アメリカ/グローバル: +1-949-461-9292
ヨーロッパ+39-011-3052-794
お問い合わせ

3次元形状測定による複合材料解析

複合材料における非接触形状測定の重要性

複合材料の補強用途では、欠陥を最小限に抑え、可能な限り強度を高めることが重要です。異方性材料であるため、織物の方向が一定であることが、高い性能予測性を維持するために重要である。複合材料は重量に対する強度が最も高い材料の一つであり、場合によっては鉄よりも強くなります。化学的な脆弱性や熱膨張の影響を最小限に抑えるために、複合材料の露出表面積を制限することが重要です。プロフィロメトリーによる表面検査は、長期間の使用に耐える強度を確保するために、複合材料の品質管理製造に不可欠です。

ナノベアの 3D非接触形状計 タッチプローブや干渉法などの他の表面測定技術とは異なります。当社の表面形状計は軸色収差を使用してほぼあらゆる表面を測定し、オープンステージングにより準備を必要とせずにあらゆるサイズのサンプルを測定できます。ナノからマクロまでの測定は、サンプルの反射率や吸収の影響を受けることなく表面プロファイル測定中に得られます。当社の表面形状計は、ソフトウェア操作なしで高い表面角度を測定できる高度な機能を備えており、透明、不透明、鏡面、拡散、研磨、粗いなど、あらゆる材質を簡単に測定できます。非接触粗面計技術は、複合材料表面の研究を最大限に高めるための理想的で使いやすい機能を提供します。 2D と 3D 機能を組み合わせたメリットも得られます。

測定目的

このアプリケーションで使用されたナノベアーのHS2000Lプロフィロメーターは、炭素繊維複合材料の2つの織り目の表面を測定しました。表面粗さ、織り長、等方性、フラクタル解析、およびその他の表面パラメータを使用して、複合材料を特性評価します。測定領域はランダムに選択され、Nanoveaの強力な表面分析ソフトウェアを使用して特性値を比較できるほど十分に大きいと想定されています。

結果および考察

表面解析

 
 
 
高さパラメータは、繊維/マトリックス比が低い複合材部品がどの程度粗くなるかを決定します。私たちの結果は、異なる織り方のタイプと布地を比較して、後処理による表面仕上げを決定しています。表面仕上げは、空気力学が関係するようなアプリケーションで重要になります。
 
等方性

等方性は、織物の方向性を示し、期待される特性値を決定します。我々の研究では、双方向性複合材料が予想通り〜60%の等方性であることを示しています。一方、一方向性複合材料は、強い単一繊維経路方向繊維のため、〜13%の等方性であることがわかります。

織物分析
 

織り目の大きさは、複合材料に使用される繊維の詰め具合と幅を決定します。私たちの研究は、部品の品質を保証するために、ミクロン単位の精度で織りのサイズをいかに簡単に測定できるかを示しています。

テクスチャー解析

支配的な波長のテクスチャー分析から、どちらのコンポジットもストランドサイズは4.27ミクロンであることがわかりました。繊維表面のフラクタル次元解析は、繊維がマトリックスに定着しやすいかどうかを調べるために、平滑度を決定します。一方向繊維のフラクタル次元は、双方向繊維よりも高く、複合材料の加工に影響を与える可能性があります。

結論

このアプリケーションでは、ナノベアーの HS2000L 非接触型プロフィロメーターが複合材料の繊維表面を正確に特性評価できることを示しました。高さパラメータ、等方性、テクスチャ分析、距離測定などを用いて、炭素繊維の織り方の違いを識別しました。

ナノベアのプロフィロメーターによる表面計測は、複合材料の損傷を正確かつ迅速に軽減し、部品の欠陥を減らし、複合材料の能力を最大化します。ナノベアの3Dプロフィロメーターの速度は、<1mm/sから500mm/sまであり、研究用途から高速検査のニーズまで対応可能です。ナノベアーのプロフィロメーターはソリューションです。
あらゆる複合的な測定ニーズに対応します。

