الولايات المتحدة الأمريكية / العالمية: 9292-461-949-1+
أوروبا: 794-3052-011-39+
تراسل معنا

التصنيف: Profilometry | الخشونة والانتهاء

 

مقياس خشونة ورق الصنفرة

ورق الصنفرة: تحليل الخشونة وقطر الجسيمات

ورق الصنفرة: تحليل الخشونة وقطر الجسيمات

يتعلم أكثر

ورق زجاج

تحليل الخشونة وقطر الجسيمات

أُعدت بواسطة

فرانك ليو

مقدمة

ورق الصنفرة منتج شائع متوفر تجاريًا يستخدم كمادة كاشطة. الاستخدام الأكثر شيوعًا لورق الصنفرة هو إزالة الطلاء أو تلميع السطح بخصائصه الكاشطة. يتم تصنيف هذه الخصائص الكاشطة إلى حبيبات ، كل منها مرتبط بمدى سلاسة أو
خشن من السطح سوف يعطي. لتحقيق الخصائص الكاشطة المرغوبة ، يجب على مصنعي ورق الصنفرة التأكد من أن الجسيمات الكاشطة ذات حجم معين ولها انحراف ضئيل. لتحديد جودة ورق الصنفرة ، NANOVEA's 3D Non-Contact مقياس الملامح يمكن استخدامها للحصول على معامل الارتفاع الحسابي (Sa) ومتوسط قطر الجسيمات لمنطقة العينة.

أهمية ملف التعريف البصري ثلاثي الأبعاد غير المتصل لـ SANDPAPER

عند استخدام ورق الصنفرة ، يجب أن يكون التفاعل بين الجزيئات الكاشطة والسطح الذي يتم صنفرته منتظمًا للحصول على تشطيبات متناسقة للسطح. لتقدير ذلك ، يمكن ملاحظة سطح ورق الصنفرة باستخدام ملف التعريف البصري ثلاثي الأبعاد غير المتصل من NANOVEA لمعرفة الانحرافات في أحجام الجسيمات والارتفاعات والتباعد.

هدف القياس

في هذه الدراسة ، تم العثور على خمس حبيبات مختلفة من ورق الصنفرة (120 ،
180 ، 320 ، 800 ، و 2000) بامتداد
NANOVEA ST400 3D ملف التعريف البصري عدم الاتصال.
يتم استخراج Sa من المسح والجسيمات
يتم حساب الحجم عن طريق إجراء تحليل الزخارف إلى
العثور على قطرها المكافئ

نانوفيا

ST400

النتائج والمناقشة

يتناقص ورق الصنفرة في خشونة السطح (Sa) وحجم الجسيمات مع زيادة الحبيبات ، كما هو متوقع. تراوح Sa من 42.37 ميكرومتر إلى 3.639 ميكرومتر. يتراوح حجم الجسيمات من 127 ± 48.7 إلى 21.27 ± 8.35. تخلق الجسيمات الأكبر والاختلافات المرتفعة تأثيرًا كاشطًا أقوى على الأسطح بدلاً من الجزيئات الأصغر مع اختلاف الارتفاع المنخفض.
يرجى ملاحظة أن جميع تعريفات معلمات الارتفاع المحددة مدرجة في الصفحة.

الجدول 1: مقارنة بين حبيبات ورق الصنفرة ومعلمات الارتفاع.

الجدول 2: مقارنة بين حبيبات ورق الصنفرة وقطر الجسيمات.

عرض ثنائي وثلاثي الأبعاد للوردي 

فيما يلي عرض الألوان الزائفة والأبعاد الثلاثية لعينات ورق الصنفرة.
تم استخدام مرشح غاوسي 0.8 مم لإزالة الشكل أو التموج.

تحليل الصورة

للعثور على الجسيمات الموجودة على السطح بدقة ، تم إعادة تحديد عتبة مقياس الارتفاع لإظهار الطبقة العليا من ورق الصنفرة فقط. ثم تم إجراء تحليل الزخارف للكشف عن القمم.

خاتمة

تم استخدام ملف التعريف البصري ثلاثي الأبعاد غير المتصل من NANOVEA لفحص الخصائص السطحية لمختلف حبيبات ورق الصنفرة نظرًا لقدرتها على مسح الأسطح بميزات دقيقة ومتناهية الصغر.

تم الحصول على معلمات ارتفاع السطح وأقطار الجسيمات المكافئة من كل عينة من عينات ورق الصنفرة باستخدام برنامج متقدم لتحليل عمليات المسح ثلاثية الأبعاد. لوحظ أنه مع زيادة حجم الحبيبات ، تقل خشونة السطح (Sa) وحجم الجسيمات كما هو متوقع.

الآن ، لنتحدث عن طلبك

قياس حدود سطح الستايروفوم

قياس حدود السطح

قياس حدود السطح باستخدام مقياس التشكيل الجانبي ثلاثي الأبعاد

يتعلم أكثر

قياس الحدود السطحية

استخدام القياس الشخصي ثلاثي الأبعاد

أُعدت بواسطة

كريج ليزينج

مقدمة

في الدراسات التي يتم فيها تقييم واجهة ميزات السطح والأنماط والأشكال وما إلى ذلك ، من أجل الاتجاه ، سيكون من المفيد تحديد مجالات الاهتمام بسرعة على ملف تعريف القياس بأكمله. من خلال تقسيم السطح إلى مناطق مهمة ، يمكن للمستخدم تقييم الحدود والقمم والحفر والمساحات والأحجام والعديد من الأشياء الأخرى بسرعة لفهم دورها الوظيفي في ملف تعريف السطح بأكمله قيد الدراسة. على سبيل المثال ، مثل تصوير حدود الحبوب للمعادن ، تكمن أهمية التحليل في واجهة العديد من الهياكل وتوجهها العام. من خلال فهم كل مجال من مجالات الاهتمام ، يمكن تحديد العيوب و / أو الشذوذ داخل المنطقة الكلية. على الرغم من أن تصوير حدود الحبوب يُدرس عادةً في نطاق يتجاوز قدرة مقياس ملف التعريف ، وهو مجرد تحليل للصور ثنائية الأبعاد ، إلا أنه مرجع مفيد لتوضيح مفهوم ما سيتم عرضه هنا على نطاق أوسع جنبًا إلى جنب مع مزايا قياس السطح ثلاثي الأبعاد.

