산되고 기록됩니다. 설정된 거칠기 임계값에 따라 소프트웨어 화면에 합격/불합격 경고가 표시되어 빠르고 신뢰할 수 있는 품질 관리 도구로 사용됩니다. 생산 라인의 제품 표면 품질을 현장에서 검사하여 결함이 있는 부분을 적시에 발견할 수 있습니다.

결론

이 애플리케이션에서는 광학 비접촉식 프로파일러 센서가 장착된 나노베아 컨베이어 프로파일로미터가 신뢰할 수 있는 인라인 품질 관리 도구로 효과적이고 효율적으로 작동하는 것을 보여주었습니다.

검사 시스템을 생산 라인에 설치하여 현장에서 제품의 표면 품질을 모니터링할 수 있습니다. 거칠기 임계값은 제품의 표면 품질을 판단하는 신뢰할 수 있는 기준으로 작동하여 사용자가 결함이 있는 제품을 제때 발견할 수 있도록 합니다. 다양한 유형의 제품에 대한 검사 요구 사항을 충족하기 위해 트리거 모드와 연속 모드의 두 가지 검사 모드가 제공됩니다.

여기에 표시된 데이터는 분석 소프트웨어에서 사용할 수 있는 계산의 일부만을 나타냅니다. 나노베아 프로파일로미터는 반도체, 마이크로일렉트로닉스, 태양광, 섬유, 광학, 자동차, 항공우주, 야금, 기계 가공, 코팅, 제약, 생의학, 환경 등 다양한 분야의 거의 모든 표면을 측정합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

블록-온-링 마모 테스트

블록 온 링 마모 평가의 중요성

슬라이딩 마모는 하중을 받는 접촉 부위에서 두 소재가 서로 미끄러지면서 발생하는 점진적인 소재 손실입니다. 슬라이딩 마모는 자동차, 항공우주, 석유 및 가스 등 기계와 엔진이 작동하는 다양한 산업에서 필연적으로 발생합니다. 이러한 슬라이딩 동작은 표면에서 심각한 기계적 마모와 재료 이동을 유발하여 생산 효율성, 기계 성능을 저하시키거나 심지어 기계에 손상을 입힐 수 있습니다.
 

 

슬라이딩 마모에는 접착 마모, 2체 마모, 3체 마모 및 피로 마모와 같은 접촉 표면에서 발생하는 복잡한 마모 메커니즘이 포함되는 경우가 많습니다. 재료의 마모 거동은 정상 하중, 속도, 부식 및 윤활과 같은 작업 환경에 의해 크게 영향을 받습니다. 다재다능한 트라이보미터 다양한 실제 작업 조건을 시뮬레이션할 수 있는 것이 마모 평가에 이상적입니다.
Block-on-Ring(ASTM G77) 테스트는 다양한 시뮬레이션 조건에서 재료의 슬라이딩 마모 거동을 평가하는 널리 사용되는 기술로, 특정 마찰 공학 응용 분야에 대해 신뢰할 수 있는 재료 커플 순위를 지정할 수 있습니다.
 
 

 

측정 목표

이 응용 분야에서 나노베아 기계식 테스터는 스테인리스 스틸 SS304 및 알루미늄 Al6061 금속 합금 시료의 YS 및 UTS를 측정합니다. 샘플은 나노베아 압입 방법의 신뢰성을 보여주는 일반적으로 인정되는 YS 및 UTS 값을 위해 선택되었습니다.

 

S-10 링에 있는 H-30 블록의 슬라이딩 마모 거동은 Block-on-Ring 모듈을 사용하는 Nanovea 마찰계로 평가되었습니다. H-30 블록은 경도가 30HRC인 01 공구강으로 제작되는 반면, S-10 링은 표면 경도가 58~63HRC이고 링 직경이 ~34.98mm인 강철 유형 4620입니다. Block-on-Ring 테스트는 마모 거동에 대한 영향을 조사하기 위해 건조하고 윤활된 환경에서 수행되었습니다. USP 중질 미네랄 오일을 사용하여 윤활 테스트를 수행했습니다. 마모 트랙은 Nanovea를 사용하여 검사되었습니다. 3D 비접촉 프로파일로미터. 시험 변수는 표 1에 요약되어 있습니다. 마모율(K)은 K=V/(F×s) 공식을 사용하여 평가되었으며, 여기서 V는 마모량, F는 일반 하중, s는 슬라이딩 거리입니다.

