アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

カテゴリー機械試験

 

ナノインデンテーションによる高分子のクリープ変形解析

ナノインデンテーションによる高分子のクリープ変形解析

詳細はこちら

クリープ変形

ナノインデンテーションによる高分子材料の評価

作成者

DUANJIE LI博士号取得

はじめに

粘弾性材料である高分子は、ある一定の荷重が加わると時間依存的に変形することが多く、これはクリープとも呼ばれる。クリープは、構造部品、接合部、継手、静水圧容器など、高分子部品が連続的に応力にさらされるように設計されている場合に、重要な要素となる。

クリープ測定の重要性 ポリマーズ

粘弾性の固有の性質は、ポリマーの性能に重要な役割を果たし、サービスの信頼性に直接影響します。荷重や温度などの環境条件は、ポリマーのクリープ挙動に影響を与えます。クリープ故障は、特定の使用条件下で使用されるポリマー材料の時間依存性のクリープ挙動に対する注意力の欠如が原因で発生することがよくあります。結果として、ポリマーの粘弾性機械的挙動の信頼性が高く定量的な試験を開発することが重要です。 NANOVEAのNanoモジュール メカニカルテスター 高精度のピエゾで負荷を加え、その場で力と変位の変化を直接測定します。精度と再現性の組み合わせにより、クリープ測定に理想的なツールとなります。

測定目的

このアプリケーションでは、次のことを紹介しました。
メカニカルテスター「NANOVEA PB1000
において ナノインデンテーション モードは理想的なツールです
粘弾性力学的特性の研究用
硬度、ヤング率など
と高分子材料のクリープ

ナノビア

PB1000

試験条件

8種類のポリマーサンプルについて、NANOVEA PB1000メカニカルテスターを用いて、ナノインデンテーション法による試験を行いました。荷重が0から40 mNまで直線的に増加するにつれて、荷重段階での深さが徐々に増加した。その後、最大荷重40mNで30秒間の圧痕深さの変化によりクリープを測定した。

最大荷重 40 mN
荷重レート
80 mN/min
アンローディングレート 80 mN/min
クリープタイム
30 s

圧子種類

バーコビッチ

ダイヤモンド

*ナノインデンテーション試験の設定

結果・考察

異なるポリマー試料のナノインデンテーション試験の荷重-変位プロットを図1に、クリープ曲線を図2に比較した。また、硬度およびヤング率を図3に、クリープ深さを図4にまとめて示す。図1の例として、ナノインデンテーション測定の荷重-変位曲線のAB、BC、CD部分は、それぞれ荷重、クリープ、除荷の過程を表しています。

デルリンとPVCはそれぞれ0.23 GPaと0.22 GPaという最高の硬度を示し、LDPEは試験したポリマーの中で最も低い0.026 GPaという硬度を有しています。一般に、硬いポリマーほどクリープ速度は小さくなります。最も柔らかいLDPEのクリープ深度は798 nmで、これに対してデルリンは約120 nmでした。

構造部品に使用される場合、ポリマーのクリープ特性は非常に重要です。高分子の硬度とクリープを精密に測定することで、高分子の時間依存の信頼性をより深く理解することができます。また、NANOVEA PB1000 メカニカルテスターを用いれば、異なる温度や湿度でのクリープ(与えられた荷重における変位の変化)を測定することができ、高分子の粘弾性力学的挙動を定量的かつ確実に測定する理想的なツールとなっています。
を現実的なアプリケーション環境でシミュレートしています。

図1: 荷重と変位のプロット
異なるポリマーの

図2: 最大荷重40mNで30秒間のクリープ。

図3: ポリマーの硬度、ヤング率。

図4: ポリマーのクリープ深度。

まとめ

この研究では、NANOVEA PB1000が
硬度、ヤング率、クリープなど、さまざまなポリマーの機械的特性を測定します。このような機械的特性は、意図する用途に適したポリマー材料を選択するために不可欠です。Derlin と PVC はそれぞれ 0.23 GPa と 0.22 GPa という最高の硬度を示し、LDPE はテストしたポリマーの中で 0.026 GPa という最低の硬度を有しています。一般に、硬いポリマーほどクリープ速度は小さくなります。最も柔らかいLDPEのクリープ深度は798 nmで、Derlinの約120 nmと比較して高い値を示しています。

ナノベアメカニカルテスターは、ナノモジュールとマイクロモジュールを1つのプラットフォームで提供する、他に類を見ない多機能なテスターです。ナノとマイクロの両モジュールには、スクラッチテスター、硬度計、摩耗試験機のモードがあり、1つのシステムで最もワイルドでユーザーフレンドリーな試験環境を提供します。

さて、次はアプリケーションについてです。

ナノインデンテーションを用いた混相流材料 NANOVEA

多相金属ナノインデンテーション

ナノインデンテーションを用いた多相系材料の冶金学的研究

詳細はこちら

冶金学
多相系材料の

ナノインデンテーションを用いた

作成者

DUANJIE LI博士号取得 & アレクシスセレスタン

はじめに

冶金学は、金属元素やその金属間化合物、合金の物理的・化学的挙動を研究する学問である。金属は、鋳造、鍛造、圧延、押出、機械加工などの加工を受けると、相変化、微細構造、組織などの変化を経験する。これらの変化により、材料の硬度、強度、靭性、延性、耐摩耗性などの物理的性質が変化します。このような特定の相・組織・模様の形成機構を知るために、金属組織学が応用されることが多い。