أهمية مقياس التشكيل ثلاثي الأبعاد غير المتصل لدراسة فصل السطح

على عكس التقنيات الأخرى مثل مجسات اللمس أو قياس التداخل، فإن مقياس عدم الاتصال ثلاثي الأبعاد، باستخدام اللوني المحوري، يمكنه قياس أي سطح تقريبًا، ويمكن أن تختلف أحجام العينات بشكل كبير بسبب التدريج المفتوح وليس هناك حاجة لإعداد العينة. يتم الحصول على النانو من خلال النطاق الكلي أثناء قياس المظهر الجانبي للسطح بدون أي تأثير من انعكاس العينة أو الامتصاص، وله قدرة متقدمة على قياس زوايا السطح العالية ولا يوجد أي معالجة برمجية للنتائج. قم بقياس أي مادة بسهولة: شفافة، معتمة، براق، منتشر، مصقول، خشن وما إلى ذلك. توفر تقنية مقياس عدم الاتصال قدرة مثالية وواسعة وسهلة الاستخدام لتحقيق أقصى قدر من الدراسات السطحية عندما تكون هناك حاجة إلى تحليل حدود السطح؛ إلى جانب فوائد القدرة المدمجة ثنائية وثلاثية الأبعاد.

هدف القياس

في هذا التطبيق ، يتم استخدام مقياس التشكيل الجانبي Nanovea ST400 لقياس مساحة سطح الستايروفوم. تم إنشاء الحدود من خلال الجمع بين ملف الكثافة المنعكس جنبًا إلى جنب مع التضاريس ، والتي يتم الحصول عليها في وقت واحد باستخدام NANOVEA ST400. ثم تم استخدام هذه البيانات لحساب معلومات الشكل والحجم المختلفة لكل "حبة" ستايروفوم.

نانوفيا

ST400

النتائج والمناقشة: قياس حدود السطح ثنائي الأبعاد

صورة الطبوغرافيا (أسفل اليسار) مقنعة بواسطة صورة الكثافة المنعكسة (أسفل اليمين) لتحديد حدود الحبوب بوضوح. تم تجاهل جميع الحبوب التي يقل قطرها عن 565 ميكرومتر عن طريق تطبيق مرشح.

العدد الإجمالي للحبوب: 167
إجمالي المساحة المتوقعة التي تشغلها الحبوب: 166.917 ملم مربع (64.5962 %)
إجمالي المساحة المتوقعة التي تشغلها الحدود: (35.4038 %)
كثافة الحبوب: 0.646285 حبة / مم 2

المساحة = 0.999500 ملم² +/- 0.491846 ملم²
المحيط = 9114.15 ميكرومتر +/- 4570.38 ميكرومتر
القطر المكافئ = 1098.61 ميكرومتر +/- 256.235 ميكرومتر
متوسط القطر = 945.373 ميكرومتر +/- 248.344 ميكرومتر
الحد الأدنى للقطر = 675.898 ميكرومتر +/- 246.850 ميكرومتر
أقصى قطر = 1312.43 ميكرومتر +/- 295.258 ميكرومتر

النتائج والمناقشة: قياس حدود السطح ثلاثي الأبعاد

باستخدام بيانات الطبوغرافيا ثلاثية الأبعاد التي تم الحصول عليها ، يمكن تحليل الحجم والارتفاع والذروة ونسبة العرض إلى الارتفاع ومعلومات الشكل العام على كل حبة. إجمالي المساحة ثلاثية الأبعاد المشغولة: 2.525 مم 3

خاتمة

في هذا التطبيق ، أظهرنا كيف يمكن لمقياس NANOVEA 3D Non Contact Profilometer أن يميز بدقة سطح الستايروفوم. يمكن الحصول على المعلومات الإحصائية على كامل سطح الاهتمام أو على الحبوب الفردية ، سواء كانت قمم أو حفر. في هذا المثال ، تم استخدام جميع الحبوب الأكبر من الحجم المحدد من قبل المستخدم لإظهار المنطقة والمحيط والقطر والارتفاع. يمكن أن تكون الميزات الموضحة هنا حاسمة للبحث ومراقبة الجودة للأسطح الطبيعية والمُصنَّعة مسبقًا بدءًا من تطبيقات الطب الحيوي إلى تطبيقات الآلات الدقيقة جنبًا إلى جنب مع العديد من التطبيقات الأخرى. 

الآن ، لنتحدث عن طلبك

قياس الكفاف باستخدام مقياس الملامح بواسطة NANOVEA

قياس محيط المداس المطاطي

قياس محيط المداس المطاطي

يتعلم أكثر

 

 

 

 

 

 

 

 

 

 

 

 

 

قياس محيط الإطار المطاطي

استخدام بروفيلر بصري ثلاثي الأبعاد

قياس محيط المداس المطاطي - ملف تعريف نانوفيا

أُعدت بواسطة

أندريا هيرمان

مقدمة

مثل كل المواد ، يرتبط معامل احتكاك المطاط جزئيا لخشونة سطحه. في تطبيقات إطارات السيارات ، يعتبر الجر على الطريق أمرًا مهمًا للغاية. يلعب كل من خشونة السطح ومداس الإطار دورًا في ذلك. في هذه الدراسة ، يتم تحليل سطح المطاط وخشونة وأبعاد المداس.

* العينة

أهمية

القياس الشخصي ثلاثي الأبعاد لعدم الاتصال

لدراسات المطاط

على عكس التقنيات الأخرى مثل مجسات اللمس أو قياس التداخل، فإن تقنية NANOVEA ملفات التعريف البصرية ثلاثية الأبعاد غير المتصلة استخدم اللوني المحوري لقياس أي سطح تقريبًا. 

يسمح التدريج المفتوح لنظام ملف التعريف بمجموعة متنوعة من أحجام العينات ويتطلب إعدادًا صفريًا للعينات. يمكن اكتشاف ميزات النانو من خلال النطاق الكلي أثناء مسح واحد بتأثير صفري من انعكاس العينة أو امتصاصها. بالإضافة إلى ذلك ، تتمتع أدوات التعريف هذه بالقدرة المتقدمة على قياس زوايا السطح العالية دون الحاجة إلى معالجة البرامج للنتائج.

قم بقياس أي مادة بسهولة: شفافة ، غير شفافة ، مرآوية ، منتشرة ، مصقولة ، خشنة ، إلخ. توفر تقنية القياس الخاصة بملفات التعريف NANOVEA 3D Non-Contact Profile قدرة مثالية وواسعة وسهلة الاستخدام لتعظيم دراسات السطح جنبًا إلى جنب مع فوائد الجمع بين ثنائية وثنائية الأبعاد القدرة ثلاثية الأبعاد.

هدف القياس

في هذا التطبيق ، نعرض NANOVEA ST400 ، جهاز قياس بصري ثلاثي الأبعاد غير متصل سطح وطرق الإطارات المطاطية.

مساحة سطح عينة كبيرة بما يكفي لتمثيلها تم اختيار سطح الإطار بالكامل بشكل عشوائي لهذه الدراسة. 

استخدمنا لتحديد خصائص المطاط برنامج التحليل NANOVEA Ultra 3D إلى قياس أبعاد الكنتور والعمق ، الخشونة والمساحة المتطورة من السطح.