さて、次はアプリケーションについてです。

ナノインデンテーションを用いた生体組織硬度評価

生体組織ナノインデンテーションの重要性

組織から脆性材料まで様々な先端材料を扱う今日の品質管理環境では、従来の機械試験(硬さ、付着力、圧縮、穿刺、降伏強度など)はより高い精度と信頼性を要求されています。従来の機械式測定器では、先端材料に求められる繊細な荷重制御や分解能を実現することはできませんでした。生体材料に関連する課題として、非常に柔らかい材料に対して正確な荷重制御が可能な機械試験を開発する必要があります。これらの材料は、適切な特性測定を確実に行うために、大きな深さ範囲を持つ非常に低いサブmNの試験荷重を必要とします。さらに、1つのシステムで多くの異なるタイプの機械的試験を実施することができ、より高い機能性を実現します。これにより、生体材料の硬さ、弾性率、損失弾性率、貯蔵弾性率、クリープに加え、耐傷つき性、降伏強度などの重要な測定を行うことができます。

 

測定目的

このアプリケーションでは、ナノインデンテーション・モードのナノベアーの機械試験機を使用して、プロシュートの脂肪、淡肉、濃肉の3つの部位における生体材料代替物の硬度および弾性率を調査しています。

ナノインデンテーションは、ASTM E2546およびISO 14577の計装化された圧子規格に基づくものです。既知の形状の圧子先端を試験材料の特定部位に打ち込み、法線荷重を増加させながら制御する確立された方法を用います。あらかじめ設定された最大深度に達すると、法線荷重は完全に緩和されるまで減少します。荷重はピエゾアクチュエータによって加えられ、高感度ロードセルを用いた制御ループで測定されます。実験中は、試料表面に対する圧子の位置が高精度な静電容量式センサーでモニターされます。結果として得られる荷重と変位の曲線は、試験材料の機械的性質に特化したデータを提供します。確立されたモデルは、測定されたデータから定量的な硬度や弾性率を計算します。ナノインデンテーションは、ナノメートルスケールでの低荷重・浸透深さ測定に適しています。

結果および考察

以下の表は、硬さおよびヤング率の測定値の平均値および標準偏差です。表面粗さが大きい場合、圧痕の大きさが小さくなり、測定結果に大きなばらつきが生じることがあります。

脂肪部分の硬さは、肉部分の約半分でした。肉処理により、色の濃い肉部の方が色の薄い肉部より硬くなった。弾性率と硬度は、脂肪部分と肉部分の口当たりの良さに直接関係しています。脂肪部分と淡色肉部分は、60秒後に濃色肉部分よりも高い割合でクリープが継続している。

詳細結果 - 脂肪

詳細結果 - ライトミート

詳細結果 - ダークミート

結論

このアプリケーションでは、Nanovea の 機械試験機 ナノインデンテーションモードでは、高いサンプル表面粗さを克服しながら、脂肪と肉の領域の機械的特性を確実に決定します。これは、Nanovea の機械的試験機の幅広い比類のない機能を実証しました。このシステムは、非常に硬い材料と柔らかい生体組織の正確な機械的特性測定を同時に提供します。

ピエゾテーブルと閉ループ制御されたロードセルにより、1~5kPaの硬質または軟質のゲル材料を正確に測定することができます。同じシステムを使用して、最大400Nまでの高荷重での生体材料の試験が可能です。また、マルチサイクル荷重による疲労試験や、円柱状の平らなダイヤモンドチップを用いた各ゾーンの降伏強度情報の取得が可能です。また、DMA(Dynamic Mechanical Analysis)により、閉ループ荷重制御で粘弾性特性の損失係数や貯蔵係数を高精度に評価することが可能です。また、様々な温度や液下での試験も同装置で可能です。

ナノベアのメカニカルテスターは、生物学的およびソフトポリマー/ゲルアプリケーションのための優れたツールであり続けています。

さて、次はアプリケーションについてです。

表面処理銅線の耐摩耗性とスクラッチ性の評価

銅線の摩耗・傷評価の重要性

銅は、電磁石や電信機の発明以来、電気配線に使用されてきた長い歴史があります。銅線は、耐食性、はんだ付け性、150℃までの高温での特性から、パネル、メーター、コンピューター、事務機、家電製品など、幅広い電子機器に使用されています。採掘される銅の約半分は、電線・ケーブルの導体製造に使用されています。

銅線の表面品質は、アプリケーションの性能と寿命にとって非常に重要です。ワイヤの微細な欠陥は、過度の摩耗、亀裂の発生と伝播、導電性の低下、不十分なはんだ付け性などにつながる可能性があります。銅線の適切な表面処理は伸線時に発生する表面欠陥を取り除き、耐腐食性、耐傷性、耐摩耗性を向上させます。銅線を使った多くの航空宇宙用途では、予期せぬ機器の故障を防ぐため、その挙動を制御する必要がありま す。銅線表面の耐摩耗性や耐傷性を正しく評価するためには、定量的で信頼性の高い測定が必要です。