材料設計における局所力学特性の重要性 材料設計における局所的な力学特性の重要性

先進的な材料は、産業上の実践における対象用途に望ましい機械的特性を達成するために、特殊な微細構造と組織に複数の相を備えていることがよくあります。 ナノインデンテーション 小さなスケールで材料の機械的挙動を測定するために広く適用されています i ii. しかし、非常に小さな領域で特定の場所を正確に選んで圧痕を形成することは困難であり、時間もかかります。材料の異なる相の機械的特性を高精度かつタイムリーに測定するために、信頼性が高く使いやすいナノインデンテーション試験の手順が求められているのです。

測定目的

このアプリケーションでは、最強のメカニカルテスターであるNANOVEA PB1000を使用して、多相の冶金サンプルの機械的特性を測定しています。

ここでは、アドバンストポジションコントローラを用いて、大きな試料表面の多相(粒)のナノインデンテーション測定を高精度に、かつ使いやすく行うことができるPB1000の能力を紹介する。

ナノビア

PB1000

試験条件

本研究では、複数の相を持つ冶金用試料を使用した。この試料は、圧子試験の前に鏡面研磨されています。この試料では、以下のように、PHASE1、PHASE2、PHASE3、PHASE4の4つのフェーズが確認されています。

アドバンストステージコントローラーは、光学顕微鏡下での試料の移動速度をマウスの位置によって自動的に調整する、直感的なサンプルナビゲーションツールです。マウスが視野の中心から離れれば離れるほど、ステージはマウスの方向へ速く移動します。これにより、サンプル表面全体をナビゲートし、機械的試験を行う意図した場所を選択するためのユーザーフレンドリーな方法が提供されます。試験場所の座標は、荷重、ロード/アンロード速度、マップ内の試験回数など、個々の試験設定とともに保存され、番号が振られます。このような試験手順により、ユーザーは大きなサンプル表面の中から圧痕の対象となる特定の場所を調べ、異なる場所でのすべての圧痕試験を一度に行うことができるため、多相の冶金サンプルの機械的試験に理想的なツールとなります。

に内蔵された光学顕微鏡下で、試料の特定相の位置決めを行いました。 ナノビア 機械式テスター 図1.選択した位置の座標を保存し、以下の試験条件で一斉に自動ナノインデンテーション試験を行います。

図1: 試料表面のナノインデンテーション位置の選択。
RESULTS: 異なる相のナノインデンテーション

試料の異なる位相での圧痕を以下に表示します。の試料ステージの優れた位置制御を実証しています。 ナノビア メカニカルテスター これにより、ユーザーは機械的特性試験の対象位置を正確に特定できるようになります。

圧痕の代表的な荷重-変位曲線を以下に示す。 図2また,Oliver and Pharr 法を用いて算出した硬度およびヤング率も測定しています。iii にまとめられ、比較されています。 図3.


があります。
フェーズ1、2、3 4 はそれぞれ、〜5.4, 19.6, 16.2, 7.2 GPaの平均硬度を有している。の比較的小さなサイズである。 PHASES 2 は、硬度とヤング率の値の標準偏差が高いことに起因しています。

図2: 荷重-変位曲線
ナノインデンテーションの

図3: 異相の硬度とヤング率

まとめ

この研究では、ナノベアメカニカルテスターがアドバンストステージコントローラを使用して、大きな冶金サンプルの多相のナノインデンテーション測定を行う様子を紹介しました。精密な位置制御により、ユーザーは大きな試料表面を簡単に移動し、ナノインデンテーション測定に関心のある領域を直接選択することができます。

すべての圧痕の位置座標は保存され、その後、連続して実行されます。このような試験方法により、小さなスケールでの局所的な機械的特性の測定、例えば本研究の多相金属サンプルの測定は、大幅に時間がかからず、より使いやすいものとなりました。硬いフェーズ2、3、4は、サンプルの機械的特性を向上させ、フェーズ1の平均硬度が約5.4 GPaであるのに対し、それぞれ約19.6、16.2、7.2 GPaとなっています。

ナノ、マイクロ、マクロの各モジュールには、ISO や ASTM に準拠した圧痕、スクラッチ、摩耗試験モードがあり、1 台のシステムで最も幅広く、使いやすい試験法を提供します。ナノベアは、硬度、ヤング率、破壊靭性、接着性、耐摩耗性など、薄い膜や厚い膜、柔らかい膜や硬い膜、基材など、あらゆる機械特性を測定するための理想的なソリューションです。

i Oliver, W. C.; Pharr, G. M., Journal of Materials Research, Volume 19, Issue 1, Jan 2004, pp.3-20.
ii Schuh, C.A., Materials Today, Volume 9, Issue 5, May 2006, pp.32-40.
iii Oliver, W. C.; Pharr, G. M., Journal of Materials Research, Volume 7, Issue 6, June 1992, pp.1564-1583.

