美国/全球:+1-949-461-9292
欧洲。+39-011-3052-794
联系我们

类别。轮廓测量测试

 

使用摩擦仪测量砂纸的磨损性能

砂纸的磨损性能

使用摩擦仪

编写者

李端杰,博士

简介

砂纸由粘在纸或布的一面的磨料颗粒组成。颗粒可以使用各种研磨材料,如石榴石、碳化硅、氧化铝和金刚石。砂纸被广泛地应用于各种工业部门,在木材、金属和干墙上形成特定的表面处理。它们经常在由手工或电动工具施加的高压接触下工作。

评估砂纸磨损性能的重要性

砂纸的有效性通常由其在不同条件下的磨损性能决定。粒度,即嵌入砂纸中的磨料颗粒的大小,决定了被打磨材料的磨损率和划痕大小。粒度较高的砂纸的颗粒较小,因此砂纸的打磨速度较低,表面效果较好。粒度相同但由不同材料制成的砂纸在干燥或潮湿条件下会有不一样的表现。需要进行可靠的摩擦学评估,以确保制造的砂纸具有预期的磨料行为。这些评估使用户能够以受控和监测的方式定量比较不同类型的砂纸的磨损行为,以便为目标应用选择最佳候选产品。

测量目标

在这项研究中,我们展示了NANOVEA摩擦计在干燥和潮湿条件下定量评估各种砂纸样品的磨损性能的能力。

NANOVEA

T2000

测试程序

通过 NANOVEA T100 摩擦磨损试验机评估了两种砂纸的摩擦系数 (COF) 和磨损性能。使用440不锈钢球作为计数器材料。每次磨损测试后使用 NANOVEA 检查球磨损痕迹 3D 非接触式光学轮廓仪 以确保精确的体积损失测量。

请注意,为了进行比较研究,我们选择了440不锈钢球作为反面材料,但任何固体材料都可以被替代,以模拟不同的应用条件。

测试结果和讨论

图1为干、湿环境条件下砂纸1和砂纸2的COF比较。在干燥条件下,砂纸1的COF在测试开始时为0.4,随后逐渐下降并稳定在0.3。在潮湿条件下,该样品的平均COF较低,为0.27。相比之下,样品2的COF结果显示干COF为0.27,湿COF为~ 0.37。 

请注意,所有COF图的数据中的振荡是由球在粗糙的砂纸表面的滑动运动产生的振动造成的。

图1: 磨损测试期间COF的演变。

图2总结了磨损疤痕的分析结果。磨损疤痕是用光学显微镜和NANOVEA 3D非接触式光学轮廓仪测量的。图3和图4比较了SS440球在砂纸1和2(湿和干条件)上的磨损试验后的磨损疤痕。如图4所示,NANOVEA光学轮廓仪精确地捕获了四个球的表面形貌及其各自的磨损痕迹,然后用NANOVEA Mountains高级分析软件进行处理,以计算出体积损失和磨损率。在球的显微镜和剖面图上可以看到,与其他球相比,用于砂纸1(干)测试的球表现出较大的扁平磨损痕,体积损失为0.313 毫米3.相比之下,砂纸1(湿)的体积损失为0.131 毫米3.对于砂纸2(干燥),体积损失为0.163 毫米3 而对于砂纸2(湿),体积损失增加到0.237 毫米3.