 

 

결과 및 토론

그림 2는 건조하고 윤활된 환경에서 Block-on-Ring 테스트의 마찰 계수(COF)를 비교합니다. 블록은 윤활 환경보다 건조한 환경에서 훨씬 더 많은 마찰을 갖습니다. COF
첫 번째 50회전에서 런인 기간 동안 변동하고 나머지 200회전 마모 테스트에서는 ~0.8의 일정한 COF에 도달합니다. 이에 비해 USP 중질광유 윤활에서 수행된 Block-on-Ring 테스트는 500,000회전 마모 테스트 전체에서 0.09의 일정하고 낮은 COF를 나타냅니다. 윤활제는 표면 사이의 COF를 ~90배까지 크게 줄입니다.

 

그림 3과 4는 건식 및 윤활 마모 테스트 후 블록의 마모 흉터에 대한 광학 이미지와 단면 2D 프로파일을 보여줍니다. 마모 트랙 부피와 마모율은 표 2에 나와 있습니다. 200회전 동안 72rpm의 낮은 회전 속도에서 건식 마모 테스트를 거친 스틸 블록은 9.45mm˙의 큰 마모 흉터 부피를 나타냅니다. 이에 비해 광유 윤활유를 사용하여 500,000회전 동안 197rpm의 높은 회전 속도로 마모 테스트를 수행한 경우 마모 트랙 부피는 0.03mm˙로 훨씬 작아집니다.

 


그림 3의 이미지는 윤활 마모 테스트의 경미한 마모와 비교하여 건조한 조건에서 테스트하는 동안 심각한 마모가 발생하는 것을 보여줍니다. 건식 마모 테스트 중에 발생하는 높은 열과 강한 진동은 금속 파편의 산화를 촉진하여 심각한 삼체 마모를 유발합니다. 윤활 테스트에서는 미네랄 오일이 마찰을 줄이고 접촉면을 냉각시킬 뿐만 아니라 마모 중에 생성된 연마 파편을 멀리 이동시킵니다. 그 결과 마모율이 최대 8×10배까지 현저히 감소합니다. 이처럼 서로 다른 환경에서 내마모성에 큰 차이를 보이는 것은 실제 서비스 조건에서 적절한 슬라이딩 마모 시뮬레이션이 중요하다는 것을 보여줍니다.

 


테스트 조건에 작은 변화가 생기면 마모 거동이 크게 달라질 수 있습니다. 나노베아 트라이보미터의 다양한 기능 덕분에 고온, 윤활 및 마찰 부식 조건에서 마모를 측정할 수 있습니다. 고급 모터에 의한 정확한 속도 및 위치 제어를 통해 0.001 ~ 5000rpm 범위의 속도에서 마모 테스트를 수행할 수 있으므로 다양한 마찰 조건에서 마모를 조사하는 연구/테스트 실험실에 이상적인 도구입니다.

 

샘플의 표면 상태는 나노비아의 비접촉식 광학 프로로미터로 검사했습니다. 그림 5는 마모 테스트 후 링의 표면 형태를 보여줍니다. 슬라이딩 마모 과정에서 생성된 표면 형태와 거칠기를 더 잘 보여주기 위해 실린더 형태를 제거했습니다. 200 회전의 건식 마모 테스트 동안 3체 마모 공정으로 인해 상당한 표면 거칠기가 발생했습니다. 건식 마모 테스트 후 블록과 링은 각각 14.1 및 18.1 µm의 거칠기 Ra를 보였는데, 이는 더 높은 속도에서 장기간 500,000회전 윤활 마모 테스트의 5.7 및 9.1 µm와 비교했을 때 매우 높은 수치입니다. 이 테스트는 피스톤 링-실린더 접촉부의 적절한 윤활이 얼마나 중요한지 보여줍니다. 마모가 심하면 윤활을 하지 않아도 접촉면이 빠르게 손상되어 서비스 품질이 돌이킬 수 없을 정도로 저하되고 엔진이 파손될 수도 있습니다.

 

 

결론

본 연구에서는 ASTM G77 표준에 따라 Block-on-Ring 모듈을 사용하여 강철 금속 커플의 슬라이딩 마모 거동을 평가하기 위해 Nanovea의 마찰계가 어떻게 사용되는지 보여줍니다. 윤활제는 재료 쌍의 마모 특성에 중요한 역할을 합니다. 미네랄 오일은 H-30 블록의 마모율을 ~8×10ˆ, COF를 ~90배 감소시킵니다. Nanovea 마찰계는 다양한 기능을 갖추고 있어 다양한 윤활, 고온 및 마찰 부식 조건에서 마모 거동을 측정하는 데 이상적인 도구입니다.