さて、次はアプリケーションについてです。

高分子材料の動的機械分析(DMA)周波数掃引

ダマ周波数掃引

ナノインデンテーションを用いた高分子材料の

作成者

Duanjie Li, PhD

はじめに

動的機械解析の重要性 周波数スイープ試験

応力の周波数が変化すると、多くの場合、ポリマーの重要な機械的特性である複素弾性率が変化します。たとえば、車両が道路を走行しているとき、タイヤは周期的に大きな変形を受けます。車が高速に加速するにつれて、圧力と変形の周波数は変化します。このような変化により、車の性能の重要な要素であるタイヤの粘弾性特性が変化する可能性があります。さまざまな周波数でのポリマーの粘弾性挙動の信頼性が高く、再現可能なテストが必要です。 NANOVEAのNanoモジュール メカニカルテスター 高精度ピエゾアクチュエータによって正弦波負荷を生成し、超高感度ロードセルとコンデンサを使用して力と変位の変化を直接測定します。簡単なセットアップと高精度の組み合わせにより、動的機械解析の周波数スイープに理想的なツールとなります。

粘弾性材料は、変形するときに粘性と弾性の両方の性質を示す。高分子材料は分子鎖が長いため、弾性固体とニュートン流体の性質を併せ持つユニークな粘弾性体である。粘弾性特性は、応力、温度、周波数などの要因によって変化する。Dynamic Mechanical Analysis(DMA)は、正弦波状の応力を加え、ひずみの変化を測定することで、材料の粘弾性挙動と複素弾性率を研究するものである。

測定目的

このアプリケーションでは、最も強力な機械試験機である NANOVEA PB1000 を使用して、さまざまな DMA 周波数で研磨されたタイヤ サンプルの粘弾性特性を研究します。 ナノインデンテーション モードです。

ナノビア

PB1000

試験条件

FREQUENCIES (Hz)。

0.1, 1.5, 10, 20

各フリークエムのクリープ時間

50秒

発振電圧

0.1 V

負荷電圧

1 V

圧子型

球状

ダイヤモンド|100μm

結果・考察

最大荷重での動的機械分析の周波数掃引により、1回の試験で異なる荷重周波数における試料の粘弾性特性について、迅速かつ簡便に測定することができます。異なる周波数における荷重波と変位波の位相シフトと振幅から、以下のような様々な基本的な材料の粘弾性特性を計算することが可能です。 貯蔵弾性率, 損失弾性率タン(δ) を以下のグラフにまとめました。 

この試験で用いた 1、5、10、20 Hz の周波数は、時速約 7、33、67、134 km に相当します。試験周波数が 0.1 から 20 Hz に増加するにつれて,貯蔵弾性率と損失弾性率の両方が徐々に増加することが観察され ます。タン(δ)は周波数が 0.1 から 1 Hz に増加するにつれて ~0.27 から 0.18 に減少し、20 Hz に達すると ~0.55 まで徐々に増加します。DMAの周波数掃引により、貯蔵弾性率、損失弾性率、Tan(δ)の傾向を測定することができ、ポリマーのガラス転移だけでなく、モノマーの移動と架橋の情報を得ることができます。また、周波数掃引中に加熱板を用いて温度を上げることで、異なる試験条件下での分子運動の性質をより完全に把握することが可能です。

ロード&デプスの進化

フルDMA周波数掃引の

荷重・深度 vs 各種周波数における時間

貯蔵弾性率

異周波数で

ロス・モジューラス

異周波数で

タン(δ)

異周波数で

まとめ

本研究では、タイヤサンプルの動的力学解析周波数スイープ試験におけるNANOVEAメカニカルテスターの能力を紹介しました。この試験は、異なる周波数の応力におけるタイヤの粘弾性特性を測定するものです。タイヤは、負荷周波数が0.1Hzから20Hzまで増加するにつれて貯蔵弾性率と損失弾性率が増加することがわかります。異なる速度で走行するタイヤの粘弾性挙動に関する有用な情報を提供し、よりスムーズで安全な走行のためのタイヤ性能の向上に不可欠なものです。DMA周波数スイープ試験は、異なる天候下でのタイヤの現実的な作業環境を模倣するために、様々な温度で実施することができます。

メカニカルテスターNANOVEAのナノモジュールでは、ファストピエゾによる荷重印加は、別の高感度ストレインゲージによる荷重測定から独立しています。深さと荷重の間の位相は、センサーから収集されたデータから直接測定されるため、動的機械分析において明確な利点となります。位相の計算は直接的で、損失や貯蔵弾性率の結果に不正確さを加えるような数学的モデリングは必要ありません。これはコイルベースのシステムには当てはまりません。

結論として、DMAは接触深さ、時間、周波数の関数として、損失弾性率、貯蔵弾性率、複素弾性率、Tan(δ)を測定します。オプションの加熱ステージにより、DMA中に材料の相転移温度を測定することができます。ナノベアメカニカルテスターは、ナノモジュールとマイクロモジュールを一つのプラットフォームで提供する、他に類を見ない多機能なテスターです。ナノとマイクロの両モジュールには、スクラッチテスター、硬さ試験機、摩耗試験機のモードがあり、1つのモジュールで最も幅広く、最も使いやすい試験方法を提供します。

さて、次はアプリケーションについてです。

微粒子。圧縮強度とマイクロインデンテーション

マイクロ粒子

圧縮強度と微小圧痕
塩分検査で

著者
ホルヘ・ラミレス

によって改訂されました。
Jocelyn Esparza

はじめに

圧縮強度は、今日見られる新規および既存の微粒子やマイクロフィーチャー(柱状および球状)の開発および改良における品質管理測定に不可欠なものとなっている。微粒子の形状やサイズは様々で、セラミック、ガラス、ポリマー、金属から開発することができます。その用途は、薬物送達、食品の風味向上、コンクリート製剤など多岐にわたる。微小粒子の機械的特性を制御することは、その成功に不可欠であり、その機械的完全性を定量的に評価する能力が必要である。  