نانوفيا

ST400

تحليل: مداس الإطار

يُظهر العرض ثلاثي الأبعاد وطريقة عرض اللون الزائف للخطوط قيمة تعيين تصميمات الأسطح ثلاثية الأبعاد. يوفر للمستخدمين أداة مباشرة لمراقبة حجم وشكل المداسات من زوايا مختلفة. يعتبر كل من تحليل الكفاف المتقدم وتحليل ارتفاع الخطوة من الأدوات القوية للغاية لقياس الأبعاد الدقيقة لأشكال العينة وتصميمها

تحليل الكونتور المتقدم

تحليل ارتفاع الخطوة

تحليل: السطح المطاطي

يمكن قياس كمية السطح المطاطي بعدة طرق باستخدام أدوات برمجية مدمجة كما هو موضح في الأشكال التالية كأمثلة. يمكن ملاحظة أن خشونة السطح تبلغ 2.688 ميكرومتر ، والمساحة المطورة مقابل المساحة المسقطة هي 9.410 مم² مقابل 8.997 مم². تسمح لنا هذه المعلومات بفحص العلاقة بين تشطيب السطح وجر تركيبات المطاط المختلفة أو حتى المطاط بدرجات متفاوتة من تآكل السطح.

خاتمة

في هذا التطبيق ، أظهرنا كيف NANOVEA يمكن لملف التعريف البصري ثلاثي الأبعاد عدم التلامس أن يميز بدقة خشونة السطح وأبعاد مداس المطاط.

تُظهر البيانات خشونة سطحية تبلغ 2.69 ميكرومتر ومساحة متطورة تبلغ 9.41 مم² مع مساحة مسقطة تبلغ 9 مم². كانت أبعاد وأنصاف أقطار مختلفة من مداس المطاط تقاس كذلك.

يمكن استخدام المعلومات المقدمة في هذه الدراسة لمقارنة أداء الإطارات المطاطية بتصميمات أو تركيبات مختلفة للمداس أو درجات متفاوتة من التآكل. البيانات المعروضة هنا لا تمثل سوى جزء من الحسابات المتوفرة في برنامج التحليل Ultra 3D.

الآن ، لنتحدث عن طلبك

تحليل سطح مقياس السمك باستخدام ملف التعريف البصري ثلاثي الأبعاد

تحليل سطح مقياس السمك باستخدام ملف التعريف البصري ثلاثي الأبعاد

يتعلم أكثر

تحليل سطح مقياس السمك

باستخدام 3D OPTICAL PROFILER

مقياس ملامح قشور الأسماك

أُعدت بواسطة

أندريا نوفيتسكي

مقدمة

تتم دراسة الشكل والأنماط والميزات الأخرى لمقياس السمك باستخدام NANOVEA ملف التعريف البصري ثلاثي الأبعاد غير المتصل. إن الطبيعة الدقيقة لهذه العينة البيولوجية بالإضافة إلى أخاديدها الصغيرة جدًا وذات الزوايا العالية تسلط الضوء أيضًا على أهمية تقنية عدم الاتصال الخاصة بالمحدد. تسمى الأخاديد الموجودة على المقياس بالدائرة، ويمكن دراستها لتقدير عمر السمكة، وحتى التمييز بين فترات معدلات النمو المختلفة، المشابهة لحلقات الشجرة. هذه معلومات مهمة جدًا لإدارة مجموعات الأسماك البرية من أجل منع الصيد الجائر.

أهمية قياس ملامح عدم الاتصال ثلاثي الأبعاد للدراسات البيولوجية

على عكس التقنيات الأخرى مثل مجسات اللمس أو قياس التداخل ، يمكن لملف التعريف البصري ثلاثي الأبعاد غير المتصل ، باستخدام اللوني المحوري ، قياس أي سطح تقريبًا. يمكن أن تختلف أحجام العينات على نطاق واسع بسبب التدريج المفتوح وليس هناك حاجة لتحضير العينة. يتم الحصول على ميزات النانو من خلال النطاق الكلي أثناء قياس المظهر الجانبي للسطح بتأثير صفري من انعكاس العينة أو امتصاصها. توفر الأداة قدرة متقدمة على قياس زوايا السطح العالية بدون معالجة البرامج للنتائج. يمكن قياس أي مادة بسهولة ، سواء كانت شفافة أو غير شفافة أو مرآوية أو منتشرة أو مصقولة أو خشنة. توفر هذه التقنية قدرة مثالية وواسعة وسهلة الاستخدام لتحقيق أقصى قدر من الدراسات السطحية جنبًا إلى جنب مع مزايا القدرات ثنائية وثلاثية الأبعاد المدمجة.

هدف القياس

في هذا التطبيق ، نعرض NANOVEA ST400 ، ملف تعريف ثلاثي الأبعاد غير متصل بمستشعر عالي السرعة ، مما يوفر تحليلًا شاملاً لسطح المقياس.

تم استخدام الأداة لمسح العينة بأكملها ، إلى جانب مسح أعلى دقة للمنطقة المركزية. تم قياس خشونة السطح الخارجي والداخلي للمقياس للمقارنة أيضًا.

نانوفيا

ST400

توصيف السطح ثلاثي الأبعاد وثنائي الأبعاد للمقياس الخارجي

يُظهر العرض ثلاثي الأبعاد وعرض الألوان الزائفة للمقياس الخارجي بنية معقدة تشبه بصمة الإصبع أو حلقات الشجرة. يوفر هذا للمستخدمين أداة مباشرة لمراقبة خصائص سطح المقياس مباشرة من زوايا مختلفة. يتم عرض قياسات أخرى مختلفة للمقياس الخارجي جنبًا إلى جنب مع مقارنة الجانب الخارجي والداخلي للمقياس.

مقياس السمك المسح الضوئي ثلاثي الأبعاد مقياس الملامح
مقياس السمك المسح الضوئي بحجم ثلاثي الأبعاد
مقياس السمك المسح الضوئي الخطوة الارتفاع 3D ملف التعريف البصري

مقارنة خشونة السطح

مقياس السمك مقياس الملامح 3D المسح

خاتمة

في هذا التطبيق ، أظهرنا كيف يمكن لملف التعريف البصري NANOVEA 3D Non-Contact Optical Profiler أن يميز مقياس السمك بعدة طرق. 

يمكن تمييز الأسطح الخارجية والداخلية للميزان بسهولة عن طريق خشونة السطح وحدها ، بقيم خشونة تبلغ 15.92 ميكرومتر و 1.56 ميكرومتر على التوالي. بالإضافة إلى ذلك ، يمكن التعرف على معلومات دقيقة ودقيقة حول مقياس الأسماك من خلال تحليل الأخاديد أو الدوائر الموجودة على السطح الخارجي للمقياس. تم قياس مسافة نطاقات الدوائر من مركز البؤرة ، ووجد أيضًا أن ارتفاع الدائرة يبلغ ارتفاعها حوالي 58 ميكرون في المتوسط. 

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل.