 
 

 

測定目的

このアプリケーションでは、異なる銅線の表面処理を制御した摩耗プロセスをシミュレートしています。 スクラッチテスト 処理された表面層に破損を引き起こすのに必要な荷重を測定します。この研究では Nanovea を紹介します トライボメータ メカニカルテスター 電線の評価・品質管理に最適なツールです。

 

 

試験方法と手順

銅線 (ワイヤ A およびワイヤ B) の 2 つの異なる表面処理の摩擦係数 (COF) と耐摩耗性は、線形往復摩耗モジュールを使用する Nanovea トライボメータによって評価されました。 Al₂O₃ ボール (直径 6 mm) が、この用途で使用される相手材です。 Nanovea の摩耗痕跡を調査しました。 3D非接触表面形状計。テストパラメータを表 1 にまとめます。

本研究では、カウンター材料として滑らかなAl₂O₃球を例として使用した。形状や表面仕上げが異なる任意の固体材料は、実際の適用状況をシミュレートするために、カスタムフィクスチャを使用して適用することができます。

 

 

ロックウェルCダイヤモンドスタイラス(半径100μm)を装備したナノベアーの機械式試験機で、マイクロスクラッチモードを使ってコーティングワイヤの順荷重スクラッチ試験を実施しました。スクラッチ試験のパラメータとチップの形状を表2に示す。
 

 

 

 

結果および考察

銅線の磨耗。

図 2 は,摩耗試験中の銅線の COF の変化を示している。A線は摩耗試験中、COFが〜0.4と安定しているのに対し、B線は最初の100回転でCOFが〜0.35となり、徐々に〜0.4まで増加した。

 

図3は、試験後の銅線の摩耗痕を比較したものです。ナノベアの3D非接触プロフィロメータは、摩耗痕の詳細な形態について優れた分析を提供しました。摩耗のメカニズムを根本的に理解することで、摩耗痕の体積を直接かつ正確に把握することができます。ワイヤーBの表面は、600回転の摩耗試験後に摩耗痕が顕著に損傷しています。プロフィロメーターの3D表示では、ワイヤーBの表面処理層が完全に除去され、摩耗プロセスが大幅に加速されたことが分かります。このため、ワイヤーBの銅基板が露出している部分には、平坦な摩耗痕が残っています。この結果、ワイヤBを使用する電気機器の寿命が著しく短くなる可能性があります。一方、ワイヤーAは比較的摩耗が少なく、浅い摩耗痕が残っています。また,ワイヤAの表面処理層は,ワイヤBの表面処理層のように同じ条件下で剥離することはなかった。

銅線表面の傷つきにくさ。

図4は、試験後のワイヤのスクラッチ痕を示したものである。ワイヤーAの保護層は非常に優れた耐傷性を示し、〜12.6Nの荷重で剥離した。これに対し、ワイヤBの保護層は荷重~1.0Nで剥離した。このようにワイヤの耐傷性に大きな差があることから、ワイヤAは耐摩耗性が大幅に向上していることがわかる。図5に示すように、スクラッチ試験中の法線力、COF、深さの変化から、試験中の皮膜破壊についてより深く理解することができる。

結論

この対照研究では、表面処理された銅線の耐摩耗性を定量的に評価するナノベア社のトライボメータと、銅線の耐傷性を確実に評価するナノベア社のメカニカルテスターを紹介しました。ワイヤの表面処理は、その寿命期間中のトライボメカニカル特性に重要な役割を果たします。ワイヤーAの適切な表面処理により、耐摩耗性と耐傷性が大幅に向上し、過酷な環境下での電線の性能と寿命に重要な役割を果たしました。

ナノベアのトライボメータは、ISOおよびASTMに準拠した回転モードとリニアモードによる精密で再現性の高い摩耗・摩擦試験と、オプションの高温摩耗、潤滑、トライボ腐食モジュールを1つの統合済みシステムで利用することができます。ナノベアの比類なき製品群は、薄型・厚型、軟質・硬質コーティング、フィルム、基材のあらゆるトライボロジー特性を測定するための理想的なソリューションです。

さて、次はアプリケーションについてです。