深さ対荷重圧縮強度の重要性

標準的な圧縮測定器は、低荷重に対応できず、十分な測定ができない。 微粒子の深さデータ。 Nanoを使用するか、 マイクロインデンテーション、ナノ粒子またはマイクロ粒子(柔らかいまたは硬い)の圧縮強度を正確かつ正確に測定できます。  

測定目的

このアプリケーションノートでは、測定  との塩の圧縮強度は その メカニカルテスター「NANOVEA マイクロインデンテーショ ンモードの場合。

ナノビア

CB500

試験条件

最大勢力

30 N

積載率

60 N/分

アンロード率

60 N/分

圧子型

フラットパンチ

スチール|直径1mm

荷重-深度曲線

結果と考察

Particle 1とParticle 2の高さ、破壊力、強度。

この挙動は、材料が降伏点に達し、加えられた圧縮力に耐えられなくなったことを示しています。降伏点を超えると、荷重がかかっている間、圧痕の深さが指数関数的に増加し始めます。このような挙動は、以下のように見ることができます。 荷重-深度曲線 の両サンプルについて。

まとめ

結論として、我々は、どのように ナノビア メカニカルテスター のマイクロインデンテーション・モードは、微粒子の圧縮強度試験に最適なツールです。試験した粒子は同じ材料でできていますが、この研究で測定された破損点が異なるのは、粒子にあらかじめ存在する微小亀裂や、粒子径が異なるためではないかと推測されます。なお、脆性材料については、試験中に亀裂の進展の始まりを測定するアコースティックエミッションセンサーが利用可能である。


があります。
ナノビア メカニカルテスター は、サブナノメーターレベルの深さ方向の変位分解能を実現しています。
非常に壊れやすい微小な粒子や特徴の研究にも最適なツールです。柔らかくて壊れやすい
ナノインデンテーション・モジュールにより、0.1mNまでの負荷が可能です。

さて、次はアプリケーションについてです。

セラミックスナノインデンテーションによる高速マッピングによる結晶粒の検出

はじめに

 

ナノインデンテーション 小さなスケールで材料の機械的挙動を測定するために広く適用される技術となっていますi ii。ナノインデンテーション測定による高解像度の荷重変位曲線は、硬度、ヤング率、クリープ、破壊靱性などのさまざまな物理機械的特性を提供します。

 

 

高速マッピングのインデントの重要性

 

ナノインデンテーション技術をさらに普及させるための大きなボトルネックの 1 つは、時間の消費です。従来のナノインデンテーション手順による機械的特性のマッピングは容易に数時間かかる可能性があり、半導体、航空宇宙、MEMS、セラミックタイルなどの消費者製品などの大量生産産業への技術の適用を妨げています。

セラミック タイル製造業界では高速マッピングが不可欠であることが証明されており、単一のセラミック タイル全体にわたる硬度とヤング率のマッピングにより、表面がどの程度均質であるかを示すデータの分布が示されます。このマッピングでは、タイル上の柔らかい領域の輪郭を描くことができ、誰かの住居で日常的に起こる物理的な衝撃によって故障しやすい場所を示します。比較研究のためにさまざまなタイプのタイルにマッピングを作成したり、品質管理プロセスでタイルの一貫性を測定するために類似したタイルのバッチにマッピングを作成したりできます。測定セットアップの組み合わせは広範囲にわたるだけでなく、高速マッピング方法により正確かつ効率的に行うことができます。

 

測定目的

 

この研究では、ナノベー メカニカルテスター、FastMap モードでは、床タイルの機械的特性を高速でマッピングするために使用されます。高い精度と再現性で 2 つの高速ナノインデンテーション マッピングを実行する Nanovea Mechanical Tester の能力を紹介します。

 

テスト条件

 

Nanovea Mechanical Tester を使用して、Berkovich 圧子を使用して床タイル上で FastMap モードで一連のナノ圧痕を実行しました。作成された 2 つのインデント マトリックスについてのテスト パラメーターを以下にまとめます。

 

表 1: テストパラメータの概要。

 

結果・考察 

 

図 1: 625 インデントの硬度マッピングの 2D および 3D ビュー。

 

 

 

図 2: 粒子を示す 625 インデントのマトリックスの顕微鏡写真。

 

 

625 インデントのマトリックスを 0.20 mm で実行2 目に見える大きな粒子が存在する領域。この粒子 (図 2) は、タイルの表面全体よりも低い平均硬度を持っていました。 Nanovea Mechanical ソフトウェアを使用すると、図 1 に示す硬度分布マップを 2D および 3D モードで表示できます。サンプル ステージの高精度位置制御を使用して、このソフトウェアを使用すると、このような領域を詳細にターゲットにすることができます。機械的特性のマッピング。

図 3: 1600 インデントの硬度マッピングの 2D および 3D ビュー。

 

 

図 4: 1600 インデントのマトリックスの顕微鏡写真。

 

 

表面の均一性を測定するために、同じタイル上に 1600 インデントのマトリックスも作成されました。ここでもユーザーは、凹んだ表面の顕微鏡画像だけでなく、3D または 2D モード (図 3) で硬度分布を見ることができます。提示された硬度分布に基づいて、高硬度と低硬度のデータ ポイントが均一に散在しているため、材料は多孔質であると結論付けることができます。