الآن ، لنتحدث عن طلبك

فحص خشونة السطح للأقراص الصيدلانية

أقراص صيدلانية

فحص الخشونة باستخدام مقاييس بروفيلومترية ثلاثية الأبعاد

مؤلف:

جوسلين اسبارزا

مقدمة

تعد الأقراص الصيدلانية أكثر الجرعات الطبية شيوعًا المستخدمة اليوم. يتكون كل قرص من مزيج من المواد الفعالة (المواد الكيميائية التي تنتج تأثيرًا دوائيًا) والمواد غير النشطة (المتحللة ، والموثق ، والمزلقات ، والمخفف - عادة في شكل مسحوق). ثم يتم ضغط المواد الفعالة وغير النشطة أو تشكيلها في مادة صلبة. بعد ذلك ، بناءً على مواصفات الشركة المصنعة ، تكون الأقراص إما مغلفة أو غير مطلية.

لكي تكون فعالة ، يجب أن تتبع أغلفة الأجهزة اللوحية الخطوط الدقيقة للشعارات أو الأحرف المنقوشة على الأجهزة اللوحية ، ويجب أن تكون ثابتة وقوية بما يكفي لتحمل التعامل مع الجهاز اللوحي ، ويجب ألا تتسبب في التصاق الأقراص ببعضها البعض أثناء الطلاء عملية. تحتوي الأقراص الحالية عادةً على طلاء متعدد السكاريد وبوليمر يحتوي على مواد مثل الأصباغ والملدنات. النوعان الأكثر شيوعًا لطلاء المائدة هما طلاء الفيلم وطلاء السكر. مقارنةً بالطلاء بالسكر ، تكون طبقات الطلاء أقل حجمًا وأكثر متانة وتستغرق وقتًا أقل في التحضير والتطبيق. ومع ذلك ، فإن طلاء الفيلم يواجه صعوبة أكبر في إخفاء مظهر الجهاز اللوحي.

تعتبر أغطية الأقراص ضرورية للحماية من الرطوبة ، وإخفاء طعم المكونات ، وجعل الأقراص أسهل في البلع. الأهم من ذلك ، أن طلاء الجهاز اللوحي يتحكم في الموقع ومعدل إطلاق الدواء.

هدف القياس

في هذا التطبيق ، نستخدم ملف ملف التعريف البصري NANOVEA وبرامج الجبال المتقدمة لقياس وتقدير تضاريس الحبوب المضغوطة ذات الأسماء التجارية المختلفة (1 مغلفة و 2 غير مصقولة) لمقارنة خشونة سطحها.

من المفترض أن يكون أدفيل (المطلي) أقل خشونة للسطح بسبب الطلاء الواقي الذي يحتوي عليه.

نانوفيا

HS2000

شروط الاختبار

تم مسح ثلاث دفعات من الأقراص المضغوطة ذات العلامات التجارية الصيدلانية باستخدام Nanovea HS2000
باستخدام مستشعر الخط عالي السرعة لقياس معلمات خشونة السطح المختلفة وفقًا لمعيار ISO 25178.

منطقة المسح

2 × 2 مم

دقة المسح الجانبي

5 × 5 ميكرومتر

وقت الفحص

4 ثوانى

عينات

النتائج والمناقشة

بعد مسح الأجهزة اللوحية ، تم إجراء دراسة خشونة السطح باستخدام برنامج تحليل الجبال المتقدم لحساب متوسط السطح ، ومتوسط الجذر التربيعي ، والحد الأقصى لارتفاع كل جهاز لوحي.

تدعم القيم المحسوبة افتراض أن Advil لديها خشونة سطح أقل بسبب الطبقة الواقية التي تغلف مكوناتها. يظهر Tylenol أن لديه أعلى خشونة سطح من بين جميع الأقراص الثلاثة المقاسة.

تم إنتاج خريطة ارتفاع ثنائية وثلاثية الأبعاد لتضاريس سطح كل لوح والتي توضح توزيعات الارتفاع المقاسة. تم اختيار واحد من خمسة أجهزة لوحية لتمثيل خرائط الارتفاع لكل علامة تجارية. تشكل خرائط الارتفاع هذه أداة رائعة للكشف البصري عن ميزات السطح البعيدة مثل الحفر أو القمم.

خاتمة

في هذه الدراسة ، قمنا بتحليل ومقارنة الخشونة السطحية لأقراص دوائية مضغوطة بثلاثة أسماء تجارية: Advil و Tylenol و Excedrin. أثبت أدفيل أن لديه أدنى متوسط خشونة للسطح. يمكن أن يعزى ذلك إلى وجود طلاء برتقالي يغطي الدواء. في المقابل ، يفتقر كل من Excedrin و Tylenol إلى الطلاءات ، ومع ذلك ، لا تزال خشونة السطح تختلف عن بعضها البعض. أثبت Tylenol أن لديه أعلى متوسط خشونة سطحية من بين جميع الأقراص المدروسة.

باستخدام نانوفيا HS2000 باستخدام مستشعر الخط عالي السرعة ، تمكنا من قياس 5 أقراص في أقل من دقيقة واحدة. يمكن أن يكون هذا مفيدًا لاختبار مراقبة الجودة لمئات الحبوب في الإنتاج اليوم.

الآن ، لنتحدث عن طلبك

مسامير الأسنان - القياس - الأبعاد - باستخدام - مقياس التشكيل الجانبي ثلاثي الأبعاد

أدوات طب الأسنان: تحليل الأبعاد وخشونة السطح



مقدمة

 

يعد الحصول على أبعاد دقيقة وخشونة سطحية مثالية أمرًا حيويًا لوظيفة براغي الأسنان. تتطلب العديد من أبعاد براغي الأسنان دقة عالية مثل نصف القطر والزوايا والمسافات وارتفاعات الخطوات. يعد فهم خشونة السطح المحلية أمرًا مهمًا أيضًا لأي أداة طبية أو جزء يتم إدخاله داخل جسم الإنسان لتقليل الاحتكاك المنزلق.

 

 

ملف تعريف عدم الاتصال للدراسة الأبعاد

 

نانوفيا ملفات تعريف عدم الاتصال ثلاثية الأبعاد استخدم تقنية لونية تعتمد على الضوء لقياس أي سطح مادي: شفاف أو غير شفاف أو براق أو منتشر أو مصقول أو خشن. على عكس تقنية مسبار اللمس، يمكن لتقنية عدم الاتصال القياس داخل المناطق الضيقة ولن تضيف أي أخطاء جوهرية بسبب التشوه الناجم عن ضغط الطرف على مادة بلاستيكية أكثر ليونة. كما توفر التكنولوجيا المستندة إلى الضوء اللوني دقة جانبية ودقة فائقة في الارتفاع مقارنةً بتقنية تباين التركيز البؤري. يمكن لملفات تعريف Nanovea مسح الأسطح الكبيرة مباشرة دون خياطة وتحديد طول الجزء في بضع ثوانٍ. يمكن قياس النانو من خلال ميزات سطح النطاق الكلي وزوايا السطح العالية نظرًا لقدرة محلل التعريف على قياس الأسطح دون أي خوارزميات معقدة تعالج النتائج.

