美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

类别。实验室检测

 

纳米压痕的动态机械分析

瓶塞的质量在很大程度上取决于其机械和物理性能。其密封葡萄酒的能力可以被确定为这些重要因素:灵活性、绝缘性、回弹力以及对气体和液体的不渗透性。通过进行动态机械分析(DMA)测试,可以用一种可量化的方法来衡量其弹性和回弹特性。这些特性可通过Nanovea机械测试仪的 纳米级的 "Nanoindentaion"。 以杨氏模量、存储模量、损失模量和tan delta(tan(δ))的形式。从DMA测试中可以收集到的其他数据是材料的相移、硬度、应力和应变。

纳米压痕的动态机械分析

碳化硅晶片涂层的机械性能

了解碳化硅晶片涂层的机械性能是至关重要的。微电子器件的制造过程可能有300多个不同的加工步骤,可能需要6至8周的时间。在这个过程中,晶圆基材必须能够承受极端的制造条件,因为任何步骤的失败都会导致时间和金钱的损失。测试的内容 硬度晶片的附着力/抗划伤性和COF/磨损率必须满足一定的要求,以便在制造和应用过程中的条件下生存,确保不会发生故障。

碳化硅晶片涂层的机械性能

聚合物涂层的显微刮擦试验

划痕测试 已经发展成为评估涂层的内聚力和粘合强度的最广泛的应用方法之一。临界载荷,即随着施加的载荷逐渐增加而发生某种类型的涂层失效,被广泛认为是确定和比较涂层的粘合和内聚性能的可靠工具。最常用于划痕测试的压头是圆锥形的洛氏钻石压头。然而,当对沉积在脆性基材(如硅片)上的软性聚合物涂层进行划痕测试时,锥形压头往往会犁过涂层形成凹槽,而不是产生裂缝或分层。当负载进一步增加时,脆性硅片就会出现裂缝。因此,开发一种新的技术来评估软涂层在脆性基材上的内聚力或粘附性能是至关重要的。

聚合物涂层的显微刮擦试验

ASTM D7187使用纳米划痕的温度效应

根据ASTM D7187标准,油漆的抗划伤性和抗污性在其最终用途中起着至关重要的作用。易受划痕影响的汽车漆在维护和修理方面很困难,而且成本很高。为了达到最佳的抗刮伤/抗污能力,人们开发了不同的底漆、基底漆和清漆的涂层结构。 纳米划痕测试 已经开发出一种标准的测试方法,用于测量油漆涂层的划痕/破坏行为的机械方面,如ASTM D7187中所述。.在划痕试验中,不同的基本变形机制,即弹性变形、塑性变形和断裂,在不同的载荷下发生。它提供了对油漆涂层的抗塑性和抗断裂性的定量评估。

ASTM D7187使用纳米划痕的温度效应

用摩擦仪测量纺织品的磨损程度

测量织物的耐磨性是非常具有挑战性的。许多因素在测试中起作用,包括纤维的机械性能、纱线的结构和织物的织法。这可能导致测试结果的可重复性差,给比较不同实验室的报告值带来困难。织物的磨损性能对纺织品生产链中的制造商、分销商和零售商至关重要。一个控制良好的可量化和可重复的 摩擦仪 耐磨性测量对于确保织物生产的可靠质量控制至关重要。

用摩擦仪测量纺织品的磨损程度

自清洁玻璃涂层摩擦力测量

自清洁玻璃涂层具有较低的表面能量,既能排斥水又能排斥油。这样的涂层创造了一个易于清洁和不粘的玻璃表面,保护其免受污垢、灰尘和污点的影响。 易清洁涂层大大减少了玻璃清洁的水和能源的使用。它不需要苛刻和有毒的化学洗涤剂,使它成为各种住宅和商业应用的生态友好选择,如镜子、淋浴玻璃、窗户和挡风玻璃。

自清洁玻璃涂层摩擦力测量

循环纳米压痕应力-应变测量

循环纳米压痕应力-应变测量

了解更多

 

纳米压痕的重要性

通过以下方式获得的连续刚度测量(CSM) 纳米压痕 用微创的方法揭示材料的应力-应变关系。与传统的拉伸测试方法不同,纳米压痕提供纳米级的应力-应变数据,而不需要大型仪器。应力-应变曲线提供了关于样品在承受越来越大的载荷时弹性和塑性行为之间的阈值的关键信息。CSM提供了在没有危险设备的情况下确定材料的屈服应力的能力。

 

纳米压痕提供了一种可靠的和用户友好的方法来快速调查应力-应变数据。此外,在纳米尺度上测量应力-应变行为使研究材料中的小涂层和颗粒的重要特性成为可能,因为它们变得更加先进。除了硬度、弹性模量、蠕变、断裂韧性等,纳米压痕还能提供弹性极限和屈服强度的信息,使其成为一种多功能的计量仪器。