従来のナノインデンテーション手順と比較して、この研究の FastMap モードは時間が大幅に短縮され、コスト効率が高くなります。これにより、硬度やヤング率などの機械的特性の迅速な定量的マッピングが可能になり、大量生産におけるさまざまな材料の品質管理に重要な粒子検出と材料の一貫性のためのソリューションが提供されます。

 

 

まとめ

 

この研究では、FastMap モードを使用して迅速かつ正確なナノインデンテーション マッピングを実行する Nanovea Mechanical Tester の能力を紹介しました。セラミックタイル上の機械的特性マップは、ステージの位置制御(精度0.2μm)とフォースモジュールの感度を利用して、表面粒子を検出し、表面の均一性を高速で測定します。

この研究で使用されたテストパラメータは、マトリックスとサンプル材料のサイズに基づいて決定されました。さまざまなテスト パラメーターを選択して、合計押し込みサイクル時間を 1 つの押し込みあたり 3 秒 (または 10 つの押し込みごとに 30 秒) に最適化できます。

Nanovea 機械試験機の Nano および Micro モジュールにはすべて、ISO および ASTM 準拠の押込み試験機、引っかき試験機、摩耗試験機のモードが含まれており、単一システムで最も広範でユーザーフレンドリーな試験を提供します。 Nanovea の比類のない製品ラインナップは、硬度、ヤング率、破壊靱性、接着力、耐摩耗性などを含む、薄いまたは厚い、柔らかいまたは硬いコーティング、フィルム、および基材の機械的特性の全範囲を決定するための理想的なソリューションです。

さらに、オプションの 3D 非接触プロファイラーと AFM モジュールを使用して、粗さなどの他の表面測定に加えて、圧痕、傷、磨耗トラックの高解像度 3D イメージングを行うことができます。

 

著者: Duanjie Li、PhD ピエール・ルルーとジョセリン・エスパルザによる改訂

マイクロインデンテーションによる採掘作業の改善

マイクロインデンテーションの研究および品質管理

岩石力学は、岩石の力学的挙動を研究する学問であり、鉱業、掘削、貯水池生産、土木建設産業で応用されています。機械的特性を正確に測定できる高度な計測機器により、これらの産業では部品や手順の改良が可能です。岩石力学をミクロのスケールで理解することで、品質管理の手順を確実に実行することができます。

マイクロインデンテーション 岩石力学関連の研究に使用される重要なツールです。これらの技術は、岩盤特性のさらなる理解を提供することにより、掘削技術を進歩させます。マイクロインデンテーションは、採掘手順を改善するドリルヘッドを改良するために使用されます。マイクロインデンテーションは、鉱物からのチョークや粉末の形成を研究するために使用されてきました。マイクロインデンテーションの研究には、単一の機器で硬度、ヤング率、クリープ、応力ひずみ、破壊靱性、圧縮を含めることができます。
 
 

測定目的

このアプリケーションでは Nanovea 機械試験機 鉱物岩サンプルのビッカース硬度 (Hv)、ヤング率、および破壊靱性を測定します。この岩は黒雲母、長石、石英で構成されており、標準的な花崗岩の複合材料を形成しています。それぞれが個別にテストされます。

 

結果および考察

このセクションでは、異なる試料の主な数値結果を比較した要約表と、実施した各圧痕を含む完全な結果リスト(可能な場合は圧痕の顕微鏡写真付き)を掲載しています。これらの全結果は、硬度とヤング率の測定値を押し込み深さ(Δd)として、その平均値と標準偏差を表示しています。なお、表面粗さが圧痕と同じ大きさの範囲にある場合、結果に大きなばらつきが生じる可能性があることを考慮する必要があります。


硬度と破壊靭性の主な数値結果の概要表

 

まとめ

ナノベアメカニカルテスターは、鉱物性岩石の硬い表面で再現性と正確な圧痕結果を実証しています。花崗岩を形成する各材料の硬度とヤング率は、深さ対荷重の曲線から直接測定されました。表面が粗いため、より高い荷重で試験を行うことになり、微小亀裂が発生する可能性がありました。このマイクロクラックが、測定値のばらつきの原因になっていると思われます。試料表面が粗いため、標準的な顕微鏡観察ではクラックを認識することができませんでした。そのため、クラックの長さを測定する必要がある従来の破壊靭性数値の算出は不可能である。その代わりに、荷重を増加させながら、深さ対荷重曲線の転位からクラックの発生を検出するシステムを使用した。

破壊閾値荷重は破壊が発生した荷重で報告された。単に亀裂の長さを測定する従来の破壊靭性試験とは異なり、閾値破壊が始まる荷重が得られます。さらに、制御された厳密な監視環境下での硬度測定により、様々なサンプルを比較するための定量的な値として使用することができます。

さて、次はアプリケーションについてです。

ナノインデンテーションを用いた生体組織硬度評価

生体組織ナノインデンテーションの重要性

組織から脆性材料まで様々な先端材料を扱う今日の品質管理環境では、従来の機械試験(硬さ、付着力、圧縮、穿刺、降伏強度など)はより高い精度と信頼性を要求されています。従来の機械式測定器では、先端材料に求められる繊細な荷重制御や分解能を実現することはできませんでした。生体材料に関連する課題として、非常に柔らかい材料に対して正確な荷重制御が可能な機械試験を開発する必要があります。これらの材料は、適切な特性測定を確実に行うために、大きな深さ範囲を持つ非常に低いサブmNの試験荷重を必要とします。さらに、1つのシステムで多くの異なるタイプの機械的試験を実施することができ、より高い機能性を実現します。これにより、生体材料の硬さ、弾性率、損失弾性率、貯蔵弾性率、クリープに加え、耐傷つき性、降伏強度などの重要な測定を行うことができます。