 

 

هدف القياس

 

في هذا التطبيق، تم استخدام جهاز التعريف البصري Nanovea ST400 لقياس برغي الأسنان على طول الميزات المسطحة والخيطية في قياس واحد. تم حساب خشونة السطح من المساحة المسطحة، وتم تحديد الأبعاد المختلفة للمعالم الملولبة.

 

مراقبة جودة المسمار الأسنان

عينة من المسمار الأسنان التي تم تحليلها بواسطة نانوفيا ملف التعريف البصري.

 

تحليل عينة المسمار الأسنان.

 

نتائج

 

3D السطح

يُظهر العرض ثلاثي الأبعاد وعرض الألوان الزائفة للمسمار السني منطقة مسطحة مع بدء الخيوط على كلا الجانبين. فهو يوفر للمستخدمين أداة مباشرة لمراقبة شكل المسمار بشكل مباشر من زوايا مختلفة. تم استخراج المنطقة المسطحة من المسح الكامل لقياس خشونة سطحها.

 

 

تحليل السطح ثنائي الأبعاد

يمكن أيضًا استخراج ملفات تعريف الخط من السطح لإظهار عرض مقطعي للمسمار. تم استخدام التحليل المحيطي ودراسات ارتفاع الخطوة لقياس الأبعاد الدقيقة في موقع معين على المسمار.

 

 

خاتمة

 

في هذا التطبيق، قمنا بعرض قدرة Nanovea 3D Non-Contact Profiler على حساب خشونة السطح المحلي بدقة وقياس ميزات الأبعاد الكبيرة في مسح واحد.

تُظهر البيانات خشونة سطحية محلية تبلغ 0.9637 ميكرومتر. وجد أن نصف قطر المسمار بين الخيوط هو 1.729 ملم، وكان متوسط ارتفاع الخيوط 0.413 ملم. تم تحديد متوسط الزاوية بين الخيوط بـ 61.3 درجة.

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل.

 

أُعدت بواسطة
دوانجي لي، دكتوراه، جوناثان توماس، وبيير ليرو

فحص الخشونة في الخط

الكشف الفوري عن الخطأ باستخدام ملفات التعريف المضمنة

يتعلم أكثر

أهمية المحلل في عدم الاتصال لفحص الخشونة على الإنترنت

تنبع العيوب السطحية من معالجة المواد وتصنيع المنتجات. يضمن فحص جودة السطح داخل الخط التحكم الصارم في جودة المنتجات النهائية. النانوفيا مقاييس عدم الاتصال ثلاثية الأبعاد الاستفادة من تقنية البؤر اللونية مع قدرة فريدة لتحديد خشونة العينة دون الاتصال. يمكن تركيب أجهزة استشعار متعددة لمراقبة خشونة وملمس مناطق مختلفة من المنتج في نفس الوقت. تعد عتبة الخشونة المحسوبة في الوقت الفعلي بواسطة برنامج التحليل بمثابة أداة تمرير/فشل سريعة وموثوقة.

هدف القياس

في هذه الدراسة ، تم استخدام نظام ناقل فحص خشونة Nanovea المجهز بجهاز استشعار نقطي لفحص خشونة السطح لعينات الأكريليك وورق الصنفرة. نعرض قدرة Nanovea مقياس ملف تعريف عدم التلامس في توفير فحص سريع وموثوق به للخشونة في خط الإنتاج في الوقت الفعلي.

النتائج والمناقشة

يمكن أن يعمل نظام مقياس ملف تعريف الناقل في وضعين ، وهما وضع الزناد والوضع المستمر. كما هو موضح في الشكل 2 ، يتم قياس خشونة سطح العينات عند مرورها تحت رؤوس ملف التعريف البصري تحت وضع الزناد. بالمقارنة ، يوفر الوضع المستمر قياسًا بدون توقف لخشونة السطح على العينة المستمرة ، مثل الصفائح المعدنية والنسيج. يمكن تركيب مستشعرات بصرية متعددة للملفات التعريفية لمراقبة وتسجيل خشونة مناطق العينة المختلفة.

 

أثناء قياس فحص الخشونة في الوقت الفعلي ، يتم عرض تنبيهات النجاح والفشل على نوافذ البرنامج كما هو موضح في الشكل 4 والشكل 5. عندما تكون قيمة الخشونة ضمن الحدود المحددة ، يتم تمييز الخشونة المقاسة باللون الأخضر. ومع ذلك ، يتحول الإبراز إلى اللون الأحمر عندما تكون خشونة السطح المقاسة خارج نطاق قيم العتبة المحددة. يوفر هذا أداة للمستخدم لتحديد جودة تشطيب سطح المنتج.

في الأقسام التالية ، يتم استخدام نوعين من العينات ، على سبيل المثال أكريليك وورق صنفرة ، لبيان الزناد والنمط المستمر لنظام الفحص.

وضع الزناد: فحص سطح عينة الاكريليك

يتم محاذاة سلسلة من عينات الأكريليك على الحزام الناقل وتتحرك أسفل رأس أداة التعريف البصرية كما هو موضح في الشكل 1. ويظهر عرض اللون الخاطئ في الشكل 6 تغير ارتفاع السطح. تم صقل بعض عينات الأكريليك النهائية التي تشبه المرآة لإنشاء نسيج سطح خشن كما هو موضح في الشكل 6 ب.

نظرًا لأن عينات الأكريليك تتحرك بسرعة ثابتة تحت رأس ملف التعريف البصري ، يتم قياس المظهر الجانبي للسطح كما هو موضح في الشكل 7 والشكل 8. يتم حساب قيمة الخشونة للملف الشخصي المقاس في نفس الوقت ومقارنتها بقيم العتبة. يتم تشغيل تنبيه الفشل الأحمر عندما تكون قيمة الخشونة أعلى من الحد المحدد ، مما يسمح للمستخدمين باكتشاف المنتج المعيب وتحديد موقعه على خط الإنتاج على الفور.

الوضع المستمر: فحص السطح لعينة ورق الصنفرة

خريطة ارتفاع السطح وخريطة توزيع الخشونة وخريطة حد خشونة المرور / الفشل لسطح عينة ورق الصنفرة كما هو موضح في الشكل 9. تحتوي عينة ورق الصنفرة على زوج من القمم الأعلى في الجزء المستخدم كما هو موضح في خريطة ارتفاع السطح. تمثل الألوان المختلفة في لوح التحميل في الشكل 9 ج قيمة خشونة السطح المحلي. تُظهر Roughness Map خشونة متجانسة في المنطقة السليمة لعينة ورق الصنفرة ، بينما يتم تمييز المنطقة المستخدمة باللون الأزرق الداكن ، مما يشير إلى انخفاض قيمة الخشونة في هذه المنطقة. يمكن إعداد عتبة خشونة النجاح / الفشل لتحديد هذه المناطق كما هو موضح في الشكل 9 د.