此外,值得注意的是,COF对砂纸的磨损性能起着重要作用。砂纸1在干燥条件下表现出较高的COF,导致试验中使用的SS440球的磨蚀率较高。相比之下,砂纸2在湿润条件下的COF较高,导致了较高的磨损率。测量后的砂纸的磨损痕迹显示在图5中。

砂纸 1 和砂纸 2 均声称可在干燥和潮湿环境中使用。然而,它们在干燥和潮湿条件下表现出显着不同的耐磨性能。纳诺维娅 摩擦计 提供良好控制的可量化和可靠的磨损评估功能,确保可重复的磨损评估。此外,原位 COF 测量功能使用户能够将磨损过程的不同阶段与 COF 的演变联系起来,这对于提高对砂纸磨损机制和摩擦学特性的基本了解至关重要

图2: 在不同条件下,球的磨损疤痕体积和平均COF。

图3: 测试后的球的磨损疤痕。

图4: 球上磨损疤痕的三维形态。

图5: 在不同条件下,砂纸上的磨损痕迹。

结论

在这项研究中,对两种相同粒度的砂纸在干燥和潮湿条件下的磨蚀性能进行了评估。砂纸的使用条件对工作性能的有效性起着关键作用。砂纸1在干燥条件下拥有明显更好的磨蚀行为,而砂纸2在潮湿条件下表现更好。在评估磨蚀性能时,打磨过程中的摩擦力是一个重要的考虑因素。NANOVEA光学轮廓仪精确地测量任何表面的三维形态,如球上的磨损疤痕,确保在本研究中对砂纸的磨损性能进行可靠的评估。NANOVEA摩擦仪在磨损测试期间就地测量摩擦系数,提供了对磨损过程不同阶段的洞察力。它还使用符合ISO和ASTM标准的旋转和线性模式提供可重复的磨损和摩擦测试,并在一个预集成系统中提供可选的高温磨损和润滑模块。这种无可比拟的范围使用户可以模拟球轴承不同的恶劣工作环境,包括高应力、磨损和高温等。它还提供了一个理想的工具来定量评估卓越的耐磨材料在高负荷下的摩擦学行为。

现在,让我们来谈谈你的申请

使用三维轮廓仪测量皮革表面

加工过的皮革

使用三维轮廓仪测量皮革表面

编写者

CRAIG LEISING

简介

一旦皮革的鞣制过程完成,皮革的表面就可以进行若干加工处理,以获得不同的外观和触感。这些机械加工可以包括拉伸、磨光、砂光、压花、涂层等。根据皮革的最终用途,有些可能需要更精确、可控和可重复的加工。

轮廓仪的重要性 用于研发和质量控制

由于目视检测方法差异大且不可靠,能够准确量化微米和纳米尺度特征的工具可以改进皮革涂饰工艺。从量化的角度了解皮革的表面光洁度,可以改进数据驱动的表面加工选择,从而获得最佳的光洁度效果。NANOVEA 3D 非接触式 轮廓仪 NANOVEA 轮廓仪利用色度共焦技术测量皮革成品表面,具有市场上最高的重复性和准确性。由于探头接触、表面变化、角度、吸收或反射等原因,其他技术无法提供可靠的数据,而 NANOVEA 轮廓仪却能做到这一点。

测量目标

在这个应用中,NANOVEA ST400被用来测量和比较两个不同的但紧密加工的皮革样品的表面粗糙度。有几个表面参数是由表面轮廓自动计算出来的。

在这里,我们将重点关注表面粗糙度、窝点深度、窝点间距和窝点直径进行比较评估。

NANOVEA

ST400

结果:样本1

ISO 25178

高度参数

其他3D参数

结果:样本2

ISO 25178

高度参数

其他3D参数

深度比较

每个样品的深度分布。
观察到大量的深凹陷在
示例1.

俯视比较

窝点之间的间距 示例1 略小
示例2,但两者的分布相似

 平均直径比较

凹陷的平均直径分布相似。
示例1 显示平均直径略小。

结论

在这项应用中,我们展示了NANOVEA ST400三维轮廓仪如何精确地描述加工皮革的表面光洁度。在这项研究中,拥有测量表面粗糙度、窝点深度、窝点间距和窝点直径的能力,使我们能够量化两个样品的光洁度和质量之间的差异,这些差异通过目视检查可能并不明显。