在这项研究中,纳米压痕提供的应力-应变数据确定了材料的弹性极限,同时只进入了1.2微米的表面。我们使用CSM来确定材料的机械性能是如何随着压头进入表面的深度而发展的。这在薄膜应用中特别有用,因为其特性可能取决于深度。纳米压痕是一种确认测试样品中材料特性的微创方法。

CSM试验在测量材料特性与深度的关系方面很有用。循环试验可以在恒定载荷下进行,以确定更复杂的材料特性。这对于研究疲劳或消除孔隙率的影响以获得真正的弹性模量是很有用的。

测量目标

在这个应用中,Nanovea机械测试仪使用CSM来研究硬度和弹性模量与深度的关系以及标准钢样品的应力-应变数据。钢被选择为其普遍认可的特性,以显示纳米级应力-应变数据的控制和准确性。一个半径为5微米的球形尖端被用来达到足够高的应力,超过钢的弹性极限。

 

测试条件和程序

使用了以下压痕参数。

结果。

 

振荡过程中负载的增加提供了以下深度与负载的曲线。在加载过程中进行了100多次振荡,以找到压头穿透材料时的应力-应变数据。

 

我们从每个周期获得的信息中确定应力和应变。每个周期的最大载荷和深度使我们能够计算出每个周期施加在材料上的最大应力。应变是由每个周期的部分卸载后的残留深度计算出来的。这使我们可以通过除以尖端的半径来计算残留印记的半径,从而得到应变系数。绘制材料的应力与应变的关系图显示了弹性区和塑性区以及相应的弹性极限应力。我们的测试确定材料的弹性区和塑性区之间的过渡是在0.076左右的应变,弹性极限为1.45GPa。

每个周期作为一个单一的压痕,所以当我们增加负载时,我们在钢中的不同控制深度进行测试。因此,硬度和弹性模量与深度的关系可以直接从每个周期获得的数据中绘制出来。

随着压头进入材料,我们看到硬度增加,弹性模量减少。

总结

我们已经证明Nanovea机械测试仪提供可靠的应力-应变数据。使用带有CSM压痕的球形尖端,可以在增加的应力下进行材料性能测量。负载和压头半径可以改变,以便在受控深度测试各种材料。Nanovea机械测试仪提供这些压痕测试,从亚mN范围到400N。

 

使用纳米划痕测试的槽形支架涂层故障

药物洗脱支架是支架技术的一种新方法。它拥有可生物降解和生物相容的聚合物涂层,在局部动脉处缓慢而持续地释放药物,以抑制内膜增厚,防止动脉再次阻塞。 其中一个主要问题是携带药物洗脱层的聚合物涂层与金属支架基底的脱层。为了改善该涂层与基底的粘附性,支架被设计成不同的形状。特别是在这项研究中,聚合物涂层位于网线上的凹槽底部,这给附着力的测量带来了巨大的挑战。需要一种可靠的技术来定量地测量聚合物涂层和金属基体之间的界面强度。支架网的特殊形状和小直径(与人的头发相当)需要超细的X-Y侧向精度来定位测试位置,并在测试过程中适当控制和测量负载和深度。

使用纳米划痕测试的槽形支架涂层故障

聚合物薄膜的可控湿度纳米压痕

聚合物的机械性能会随着环境湿度的增加而改变。瞬时湿度效应,又称机械吸收效应,产生于聚合物吸收高湿度并经历加速的蠕变行为。更高的蠕变顺应性是复杂的综合效应的结果,如分子流动性增加,吸附引起的物理老化和吸附引起的应力梯度。

因此,需要一个可靠的和定量的测试(湿度纳米压痕),以了解在不同湿度下,吸附对聚合物材料的机械行为的影响。Nanovea机械测试仪的纳米模块通过一个高精度的压电装置施加负载,并直接测量力和位移的变化。通过隔离罩在压头和样品表面周围形成均匀的湿度,这保证了测量的准确性,并将湿度梯度引起的漂移的影响降到最低。

聚合物薄膜的可控湿度纳米压痕

使用摩擦仪测量刷毛硬度的性能

刷子是世界上最基本和最广泛使用的工具之一。它们可以用来清除材料(牙刷、考古刷、台式研磨机刷),应用材料(油漆刷、化妆刷、镀金刷),梳理丝线,或添加图案。由于其上的机械和研磨力,刷子在适度使用后不断地要被更换。例如,牙刷头应每三至四个月更换一次,因为反复使用会造成磨损。把牙刷纤维丝弄得太硬,有可能磨损真正的牙齿,而不是软斑。使牙刷纤维太软会使牙刷更快地失去其形状。了解牙刷的弯曲变化,以及在不同负载条件下纤维丝的磨损和整体形状的变化,对于设计能更好地实现其应用的牙刷是必要的。

使用摩擦仪测量刷毛硬度的性能