نظرًا لأن ورق الصنفرة يمر باستمرار أسفل مستشعر ملف التعريف المضمن ، يتم حساب قيمة الخشونة المحلية في الوقت الفعلي وتسجيلها كما هو موضح في الشكل 10. يتم عرض تنبيهات النجاح / الفشل على شاشة البرنامج بناءً على قيم عتبة الخشونة المحددة ، والتي تقدم الخدمة كأداة سريعة وموثوقة لمراقبة الجودة. يتم فحص جودة سطح المنتج في خط الإنتاج في الموقع لاكتشاف المناطق المعيبة في الوقت المناسب.

خاتمة

في هذا التطبيق ، أظهرنا أن مقياس ملف تعريف ناقل Nanovea المجهز بمستشعر بصري لملف التعريف غير متصل يعمل كأداة مراقبة جودة مضمنة موثوقة بفعالية وكفاءة.

يمكن تثبيت نظام الفحص في خط الإنتاج لمراقبة جودة سطح المنتجات في الموقع. تعمل عتبة الخشونة كمعايير يمكن الاعتماد عليها لتحديد جودة سطح المنتجات ، مما يسمح للمستخدمين بملاحظة المنتجات المعيبة في الوقت المناسب. يتم توفير وضعين للفحص ، وهما وضع المشغل والوضع المستمر ، لتلبية متطلبات الفحص على أنواع مختلفة من المنتجات.

تمثل البيانات الموضحة هنا جزءًا فقط من الحسابات المتوفرة في برنامج التحليل. تقيس مقاييس ملف تعريف نانوفيا أي سطح تقريبًا في المجالات بما في ذلك أشباه الموصلات ، والإلكترونيات الدقيقة ، والطاقة الشمسية ، والألياف ، والبصريات ، والسيارات ، والفضاء ، والمعادن ، والآلات ، والطلاء ، والأدوية ، والطب الحيوي ، والبيئة وغيرها الكثير.

الآن ، لنتحدث عن طلبك

اختبار ارتداء الكتلة على الحلقة

أهمية تقييم ارتداء البلوك على الحلبة

التآكل المنزلق هو الفقد التدريجي للمواد الذي ينتج عن انزلاق مادتين ضد بعضهما البعض في منطقة التلامس تحت الحمل. يحدث ذلك حتماً في مجموعة متنوعة من الصناعات التي تعمل فيها الآلات والمحركات ، بما في ذلك السيارات والفضاء والنفط والغاز وغيرها الكثير. تسبب حركة الانزلاق هذه تآكلًا ميكانيكيًا خطيرًا ونقل المواد على السطح ، مما قد يؤدي إلى انخفاض كفاءة الإنتاج أو أداء الماكينة أو حتى تلف الجهاز.
 

 

غالبًا ما يتضمن التآكل المنزلق آليات تآكل معقدة تحدث عند سطح التلامس، مثل تآكل الالتصاق، وتآكل الجسمين، وتآكل ثلاثة أجسام، وتآكل التعب. يتأثر سلوك تآكل المواد بشكل كبير ببيئة العمل، مثل التحميل العادي والسرعة والتآكل والتشحيم. متعدد الاستخدامات تريبومتر التي يمكنها محاكاة ظروف العمل الواقعية المختلفة ستكون مثالية لتقييم التآكل.
يعد اختبار Block-on-Ring (ASTM G77) تقنية مستخدمة على نطاق واسع لتقييم سلوكيات التآكل المنزلق للمواد في ظروف محاكاة مختلفة، ويسمح بتصنيف موثوق لأزواج المواد لتطبيقات احتكاكية محددة.
 
 

 

هدف القياس

في هذا التطبيق ، يقيس جهاز الفحص الميكانيكي Nanovea YS و UTS من عينات الفولاذ المقاوم للصدأ SS304 وعينات سبائك الألومنيوم Al6061 المعدنية. تم اختيار العينات لقيم YS و UTS المعترف بها بشكل شائع والتي توضح موثوقية طرق المسافة البادئة لـ Nanovea.

 

تم تقييم سلوك التآكل المنزلق لكتلة H-30 على حلقة S-10 بواسطة مقياس الاحتكاك الخاص بـ Nanovea باستخدام وحدة Block-on-Ring. كتلة H-30 مصنوعة من فولاذ أداة 01 بصلابة 30HRC، في حين أن الحلقة S-10 مصنوعة من الفولاذ من النوع 4620 بصلابة سطحية 58 إلى 63 HRC وقطر الحلقة ~ 34.98 ملم. تم إجراء اختبارات الكتلة على الحلقة في بيئات جافة ومشحمة لدراسة التأثير على سلوك التآكل. تم إجراء اختبارات التشحيم في الزيوت المعدنية الثقيلة USP. تم فحص مسار التآكل باستخدام Nanovea مقياس عدم الاتصال ثلاثي الأبعاد. يتم تلخيص معلمات الاختبار في الجدول 1. تم تقييم معدل التآكل (K) باستخدام الصيغة K=V/(F×s)، حيث V هو الحجم البالي، F هو الحمل الطبيعي، s هي المسافة المنزلقة.

 

 

النتائج والمناقشة

يقارن الشكل 2 معامل الاحتكاك (COF) لاختبارات Block-on-Ring في البيئات الجافة والمشحمة. تحتوي الكتلة على احتكاك أكبر بكثير في البيئة الجافة مقارنة بالبيئة المشحمة. COF
يتقلب خلال فترة التشغيل في أول 50 ثورة ويصل إلى COF ثابت يبلغ ~ 0.8 لبقية اختبار التآكل في 200 ثورة. بالمقارنة، فإن اختبار Block-on-Ring الذي تم إجراؤه في تشحيم الزيوت المعدنية الثقيلة USP يُظهر COF منخفضًا ثابتًا يبلغ 0.09 طوال اختبار التآكل ذو 500000 ثورة. يقلل زيت التشحيم بشكل كبير من COF بين الأسطح بمقدار 90 مرة تقريبًا.

 

يوضح الشكلان 3 و 4 الصور البصرية والمقاطع العرضية ثنائية الأبعاد لندبات التآكل على الكتل بعد اختبارات التآكل الجافة والمزلقة. يتم سرد أحجام مسار التآكل ومعدلات التآكل في الجدول 2. تُظهر الكتلة الفولاذية بعد اختبار التآكل الجاف بسرعة دوران منخفضة تبلغ 72 دورة في الدقيقة لـ 200 دورة حجم ندبة تآكل كبيرة تبلغ 9.45 مم˙. وبالمقارنة ، فإن اختبار التآكل الذي يتم إجراؤه بسرعة أعلى تبلغ 197 دورة في الدقيقة لـ 500000 دورة في زيوت التشحيم بالزيوت المعدنية ينتج عنه حجم مسار تآكل أصغر بكثير يبلغ 0.03 مم˙.