总的来说,SAMPLE 1和SAMPLE 2之间的3D扫描的外观没有明显区别。然而,在统计分析中,这两个样品之间有明显的区别。与SAMPLE 2相比,SAMPLE 1含有更多直径较小、深度较大、窝点与窝点之间间距较小的窝点。

请注意,还可以进行更多的研究。特别感兴趣的领域可以通过集成AFM或显微镜模块进一步分析。NANOVEA 3D轮廓仪的速度范围从20毫米/秒到1米/秒,用于实验室或研究,以满足高速检测的需要;可以定制尺寸、速度、扫描能力、符合1级洁净室标准、索引传送带或用于在线或在线集成。

现在,让我们来谈谈你的申请

活塞磨损测试

活塞磨损测试

使用摩擦仪

编写者

刘志强

简介

摩擦损失约占柴油机燃料中总能量的10%。[1].40-55%的摩擦损失来自于动力缸系统。通过更好地了解动力缸系统中发生的摩擦学相互作用,可以减少摩擦造成的能量损失。

动力缸系统中的摩擦损失有很大一部分源于活塞裙部和气缸套之间的接触。由于现实生活中发动机的力、温度和速度不断变化,活塞裙部、润滑油和气缸接口之间的相互作用相当复杂。优化每个因素是获得最佳发动机性能的关键。这项研究的重点是复制造成摩擦力和活塞裙部-润滑油-气缸套(P-L-C)界面磨损的机制。

 动力缸系统和活塞裙边-润滑油-缸套界面示意图。

[1] Bai, Dongfang.内燃机活塞裙部润滑的建模。Diss.麻省理工学院, 2012

用摩擦片测试活塞的重要性

机油是一种为其应用而精心设计的润滑剂。除了基础油之外,还添加了清洁剂、分散剂、粘度改进剂(VI)、抗磨损/抗摩擦剂和缓蚀剂等添加剂,以提高其性能。这些添加剂影响油在不同操作条件下的表现。油的行为会影响P-L-C界面,并决定是否发生金属-金属接触的显著磨损或流体动力润滑(极少磨损)。

如果不将该地区与外部变量隔离,就很难理解P-L-C接口。用能代表其现实应用的条件来模拟该事件更为实际。该 NANOVEA 摩擦仪 非常适合此目的。配备多个力传感器、深度传感器、逐滴润滑模块和线性往复平台, NANOVEA T2000能够密切模拟发动机组内发生的事件,并获得宝贵的数据,以更好地了解P-L-C接口。

NANOVEA T2000摩擦仪的液体模块

逐滴模块对这项研究至关重要。由于活塞可以以非常快的速度运动(超过3000转/分),因此很难通过浸没样品来形成一层润滑油薄膜。为了解决这个问题,逐滴模块能够持续地在活塞裙部表面施加恒定数量的润滑剂。

新润滑油的应用也消除了脱落的磨损污染物对润滑油性能的影响。

NANOVEA T2000

高负荷摩擦仪

测量目标

本报告将研究活塞裙部-润滑油-缸套的界面。这些界面将通过进行线性往复磨损试验和逐滴润滑油模块进行复制。

润滑剂将在室温和加热条件下使用,以比较冷启动和最佳操作条件。将观察COF和磨损率,以更好地了解界面在实际应用中的表现。

测试参数

用于活塞的摩擦学测试

负载 ............................100 N

测试时间 ............................30分钟

速度 ............................2000转/分

AMPLITUDE ............................10毫米

总距离 ............................1200 m

涂层 ............................钼-石墨

销材料 ............................铝合金 5052

针孔直径 ............................10毫米

润滑油 ............................机油(10W-30)