 

測定目的

このアプリケーションでは、ナノインデンテーション・モードのナノベアーの機械試験機を使用して、プロシュートの脂肪、淡肉、濃肉の3つの部位における生体材料代替物の硬度および弾性率を調査しています。

ナノインデンテーションは、ASTM E2546およびISO 14577の計装化された圧子規格に基づくものです。既知の形状の圧子先端を試験材料の特定部位に打ち込み、法線荷重を増加させながら制御する確立された方法を用います。あらかじめ設定された最大深度に達すると、法線荷重は完全に緩和されるまで減少します。荷重はピエゾアクチュエータによって加えられ、高感度ロードセルを用いた制御ループで測定されます。実験中は、試料表面に対する圧子の位置が高精度な静電容量式センサーでモニターされます。結果として得られる荷重と変位の曲線は、試験材料の機械的性質に特化したデータを提供します。確立されたモデルは、測定されたデータから定量的な硬度や弾性率を計算します。ナノインデンテーションは、ナノメートルスケールでの低荷重・浸透深さ測定に適しています。

結果および考察

以下の表は、硬さおよびヤング率の測定値の平均値および標準偏差です。表面粗さが大きい場合、圧痕の大きさが小さくなり、測定結果に大きなばらつきが生じることがあります。

脂肪部分の硬さは、肉部分の約半分でした。肉処理により、色の濃い肉部の方が色の薄い肉部より硬くなった。弾性率と硬度は、脂肪部分と肉部分の口当たりの良さに直接関係しています。脂肪部分と淡色肉部分は、60秒後に濃色肉部分よりも高い割合でクリープが継続している。

詳細結果 - 脂肪

詳細結果 - ライトミート

詳細結果 - ダークミート

結論

このアプリケーションでは、Nanovea の 機械試験機 ナノインデンテーションモードでは、高いサンプル表面粗さを克服しながら、脂肪と肉の領域の機械的特性を確実に決定します。これは、Nanovea の機械的試験機の幅広い比類のない機能を実証しました。このシステムは、非常に硬い材料と柔らかい生体組織の正確な機械的特性測定を同時に提供します。

ピエゾテーブルと閉ループ制御されたロードセルにより、1~5kPaの硬質または軟質のゲル材料を正確に測定することができます。同じシステムを使用して、最大400Nまでの高荷重での生体材料の試験が可能です。また、マルチサイクル荷重による疲労試験や、円柱状の平らなダイヤモンドチップを用いた各ゾーンの降伏強度情報の取得が可能です。また、DMA(Dynamic Mechanical Analysis)により、閉ループ荷重制御で粘弾性特性の損失係数や貯蔵係数を高精度に評価することが可能です。また、様々な温度や液下での試験も同装置で可能です。

ナノベアのメカニカルテスターは、生物学的およびソフトポリマー/ゲルアプリケーションのための優れたツールであり続けています。

さて、次はアプリケーションについてです。

表面処理銅線の耐摩耗性とスクラッチ性の評価

銅線の摩耗・傷評価の重要性

銅は、電磁石や電信機の発明以来、電気配線に使用されてきた長い歴史があります。銅線は、耐食性、はんだ付け性、150℃までの高温での特性から、パネル、メーター、コンピューター、事務機、家電製品など、幅広い電子機器に使用されています。採掘される銅の約半分は、電線・ケーブルの導体製造に使用されています。

銅線の表面品質は、アプリケーションの性能と寿命にとって非常に重要です。ワイヤの微細な欠陥は、過度の摩耗、亀裂の発生と伝播、導電性の低下、不十分なはんだ付け性などにつながる可能性があります。銅線の適切な表面処理は伸線時に発生する表面欠陥を取り除き、耐腐食性、耐傷性、耐摩耗性を向上させます。銅線を使った多くの航空宇宙用途では、予期せぬ機器の故障を防ぐため、その挙動を制御する必要がありま す。銅線表面の耐摩耗性や耐傷性を正しく評価するためには、定量的で信頼性の高い測定が必要です。

 
 

 

測定目的

このアプリケーションでは、異なる銅線の表面処理を制御した摩耗プロセスをシミュレートしています。 スクラッチテスト 処理された表面層に破損を引き起こすのに必要な荷重を測定します。この研究では Nanovea を紹介します トライボメータ メカニカルテスター 電線の評価・品質管理に最適なツールです。

 

 

試験方法と手順

銅線 (ワイヤ A およびワイヤ B) の 2 つの異なる表面処理の摩擦係数 (COF) と耐摩耗性は、線形往復摩耗モジュールを使用する Nanovea トライボメータによって評価されました。 Al₂O₃ ボール (直径 6 mm) が、この用途で使用される相手材です。 Nanovea の摩耗痕跡を調査しました。 3D非接触表面形状計。テストパラメータを表 1 にまとめます。

本研究では、カウンター材料として滑らかなAl₂O₃球を例として使用した。形状や表面仕上げが異なる任意の固体材料は、実際の適用状況をシミュレートするために、カスタムフィクスチャを使用して適用することができます。

 