 


تُظهر الصور الموجودة في ÿgure 3 حدوث تآكل شديد أثناء الاختبارات في الظروف الجافة مقارنة بالتآكل الخفيف الناتج عن اختبار التآكل المزلّق. تعمل الحرارة العالية والاهتزازات الشديدة المتولدة أثناء اختبار التآكل الجاف على تعزيز أكسدة الحطام المعدني مما يؤدي إلى تآكل شديد لثلاثة أجسام. في اختبار التزليق ، يقلل الزيت المعدني من الاحتكاك ويبرد وجه التلامس بالإضافة إلى نقل الحطام الكاشطة الناتج أثناء التآكل. وهذا يؤدي إلى انخفاض كبير في معدل التآكل بمعامل ~ 8 × 10. يوضح هذا الاختلاف الكبير في مقاومة التآكل في بيئات مختلفة أهمية محاكاة التآكل الانزلاقي المناسبة في ظروف الخدمة الواقعية.

 


يمكن أن يتغير سلوك التآكل بشكل كبير عند إدخال تغييرات صغيرة في ظروف الاختبار. إن تعدد استخدامات مقياس النبض في Nanovea يسمح بقياس التآكل في درجات الحرارة العالية ، والتشحيم ، وظروف تريبوكوروسيون. يتيح التحكم الدقيق في السرعة والموضع بواسطة المحرك المتقدم إجراء اختبارات التآكل بسرعات تتراوح من 0.001 إلى 5000 دورة في الدقيقة ، مما يجعله أداة مثالية لمختبرات البحث / الاختبار لفحص التآكل في مختلف الظروف الترايبولوجية.

 

تم فحص حالة سطح العينات بواسطة جهاز القياس البصري غير المتصل بـ Nanovea. يوضح الشكل 5 الشكل المورفولوجي السطحي للحلقات بعد اختبارات التآكل. تتم إزالة شكل الأسطوانة لتقديم أفضل مظهر وخشونة السطح الناتجة عن عملية التآكل المنزلق. حدث تخشين السطح بشكل كبير بسبب عملية الكشط ثلاثية الأجسام أثناء اختبار التآكل الجاف لـ 200 دورة. تظهر الكتلة والحلقة بعد اختبار التآكل الجاف خشونة Ra تبلغ 14.1 و 18.1 ميكرومتر ، على التوالي ، مقارنة بـ 5.7 و 9.1 ميكرومتر على المدى الطويل 500000 - اختبار التآكل المشحم بالثورة بسرعة أعلى. يوضح هذا الاختبار أهمية التشحيم المناسب لتلامس أسطوانة حلقة المكبس. يؤدي التآكل الشديد إلى إتلاف سطح التلامس بسرعة دون تزييت ويؤدي إلى تدهور لا رجعة فيه في جودة الخدمة وحتى كسر المحرك.

 

 

خاتمة

نعرض في هذه الدراسة كيفية استخدام مقياس Tribometer الخاص بـ Nanovea لتقييم سلوك التآكل المنزلق للزوجين المعدنيين الفولاذيين باستخدام وحدة Block-on-Ring التي تتبع معيار ASTM G77. يلعب زيت التشحيم دورًا حاسمًا في خصائص التآكل لزوج المواد. يقلل الزيت المعدني من معدل تآكل كتلة H-30 بعامل ~8×10ˆ وCOF بمقدار ~90 مرة. إن تعدد استخدامات مقياس Tribometer الخاص بـ Nanovea يجعله أداة مثالية لقياس سلوك التآكل في ظل ظروف التشحيم المختلفة ودرجات الحرارة المرتفعة وظروف التآكل الثلاثي.

يقدم مقياس Tribometer من Nanovea اختبارًا دقيقًا ومتكررًا للتآكل والاحتكاك باستخدام الأوضاع الدورانية والخطية المتوافقة مع ISO وASTM، مع وحدات اختيارية للتآكل والتشحيم والتآكل الثلاثي عند درجة الحرارة العالية متوفرة في نظام واحد متكامل مسبقًا. يعد نطاق Nanovea الذي لا مثيل له حلاً مثاليًا لتحديد النطاق الكامل للخصائص الاحتكاكية للطبقات والأغشية والركائز الرقيقة أو السميكة أو الناعمة أو الصلبة.

الآن ، لنتحدث عن طلبك

طلاء تحليل قشر البرتقال باستخدام مقياس ثلاثي الأبعاد

طلاء تحليل قشر البرتقال باستخدام مقياس ثلاثي الأبعاد

مقدمة

يؤثر حجم وتكرار الهياكل السطحية على الركائز على جودة الطلاء اللامع. يمكن أن يتطور نسيج قشر البرتقال ، الذي سمي على اسم مظهره ، من تأثير الركيزة وتقنية تطبيق الطلاء. عادة ما يتم قياس مشاكل النسيج من خلال التموج وطول الموجة والتأثير البصري الذي تحدثه على الطلاء اللامع. تؤدي القوام الأصغر إلى تقليل اللمعان بينما تؤدي القوام الأكبر إلى ظهور تموجات مرئية على السطح المطلي. إن فهم تطور هذه القوام وعلاقته بالركائز والتقنيات أمر بالغ الأهمية لمراقبة الجودة.

أهمية قياس الملامح لقياس النسيج

على عكس الأدوات التقليدية ثنائية الأبعاد المستخدمة لقياس النسيج اللامع ، يوفر القياس ثلاثي الأبعاد غير الملامس بسرعة صورة ثلاثية الأبعاد تُستخدم لفهم خصائص السطح مع القدرة الإضافية على استكشاف مجالات الاهتمام بسرعة. بدون السرعة والمراجعة ثلاثية الأبعاد ، ستعتمد بيئة مراقبة الجودة فقط على المعلومات ثنائية الأبعاد التي توفر القليل من القدرة على التنبؤ بالسطح بأكمله. يتيح فهم القوام بالأبعاد الثلاثية أفضل اختيار لتدابير المعالجة والتحكم. يعتمد ضمان مراقبة الجودة لمثل هذه المعلمات بشكل كبير على فحص قابل للقياس الكمي وقابل للتكرار وموثوق. نانوفيا 3D عدم الاتصال بروفایلومتر استخدم تقنية (كنفوكل) اللونية للحصول على قدرة فريدة لقياس الزوايا الحادة التي تم العثور عليها أثناء القياس السريع. تنجح مقاييس ملف تعريف نانوفيا حيث تفشل التقنيات الأخرى في توفير بيانات موثوقة بسبب ملامسة المسبار أو اختلاف السطح أو الزاوية أو الانعكاسية.

هدف القياس

في هذا التطبيق ، يقيس Nanovea HS2000L ملمس قشر البرتقال للطلاء اللامع. هناك معلمات سطحية لا حصر لها يتم حسابها تلقائيًا من مسح السطح ثلاثي الأبعاد. نقوم هنا بتحليل سطح ثلاثي الأبعاد ممسوح ضوئيًا من خلال تحديد خصائص نسيج قشر برتقال الطلاء.