流动速度 ............................60 mL/min

温度 ............................室温和90°C

线性往复测试结果

在这个实验中,使用了A5052作为反面材料。虽然发动机缸体通常是由A356等铸铝制成的,但A5052的机械性能与A356相似,适合这种模拟测试[2]。

在测试条件下,显著的磨损是
在室温下在活塞裙部观察到的
与90°C时相比。在样品上看到的深深的划痕表明,在整个测试过程中,静态材料和活塞裙部之间经常发生接触。室温下的高粘度可能限制了油完全填满接口处的空隙并产生金属-金属接触。在更高的温度下,油变稀,能够在销和活塞之间流动。因此,在较高温度下观察到的磨损明显减少。图5显示,磨损疤痕的一侧明显比另一侧磨损得少。这很可能是由于出油口的位置。一边的润滑油膜厚度比另一边的厚,造成了不均匀的磨损。

 

 

[2] "5052铝与356.0铝。"MakeItFrom.com, makeitfrom.com/compare/5052-O-Aluminum/A356.0-SG70B-A13560-Cast-Aluminum

线性往复摩擦学试验的COF可以分为高通和低通。高通量指的是样品在正向,或正向移动,低通量指的是样品在反向,或负向移动。据观察,RT油的平均COF在两个方向上都低于0.1。两次通过之间的平均COF为0.072和0.080。发现90°C油的平均COF在各道次之间是不同的。观察到的平均COF值为0.167和0.09。COF的差异进一步证明了油只能够正确地润湿针的一侧。当销轴和活塞裙部之间由于发生流体动力润滑而形成厚膜时,获得了高COF。当发生混合润滑时,在另一个方向观察到较低的COF。关于流体动力润滑和混合润滑的更多信息,请访问我们的应用说明,关于 斯特里贝克曲线.

表1: 活塞的润滑磨损试验结果。

图1: 常温油品磨损试验的COF图A原始曲线B高通过率C低通过率。

图2: 90°C耐磨油测试的COF图A原始轮廓B高通过C低通过。

图3: 来自RT机油磨损试验的磨损痕的光学图像。

图4: 来自RT机油磨损试验的磨损疤痕的孔洞分析量。

图5: 来自RT机油磨损测试的磨损疤痕的轮廓测量扫描。

图6: 来自90°C机油磨损试验的磨损痕的光学图像

图7: 来自90°C机油磨损试验的磨损疤痕的孔洞分析量。

图8: 来自90°C机油磨损试验的磨损痕的轮廓测量扫描。

结论

在一个活塞上进行了润滑的线性往复磨损测试,以模拟在一台机器上发生的事件。
现实生活中运行的发动机。活塞裙部-润滑油-气缸套界面对发动机的运行至关重要。界面上的润滑油厚度对活塞裙部和气缸套之间的摩擦或磨损造成的能量损失负责。为了优化发动机,油膜厚度必须尽可能薄,而不允许活塞裙部和气缸套接触。然而,挑战在于温度、速度和力的变化将如何影响P-L-C界面。

NANOVEA T2000摩擦仪具有广泛的载荷(高达2000 N)和速度(高达15000 rpm),能够模拟发动机中可能存在的不同条件。未来可能的研究课题包括P-L-C接口在不同的恒定载荷、振荡载荷、润滑油温度、速度和润滑油应用方法下的表现。这些参数可以很容易地通过NANOVEA T2000摩擦仪进行调整,从而对活塞裙部-润滑油-缸套界面的机制有一个全面的了解。

现在,让我们来谈谈你的申请

使用便携式三维轮廓仪的有机表面拓扑图

有机表面的地形

使用便携式三维轮廓仪

编写者

CRAIG LEISING

简介

大自然已经成为改进表面结构发展的重要灵感源泉。对自然界中发现的表面结构的了解导致了基于壁虎脚的粘附性研究,基于海参结构变化的耐药性研究,以及基于树叶的排斥性研究,等等。这些表面有许多潜在的应用,从生物医学到服装和汽车。要想取得这些表面上的突破,必须发展制造技术,使表面特征能够被模仿和复制。这一过程需要识别和控制。