 

ロックウェルCダイヤモンドスタイラス(半径100μm)を装備したナノベアーの機械式試験機で、マイクロスクラッチモードを使ってコーティングワイヤの順荷重スクラッチ試験を実施しました。スクラッチ試験のパラメータとチップの形状を表2に示す。
 

 

 

 

結果および考察

銅線の磨耗。

図 2 は,摩耗試験中の銅線の COF の変化を示している。A線は摩耗試験中、COFが〜0.4と安定しているのに対し、B線は最初の100回転でCOFが〜0.35となり、徐々に〜0.4まで増加した。

 

図3は、試験後の銅線の摩耗痕を比較したものです。ナノベアの3D非接触プロフィロメータは、摩耗痕の詳細な形態について優れた分析を提供しました。摩耗のメカニズムを根本的に理解することで、摩耗痕の体積を直接かつ正確に把握することができます。ワイヤーBの表面は、600回転の摩耗試験後に摩耗痕が顕著に損傷しています。プロフィロメーターの3D表示では、ワイヤーBの表面処理層が完全に除去され、摩耗プロセスが大幅に加速されたことが分かります。このため、ワイヤーBの銅基板が露出している部分には、平坦な摩耗痕が残っています。この結果、ワイヤBを使用する電気機器の寿命が著しく短くなる可能性があります。一方、ワイヤーAは比較的摩耗が少なく、浅い摩耗痕が残っています。また,ワイヤAの表面処理層は,ワイヤBの表面処理層のように同じ条件下で剥離することはなかった。

銅線表面の傷つきにくさ。

図4は、試験後のワイヤのスクラッチ痕を示したものである。ワイヤーAの保護層は非常に優れた耐傷性を示し、〜12.6Nの荷重で剥離した。これに対し、ワイヤBの保護層は荷重~1.0Nで剥離した。このようにワイヤの耐傷性に大きな差があることから、ワイヤAは耐摩耗性が大幅に向上していることがわかる。図5に示すように、スクラッチ試験中の法線力、COF、深さの変化から、試験中の皮膜破壊についてより深く理解することができる。

結論

この対照研究では、表面処理された銅線の耐摩耗性を定量的に評価するナノベア社のトライボメータと、銅線の耐傷性を確実に評価するナノベア社のメカニカルテスターを紹介しました。ワイヤの表面処理は、その寿命期間中のトライボメカニカル特性に重要な役割を果たします。ワイヤーAの適切な表面処理により、耐摩耗性と耐傷性が大幅に向上し、過酷な環境下での電線の性能と寿命に重要な役割を果たしました。

ナノベアのトライボメータは、ISOおよびASTMに準拠した回転モードとリニアモードによる精密で再現性の高い摩耗・摩擦試験と、オプションの高温摩耗、潤滑、トライボ腐食モジュールを1つの統合済みシステムで利用することができます。ナノベアの比類なき製品群は、薄型・厚型、軟質・硬質コーティング、フィルム、基材のあらゆるトライボロジー特性を測定するための理想的なソリューションです。

さて、次はアプリケーションについてです。

鉄鋼とアルミニウムの降伏強度と引張強度

圧子による降伏強度と極限引張強度の測定の重要性

従来、降伏強度と極限引張強度の試験は、試験片を引き離すのに大きな力を必要とする大型の引張試験機を使って行われてきました。各試料を一度しか試験できない材料に対して、多くの試験片を適切に作成することはコストと時間のかかる作業です。試験片に小さな欠陥があると、試験結果に顕著なばらつきが生じます。市場に出ている引張試験機の構成やアライメントが異なると、試験の仕組みや結果に大きなばらつきが生じることがよくあります。

ナノベアの革新的な圧子法により、従来の引張試験で測定した値に匹敵する降伏強度や極限引張強度の値を直接得ることができます。この測定法は、あらゆる産業において試験の新たな可能性を切り開くものです。シンプルな実験構成により、引張試験に必要な複雑なクーポン形状に比べ、サンプル準備にかかる時間とコストを大幅に削減できます。小さな圧痕で、1つの試料で複数の測定が可能です。サンプル加工時に発生する引張試験用クーポンの欠陥の影響を防ぐことができます。小さなサンプルで局所的にYSやUTSを測定することで、パイプラインや自動車構造物のマッピングや局所的な欠陥の検出が可能です。
 
 

測定目的

このアプリケーションでは、ナノベア メカニカルテスター ステンレス鋼 SS304 およびアルミニウム Al6061 金属合金サンプルの降伏強度と極限引張強度を測定します。サンプルは、Nanovea の圧痕法の信頼性を示す、一般的に認識されている降伏強度と極限引張強度の値に基づいて選択されました。

試験方法と手順

降伏強さと極限引張強さのテストは、Nanovea Mechanical Tester で実行されました。 マイクロインデンテーション モード。この用途には、直径 200 μm の円筒形の平らなダイヤモンドチップが使用されました。 SS304 および Al6061 合金は、インデンテーション法の大きな可能性と信頼性を示すために、その広範な産業用途と一般に認識されている降伏強さおよび極限引張強さの値を考慮して選択されました。表面粗さや欠陥が試験結果に影響を与えるのを避けるため、サンプルは試験前に機械的に鏡面仕上げに研磨されました。テスト条件を表 1 に示します。テスト値の再現性を保証するために、各サンプルに対して 10 回を超えるテストが実行されました。

