インライン粗さ検査
詳細はこちら
インライン粗さ検査における非接触式プロファイラの重要性
表面欠陥は、材料の加工や製品の製造に起因します。インライン表面品質検査により、最終製品の最も厳密な品質管理が保証されます。ナノベア 3D非接触形状計 非接触でサンプルの粗さを測定する独自の機能を備えたクロマチック共焦点技術を利用します。複数のプロファイラー センサーを設置して、製品のさまざまな領域の粗さと質感を同時に監視できます。解析ソフトウェアによってリアルタイムで計算された粗さのしきい値は、高速で信頼性の高い合否判定ツールとして機能します。
測定目的
本研究では、ポイントセンサーを搭載したナノベアーの粗さ検査コンベアシステムを用いて、アクリルとサンドペーパーサンプルの表面粗さを検査します。生産ラインにおいて、高速で信頼性の高いインライン粗さ検査をリアルタイムに提供するナノベアーの能力を紹介します。
結果および考察
コンベア式プロフィロメータシステムは、トリガモードと連続モードの2つのモードで動作させることができる。図2に示すように、トリガーモードでは、試料が光学式プロファイラヘッドの下を通過する際に表面粗さが測定されます。これに対し、連続モードでは、金属板や布地などの連続した試料の表面粗さをノンストップで測定することができます。複数の光学式プロファイラーセンサーを設置し、異なるサンプル領域の粗さをモニターし記録することができます。
リアルタイムの粗さ検査測定中、図4と図5に示すように、合格と不合格の警告がソフトウェアのウィンドウに表示されます。粗さの値が与えられた閾値の範囲内にある場合、測定された粗さは緑色でハイライトされます。しかし、測定された表面粗さが設定されたしきい値の範囲外である場合、ハイライトは赤色に変化する。これは、ユーザーが製品の表面仕上げの品質を判断するためのツールを提供するものである。
以下では、アクリルと紙やすりの2種類の試料を用いて、検査システムのトリガーモードと連続モードのデモンストレーションを行います。
トリガーモード。アクリル試料の表面検査
図1に示すように、一連のアクリル試料はコンベアベルト上に整列され、光学式プロファイラヘッドの下を移動します。図6の擬似カラー図は、表面の高さの変化を示しています。鏡面仕上げされたアクリルサンプルの一部は、図6bに示すように、サンディングされて粗い表面テクスチャを形成していた。
アクリルサンプルは光学式プロファイラヘッドの下を一定速度で移動するため、図7および図8に示すように表面形状が測定される。測定されたプロファイルの粗さ値も同時に計算され、閾値と比較されます。粗さの値が設定されたしきい値を超えると赤色のフェイルアラートが起動し、ユーザーは生産ライン上の不良品を即座に発見し、場所を特定することができるようになります。
連続モード。サンドペーパーサンプルの表面検査
図9に示すように、サンドペーパーサンプル表面の表面高さマップ、粗さ分布マップ、および粗さ閾値の合否マップを作成した。サンドペーパーサンプルは、表面高さマップに示されるように、使用部分にいくつかの高いピークがある。図9Cのパレット内の異なる色は、局所表面の粗さ値を表している。粗さマップは、サンドペーパーサンプルの無傷の領域で均質な粗さを示す一方、使用済みの領域は濃い青色で強調され、この領域で粗さの値が低下していることを示している。図9Dに示すように、このような領域を特定するために、粗さの合否のしきい値を設定することができます。
サンドペーパーがインラインプロファイラセンサーの下を連続的に通過すると、図10にプロットされているように、リアルタイムの局所粗さ値が計算され記録される。設定された粗さのしきい値に基づいて合否のアラートがソフトウェア画面に表示され、品質管理のための迅速かつ信頼性の高いツールとして機能する。生産ラインにおける製品の表面品質をその場で検査し、不良箇所をいち早く発見することができる。
このアプリケーションでは、光学式非接触プロファイラーセンサーを搭載したナノベアコンベアプロフィロメーターが、信頼性の高いインライン品質管理ツールとして効果的かつ効率的に機能することを示しました。
生産ラインに設置することで、製品の表面品質をその場で監視することができる検査装置です。粗さの閾値は、製品の表面品質を判断するための信頼できる基準として機能し、ユーザーは不良品にいち早く気づくことができます。トリガーモードと連続モードの2つの検査モードがあり、さまざまな種類の製品の検査に対応します。
ここに掲載されているデータは、解析ソフトウェアで利用可能な計算の一部に過ぎません。ナノベアプロフィロメータは、半導体、マイクロエレクトロニクス、太陽電池、ファイバー、光学、自動車、航空宇宙、冶金、機械加工、コーティング、医薬品、バイオメディカル、環境などの分野で、ほぼすべての表面を測定することができます。
さて、次はアプリケーションについてです。
カテゴリー
- アプリケーションノート
- ブロック・オン・リングトライボロジー
- 腐食トライボロジー
- 摩擦試験|摩擦係数
- 高温機械試験
- 高温トライボロジー
- 湿度・ガス トライボロジー
- 湿度機械試験
- 圧痕|クリープとリラクゼーション
- 圧痕|破壊靭性
- 圧痕|硬度・弾性率
- 圧痕|紛失と保管
- 圧痕|応力と歪み
- 圧痕|降伏強度と疲労の関係
- ラボラトリーテスト
- リニアトライボロジー
- 液体機械試験
- 液状トライボロジー
- 低温トライボロジー
- メカニカルテスト
- プレスリリース
- プロフィロメトリー|平坦度・反り率
- プロフィロメトリー|幾何学と形状
- プロフィロメトリー|粗さと仕上がり
- プロフィロメトリー|段差の高さと厚み
- プロフィロメトリー|テクスチャーとグレーン
- プロフィロメトリー|体積・面積
- プロフィロメトリーテスト
- リング・オン・リング トライボロジー
- 回転トライボロジー
- スクラッチテスト|接着剤の不具合について
- スクラッチテスト|コヒーシブフェール
- スクラッチテスト|マルチパス摩耗
- スクラッチテスト|スクラッチハードネス
- スクラッチテスト トライボロジー
- トレードショー
- トライボロジー試験
- 未分類
月別アーカイブ
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月
- 2022年7月