Nanovea의 트라이보미터(Tribometer)는 하나의 사전 통합 시스템에서 선택적으로 사용할 수 있는 고온 마모, 윤활 및 마찰 부식 모듈과 함께 ISO 및 ASTM 규격 회전 및 선형 모드를 사용하여 정확하고 반복 가능한 마모 및 마찰 테스트를 제공합니다. Nanovea의 탁월한 제품군은 얇거나 두꺼운 코팅, 부드럽거나 단단한 코팅, 필름 및 기판의 마찰 특성 전체 범위를 결정하는 데 이상적인 솔루션입니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

3D 프로파일로메트리를 사용한 페인트 오렌지 껍질 텍스처 분석

3D 프로파일로메트리를 사용한 페인트 오렌지 껍질 텍스처 분석

소개

기판의 표면 구조의 크기와 빈도는 광택 코팅의 품질에 영향을 미칩니다. 페인트 오렌지 껍질 텍스처는 외관의 이름을 따서 명명된 것으로, 피착재의 영향과 페인트 도장 기법에 따라 발생할 수 있습니다. 텍스처 문제는 일반적으로 물결 모양, 파장 및 광택 코팅에 미치는 시각적 효과로 정량화됩니다. 텍스처가 작을수록 광택이 감소하고 텍스처가 클수록 코팅 표면에 잔물결이 보입니다. 이러한 텍스처의 개발과 소재 및 기법과의 관계를 이해하는 것은 품질 관리에 매우 중요합니다.

텍스처 측정을 위한 프로파일 측정의 중요성

광택 텍스처를 측정하는 데 사용되는 기존의 2D 기기와 달리 3D 비접촉 측정은 표면 특성을 이해하는 데 사용되는 3D 이미지를 신속하게 제공하며 관심 영역을 빠르게 조사할 수 있는 기능이 추가되었습니다. 속도와 3D 검토 기능이 없다면 품질 관리 환경은 전체 표면에 대한 예측 가능성이 거의 없는 2D 정보에만 의존하게 될 것입니다. 텍스처를 3D로 이해하면 처리 및 제어 방법을 최적으로 선택할 수 있습니다. 이러한 파라미터의 품질 관리를 보장하려면 정량화 가능하고 재현 가능하며 신뢰할 수 있는 검사에 크게 의존합니다. 나노비아 3D 비접촉 프로파일러 는 색채 공초점 기술을 활용하여 빠른 측정 중에 발견되는 가파른 각도를 측정할 수 있는 고유한 기능을 갖추고 있습니다. 나노베아 프로파일로미터는 프로브 접촉, 표면 변화, 각도 또는 반사율로 인해 다른 기술이 신뢰할 수 있는 데이터를 제공하지 못하는 곳에서 성공합니다.

측정 목표

이 애플리케이션에서 나노베아 HS2000L은 광택 페인트의 페인트 오렌지 껍질 텍스처를 측정합니다. 3D 표면 스캔에서 자동으로 계산되는 표면 파라미터는 무궁무진합니다. 여기서는 페인트 오렌지 껍질 텍스처의 특성을 정량화하여 스캔한 3D 표면을 분석합니다.

결과 및 토론

나노비아 HS2000L은 오렌지 껍질 페인트의 등방성 및 높이 매개변수를 정량화했습니다. 오렌지 껍질 텍스처는 94.4% 등방성으로 랜덤 패턴 방향을 정량화했습니다. 높이 매개변수는 24.84µm의 높이 차이로 텍스처를 정량화했습니다.

그림 4의 베어링 비율 곡선은 깊이 분포를 그래픽으로 표현한 것입니다. 이 기능은 소프트웨어의 대화형 기능으로 사용자가 다양한 깊이에서 분포와 백분율을 볼 수 있습니다. 그림 5의 추출된 프로파일은 오렌지 껍질 텍스처에 대한 유용한 러프니스 값을 제공합니다. 144미크론 임계값 이상의 피크 추출은 오렌지 껍질 텍스처를 나타냅니다. 이러한 매개변수는 관심 있는 다른 영역이나 매개변수에 맞게 쉽게 조정할 수 있습니다.

결론

이 애플리케이션에서 나노비아 HS2000L 3D 비접촉식 프로파일로미터는 광택 코팅의 페인트 오렌지 껍질 텍스처의 지형과 나노미터 디테일을 모두 정밀하게 특성화합니다. 3D 표면 측정에서 관심 영역을 신속하게 식별하고 여러 유용한 측정값(치수, 거칠기 마감 텍스처, 형상 형태 지형, 평탄도 휨 평탄도, 체적 면적, 단차 높이 등)으로 분석할 수 있습니다. 빠르게 선택한 2D 단면은 광택 텍스처에 대한 완벽한 표면 측정 리소스 세트를 제공합니다. 통합된 AFM 모듈로 특수 관심 영역을 추가로 분석할 수 있습니다. 나노베아 3D 프로파일로미터의 속도는 1mm/s 미만에서 500mm/s까지 다양하여 고속 검사가 필요한 연구 애플리케이션에 적합합니다. 나노베아 3D 프로파일로미터는 용도에 맞는 다양한 구성을 제공합니다.