結果および考察

SS304およびAl6061合金サンプルの荷重-変位曲線を、テストサンプル上の平坦な圧子の痕跡を挿入して図3に示します。Nanovea が開発した特殊なアルゴリズムを用いて「S」字型の荷重曲線を解析すると、降伏強度と極限引張強度が算出されます。値は、表 1 にまとめたように、ソフトウェアによって自動的に計算されます。比較のために、従来の引張試験で得られた降伏強度と極限引張強度の値も記載しています。

 

結論

この研究では、ステンレス鋼およびアルミニウム合金シートのサンプルの降伏強度と極限引張強度を評価する際の Nanovea Mechanical Tester の能力を紹介しました。シンプルな実験設定により、引張試験に必要なサンプル準備の時間とコストが大幅に削減されます。くぼみのサイズが小さいため、1 つのサンプルで複数の測定を実行できます。この方法により、小さなサンプルおよび局所領域での YS/UTS 測定が可能になり、パイプラインまたは自動車構造の YS/UTS マッピングおよび局所欠陥検出のソリューションが提供されます。

Nanovea メカニカル テスターのナノ、マイクロ、またはマクロ モジュールにはすべて、ISO および ASTM 準拠の押込み試験機、スクラッチ試験機、摩耗試験機モードが含まれており、単一システムで利用できる最も広範でユーザー フレンドリーな試験範囲を提供します。 Nanovea の比類のない製品ラインナップは、硬度、ヤング率、破壊靱性、接着性、耐摩耗性などを含む、薄いまたは厚い、柔らかいまたは硬いコーティング、フィルム、および基材の機械的特性の全範囲を決定するための理想的なソリューションです。さらに、オプションの 3D 非接触プロファイラーと AFM モジュールを使用して、粗さなどの他の表面測定に加えて、圧痕、傷、磨耗トラックの高解像度 3D イメージングを行うことができます。

さて、次はアプリケーションについてです。

ナノインデンテーションを用いた歯の硬さ評価

バイオ材料におけるナノインデンテーションの重要性

 
ゲルから脆性材料に至るまで、高度な敏感な材料を使用する今日の品質管理環境では、従来の多くの機械的試験 (硬度、接着力、圧縮、突刺し、降伏強度など) が必要となり、より高い精度と信頼性の管理が求められています。従来の機械式計装では、必要な高感度の負荷制御と分解能を提供できません。バルク材料に使用するように設計されています。試験される材料のサイズに対する関心が高まるにつれて、 ナノインデンテーション 生体材料を使って行われている研究など、より小さな表面に関する重要な機械的情報を取得するための信頼できる方法を提供しました。生体材料に特に関連する課題には、非常に柔らかい材料から脆い材料に対する正確な荷重制御が可能な機械的試験の開発が必要でした。また、さまざまな機械的テストを実行するには複数の機器が必要でしたが、現在では単一のシステムで実行できるようになりました。ナノインデンテーションは、敏感な用途向けにナノ制御された荷重で正確な分解能で幅広い測定を提供します。

 

 

測定目的

このアプリケーションでは、ナノベア メカニカルテスターは、ナノインデンテーション モードで、歯の象牙質、虫歯、歯髄の硬度と弾性率を研究するために使用されます。ナノインデンテーション試験で最も重要な点は、サンプルを固定することです。ここでは、スライスした歯を採取し、エポキシを取り付けて、3 つの対象領域すべてを試験用に露出させておきました。

 

 

結果および考察

このセクションでは、異なる試料の主な数値結果を比較した要約表と、実施した各圧痕を含む完全な結果リストがあり、可能な場合は圧痕の顕微鏡写真も添えています。これらの全結果は、硬度とヤング率の測定値を押し込み深さとして、その平均値と標準偏差を表示しています。なお、表面粗さが圧痕と同じ大きさの範囲にある場合、結果に大きなばらつきが生じる可能性があることを考慮しておく必要がある。

主な数値結果のサマリー表。

 

 

結論

最後に、ナノインデンテーション・モードのナノベアメカニカルテスターで、歯の機械的特性を正確に測定する方法を紹介しました。このデータは、実際の歯の機械的特性によりよく適合する詰め物の開発に利用することができます。ナノベアメカニカルテスターの位置決め機能により、様々なゾーンに渡る歯の硬度の完全なマッピングが可能です。

同じシステムを使って、200Nまでの高荷重で歯の材料の破壊靭性をテストすることが可能です。多孔質材料では、マルチサイクル荷重試験で弾性残存率を評価することができます。平らな円柱状のダイヤモンドチップを使用することで、各ゾーンでの降伏強度の情報を得ることができます。また、DMA(Dynamic Mechanical Analysis)により、損失弾性率や貯蔵弾性率などの粘弾性特性を評価することができます。

ナノベアーのナノモジュールは、独自のフィードバック応答により、かかる荷重を正確に制御するため、こうした試験に最適です。このため、ナノモジュールを使用して正確なナノスクラッチ試験を行うことも可能です。歯材や充填材の耐スクラッチ性と耐摩耗性の研究は、メカニカルテスターの有用性をさらに高めています。2ミクロンの鋭い探針を使って充填材の傷を定量的に比較することで、実際のアプリケーションでの挙動をより正確に予測することが可能になります。マルチパス摩耗または直接回転摩耗試験も一般的な試験であり、長期的な生存率に関する重要な情報を提供します。

さて、次はアプリケーションについてです。