النتائج والمناقشة

مقياس Nanovea HS2000L الخواص والارتفاع لطلاء قشر البرتقال. حدد نسيج قشر البرتقال اتجاه النمط العشوائي بـ 94.4%. تحدد معلمات الارتفاع النسيج بفارق ارتفاع يبلغ 24.84 ميكرون.

منحنى نسبة الاتجاه في الشكل 4 هو تمثيل رسومي لتوزيع العمق. هذه ميزة تفاعلية داخل البرنامج تتيح للمستخدم عرض التوزيعات والنسب المئوية على أعماق متفاوتة. يعطي المظهر الجانبي المستخرج في الشكل 5 قيم خشونة مفيدة لنسيج قشر البرتقال. يُظهر استخراج الذروة فوق عتبة 144 ميكرون نسيج قشر البرتقال. يتم تعديل هذه المعلمات بسهولة لمناطق أو معلمات أخرى ذات أهمية.

خاتمة

في هذا التطبيق ، يميز مقياس التشكيل الجانبي عدم التلامس Nanovea HS2000L 3D بدقة كلاً من التفاصيل الطبوغرافية والنانومترية لنسيج قشر البرتقال الدهان على الطلاء اللامع. يتم تحديد مجالات الاهتمام من قياسات الأسطح ثلاثية الأبعاد وتحليلها بسرعة باستخدام العديد من القياسات المفيدة (البعد ، نسيج النهاية الخشنة ، طبوغرافيا شكل الشكل ، تسطيح صفحة الالتواء ، مساحة الحجم ، ارتفاع الخطوة ، إلخ.). توفر المقاطع العرضية ثنائية الأبعاد المختارة بسرعة مجموعة كاملة من موارد قياس السطح على نسيج لامع. يمكن تحليل مجالات الاهتمام الخاصة بشكل أكبر باستخدام وحدة AFM المتكاملة. تتراوح سرعة Nanovea 3D Profilometer من <1 مم / ثانية إلى 500 مم / ثانية لملاءمتها في تطبيقات البحث لاحتياجات الفحص عالي السرعة. تحتوي مقاييس ملف التعريف Nanovea 3D على مجموعة واسعة من التكوينات لتناسب تطبيقك.

الآن ، لنتحدث عن طلبك

تحليل سطحي ثلاثي الأبعاد لبنس مع قياس ملامح عدم التلامس

أهمية قياس ملامح عدم الاتصال للعملات المعدنية

تحظى العملة بتقدير كبير في المجتمع الحديث لأنه يتم تداولها مقابل السلع والخدمات. يتم تداول العملات المعدنية والورقية في أيدي العديد من الأشخاص. يؤدي النقل المستمر للعملة المادية إلى تشوه السطح. نانوفيا 3D مقياس الملامح يقوم بمسح تضاريس العملات المعدنية المسكوكة في سنوات مختلفة للتحقق من الاختلافات السطحية.

يمكن بسهولة التعرف على ميزات العملة لعامة الناس لأنها أشياء شائعة. يعتبر البنس مثاليًا لتقديم قوة برنامج تحليل الأسطح المتقدم من Nanovea: Mountains 3D. تسمح البيانات السطحية التي تم جمعها باستخدام مقياس التعريف ثلاثي الأبعاد الخاص بنا بإجراء تحليلات عالية المستوى للهندسة المعقدة من خلال طرح السطح واستخراج الكفاف ثنائي الأبعاد. يقارن الطرح السطحي باستخدام قناع أو ختم أو قالب يمكن التحكم فيه جودة عمليات التصنيع بينما يحدد الاستخراج الكفافي التفاوتات المسموح بها من خلال تحليل الأبعاد. يقوم برنامج Nanovea's 3D Profilometer وبرنامج Mountains 3D بالتحقيق في التضاريس دون الميكرونية للأشياء التي تبدو بسيطة، مثل البنسات.



هدف القياس

تم مسح السطح العلوي الكامل لخمسة بنسات باستخدام مستشعر الخط عالي السرعة من Nanovea. تم قياس نصف القطر الداخلي والخارجي لكل بنس باستخدام برنامج Mountains Advanced Analysis Software. استخراج من كل سطح بنس في منطقة الاهتمام مع الطرح السطحي المباشر تشوه السطح كميا.

 



النتائج والمناقشة

3D السطح

استغرق مقياس التشكيل الجانبي Nanovea HS2000 24 ثانية فقط لمسح 4 ملايين نقطة في منطقة 20 مم × 20 مم بحجم خطوة 10um x 10um للحصول على سطح بنس واحد. يوجد أدناه خريطة ارتفاع وتصور ثلاثي الأبعاد للمسح. يُظهر العرض ثلاثي الأبعاد قدرة المستشعر عالي السرعة على التقاط التفاصيل الصغيرة التي لا يمكن للعين تصورها. تظهر العديد من الخدوش الصغيرة على سطح العملة المعدنية. يتم فحص نسيج وخشونة العملة التي تظهر في العرض ثلاثي الأبعاد.

 










التحليل البعدي

تم استخلاص ملامح العملة المعدنية وحصل تحليل الأبعاد على الأقطار الداخلية والخارجية لميزة الحافة. بلغ متوسط نصف القطر الخارجي 9.500 مم ± 0.024 بينما بلغ متوسط نصف القطر الداخلي 8.960 مم ± 0.032. تحليلات الأبعاد الإضافية التي يمكن أن تقوم بها Mountains 3D على مصادر البيانات ثنائية وثلاثية الأبعاد هي قياسات المسافة ، ارتفاع الخطوة ، التسوية ، وحسابات الزاوية.







طرح السطح

يوضح الشكل 5 مجال الاهتمام لتحليل الطرح السطحي. تم استخدام بنس 2007 كسطح مرجعي للبنسات الأربعة الأقدم. يُظهر الطرح السطحي من سطح البنس لعام 2007 الاختلافات بين البنسات ذات الثقوب / القمم. يتم الحصول على فرق حجم السطح الكلي من خلال إضافة أحجام الثقوب / القمم. يشير خطأ RMS إلى مدى توافق الأسطح الصغيرة مع بعضها البعض.


 









خاتمة





مسح HS2000L عالي السرعة من Nanovea خمسة بنسات تم سكها في سنوات مختلفة. قارن برنامج Mountains 3D بين أسطح كل عملة باستخدام استخراج الكنتور وتحليل الأبعاد والطرح السطحي. يحدد التحليل بوضوح نصف القطر الداخلي والخارجي بين العملات المعدنية أثناء المقارنة المباشرة للاختلافات في سمات السطح. مع قدرة مقياس التشكيل الجانبي ثلاثي الأبعاد من Nanovea على قياس أي أسطح بدقة على مستوى النانومتر ، جنبًا إلى جنب مع إمكانات تحليل Mountains 3D ، فإن تطبيقات البحث ومراقبة الجودة الممكنة لا حصر لها.

 


الآن ، لنتحدث عن طلبك