이제 애플리케이션에 대해 이야기해 보겠습니다.

비접촉 프로파일 측정을 통한 1페니의 3D 표면 분석

동전에 대한 비접촉 프로파일 측정의 중요성

화폐는 상품이나 서비스와 거래되기 때문에 현대 사회에서 매우 높은 가치를 지니고 있습니다. 동전과 종이 지폐 화폐는 많은 사람들의 손에 유통됩니다. 물리적 통화의 지속적인 이동은 표면 변형을 만듭니다. 나노베아의 3D 프로파일 미터 다양한 연도에 주조된 동전의 지형을 스캔하여 표면 차이를 조사합니다.

동전의 특징은 공통된 물건이기 때문에 일반 대중이 쉽게 알아볼 수 있습니다. 1페니는 Nanovea의 고급 표면 분석 소프트웨어인 Mountains 3D의 장점을 소개하는 데 이상적입니다. 3D 프로파일로미터로 수집된 표면 데이터를 사용하면 표면 빼기 및 2D 윤곽 추출을 통해 복잡한 형상에 대한 높은 수준의 분석이 가능합니다. 제어된 마스크, 스탬프 또는 몰드를 사용한 표면 추출은 제조 공정의 품질을 비교하는 반면, 윤곽선 추출은 치수 분석을 통해 공차를 식별합니다. Nanovea의 3D 프로파일로미터 및 Mountains 3D 소프트웨어는 동전과 같이 겉으로는 단순해 보이는 물체의 미크론 미만 지형을 조사합니다.



측정 목표

나노비아의 고속 라인 센서를 사용하여 5페니의 전체 윗면을 스캔했습니다. 각 페니의 내부 및 외부 반경은 마운틴 고급 분석 소프트웨어를 사용하여 측정했습니다. 관심 영역의 각 페니 표면에서 직접 표면 감산을 통해 표면 변형을 정량화했습니다.

 



결과 및 토론

3D 표면

나노베아 HS2000 프로파일로미터는 10um x 10um 스텝 크기로 20mm x 20mm 영역에서 4백만 개의 포인트를 스캔하여 동전 표면을 획득하는 데 24초밖에 걸리지 않았습니다. 아래는 스캔의 높이 맵과 3D 시각화입니다. 3D 보기는 눈으로 감지할 수 없는 작은 디테일까지 포착하는 고속 센서의 능력을 보여줍니다. 동전 표면 전체에 작은 스크래치가 많이 보입니다. 3D 보기에서 보이는 동전의 질감과 거칠기를 조사합니다.

 










차원 분석

페니의 윤곽을 추출하고 치수 분석을 통해 가장자리 피처의 내경과 외경을 얻었습니다. 외경은 평균 9.500mm ± 0.024, 내경은 평균 8.960mm ± 0.032였습니다. 2D 및 3D 데이터 소스에서 마운틴 3D가 수행할 수 있는 추가 치수 분석은 거리 측정, 단차 높이, 평탄도 및 각도 계산입니다.







표면 빼기

그림 5는 표면 차감 분석의 관심 영역을 보여줍니다. 2007년 페니는 4개의 오래된 페니에 대한 기준 표면으로 사용되었습니다. 2007년 동전 표면에서 표면 빼기는 구멍/피크가 있는 동전 간의 차이를 보여줍니다. 총 표면 부피 차이는 구멍/피크의 부피를 더하여 얻습니다. RMS 오차는 페니 표면이 서로 얼마나 밀접하게 일치하는지를 나타냅니다.


 









결론





나노비아의 고속 HS2000L은 서로 다른 해에 주조된 5페니 동전 5개를 스캔했습니다. 마운틴 3D 소프트웨어는 윤곽 추출, 치수 분석 및 표면 감산을 사용하여 각 동전의 표면을 비교했습니다. 이 분석은 동전 사이의 내부 및 외부 반경을 명확하게 정의하는 동시에 표면 특징 차이를 직접 비교합니다. 나노미터 수준의 해상도로 모든 표면을 측정할 수 있는 나노베아 3D 프로파일로미터의 기능과 마운틴 3D 분석 기능을 결합하면 연구 및 품질 관리 분야에서 활용할 수 있는 응용 분야는 무궁무진합니다.

 


이제 애플리케이션에 대해 이야기해 보겠습니다.