便携式三维非接触式光学轮廓仪对有机表面的重要性

NANOVEA Jr25 便携式产品采用 Chromatic Light 技术 光学轮廓仪 具有测量几乎任何材料的卓越能力。这包括在自然界广泛的表面特征中发现的独特且陡峭的角度、反射和吸收表面。 3D 非接触式测量提供完整的 3D 图像,以便更全面地了解表面特征。如果没有 3D 功能,自然表面的识别将仅依赖于 2D 信息或显微镜成像,而这无法提供足够的信息来正确模拟所研究的表面。了解全面的表面特征,包括纹理、形状、尺寸等,对于成功制造至关重要。

在现场轻松获得实验室质量的结果的能力,为新的研究机会打开了大门。

测量目标

在这个应用中, NANOVEA Jr25是用来测量叶片的表面。有一个无穷无尽的表面参数列表,可以在三维表面扫描后自动计算。

在这里,我们将审查三维表面并选择
要进一步分析的感兴趣的领域,包括
量化和调查表面粗糙度、通道和地形情况

NANOVEA

JR25

测试条件

皱纹深度

沟壑的平均密度。16.471 cm/cm2
沟壑平均深度:97.428 μm
沟壑最大深度: 359.769 μm

结论

在这个应用中,我们已经展示了如何 NANOVEA Jr25便携式三维非接触式光学轮廓仪可以在现场精确地描述叶子表面的地形和纳米级的细节。从这些三维表面测量结果中,可以迅速确定感兴趣的区域,然后用无尽的研究清单进行分析(尺寸,粗糙度完成的纹理,形状形式地形,平整度翘曲度平面度,体积面积,阶梯高度 和其他)。可以很容易地选择一个二维截面来分析进一步的细节。有了这些信息,就可以用一套完整的表面测量资源对有机表面进行广泛调查。特别感兴趣的领域可以通过桌面模型上的集成AFM模块进一步分析。

NANOVEA 还提供用于现场研究的便携式高速轮廓仪和各种基于实验室的系统,并提供实验室服务。

现在,让我们来谈谈你的申请

砂纸粗糙度轮廓仪

砂纸:粗糙度和颗粒直径分析

砂纸。粗糙度和颗粒直径分析

了解更多

砂纸

粗糙度和粒径分析

编写者

刘志强

简介

砂纸是一种常见的商业化产品,用作磨料。砂纸最常见的用途是去除涂层或利用其磨蚀性对表面进行抛光。这些磨料特性被分为不同的等级,每一种等级都与光滑程度和质量有关。
砂纸的表面粗糙度。为了达到理想的磨料特性,砂纸制造商必须确保磨料颗粒具有特定的尺寸,并且偏差很小。为了量化砂纸的质量,NANOVEA的3D非接触式 轮廓仪 可用于获得样品区域的算术平均(Sa)高度参数和平均颗粒直径。

3D非接触式光学轮廓仪的重要性 砂纸轮廓仪

使用砂纸时,磨料颗粒与被砂表面的相互作用必须均匀,才能获得一致的表面光洁度。为了量化这一点,可以使用NANOVEA的3D非接触式光学剖面仪观察砂纸的表面,以查看颗粒大小、高度和间距的偏差。

测量目标

在这项研究中,五种不同的砂纸粒度(120。
180、320、800和2000)的扫描。
NANOVEA ST400 3D非接触式光学轮廓仪。
从扫描中提取出Sa,并将粒子
规模是通过进行Motifs分析来计算的。
找到它们的等效直径

NANOVEA

ST400

结果与讨论

砂纸的表面粗糙度(Sa)和颗粒尺寸随着砂砾的增加而减小,如预期的那样。Sa范围为42.37 ~ 3.639 μm。粒径范围为127±48.7 ~ 21.27±8.35。与高度变化较小的颗粒相比,较大的颗粒和高度变化较大的颗粒对表面产生更强的研磨作用。
请注意所有给定高度参数的定义都列在第A.1页。

表1: 砂纸粒度和高度参数的比较。

表2: 砂纸等级和颗粒直径的比较。

砂纸的2D和3D视图 

下面是砂纸样品的假色和三维视图。
使用0.8毫米的高斯滤波器来消除形状或波浪。

动机分析

为了准确地找到表面的颗粒,重新定义了高度比例阈值,只显示砂纸的上层。然后进行图案分析来检测峰值。

结论

NANOVEA公司的3D非接触式光学轮廓仪能够精确扫描具有微纳米特征的表面,因此被用于检测各种砂纸磨粒的表面特性。

使用先进的软件分析三维扫描,获得了每个砂纸样品的表面高度参数和等效颗粒直径。据观察,随着砂粒大小的增加,表面粗糙度(Sa)和颗粒大小如预期的那样下降。

现在,让我们来谈谈你的申请

保丽龙表面边界测量轮廓仪

表面边界测量

使用三维轮廓测量法的表面边界测量

了解更多

表面边界测量

使用三维轮廓仪测量

编写者

克雷格-莱辛

简介

在对表面特征、图案、形状等的界面进行方位评估的研究中,快速确定整个测量剖面上的关注区域将是非常有用的。通过将一个表面分割成重要的区域,用户可以快速评估边界、峰值、凹点、面积、体积和许多其他方面,以了解它们在整个研究的表面轮廓中的功能作用。例如,像金属的晶界成像,分析的重要性是许多结构的界面和它们的整体方向。通过了解每个感兴趣的区域的缺陷和或整体区域内的异常可以被识别。尽管晶界成像通常是在超过Profilometer能力的范围内进行研究,而且只是二维图像分析,但它是一个有用的参考,说明这里将在更大范围内显示的概念以及三维表面测量的优势。

3D非接触式轮廓仪对表面分离研究的重要性

与接触式探针或干涉测量等其他技术不同, 3D 非接触式轮廓仪使用轴向色差,可以测量几乎任何表面,由于开放式分级,样品尺寸可能变化很大,并且不需要样品制备。在表面轮廓测量过程中获得纳米到宏观范围,样品反射率或吸收的影响为零,具有测量高表面角度的先进能力,并且无需软件对结果进行操作。轻松测量任何材料:透明、不透明、镜面、漫射、抛光、粗糙等。非接触式轮廓仪技术提供了理想、广泛且用户友好的功能,可在需要表面边界分析时最大限度地进行表面研究;以及 2D 和 3D 组合功能的优势。

测量目标

在这个应用中,Nanovea ST400轮廓仪被用来测量泡沫聚苯乙烯的表面积。通过结合反射强度文件和地形来建立边界,这些文件由NANOVEA ST400同时获取。这些数据被用来计算每个聚苯乙烯泡沫“颗粒”的不同形状和大小信息。

NANOVEA

ST400

结果与讨论:二维表面边界测量

地形图(下图左)被反射强度图(下图右)所掩盖,以明确界定晶粒的边界。所有直径在565微米以下的晶粒都通过应用过滤器被忽略了。

谷物总数。167
谷物所占的总投影面积。166.917 mm² (64.5962 %)
边界所占的预计总面积:(35.4038 %)
谷物的密度。0.646285粒/平方毫米

面积 = 0.999500 mm² +/- 0.491846 mm²
周长 = 9114.15 µm +/- 4570.38 µm
等效直径=1098.61 µm +/- 256.235 µm
平均直径=945.373µm +/- 248.344 µm
最小直径 = 675.898 µm +/- 246.850 µm
最大直径 = 1312.43 µm +/- 295.258 µm

结果与讨论:三维表面边界测量

通过使用获得的三维地形数据,可以分析每个晶粒的体积、高度、峰值、长宽比和一般形状信息。占用的总三维面积:2.525mm3

结论

在这个应用中,我们展示了NANOVEA 3D非接触式轮廓仪如何精确地表征聚苯乙烯泡沫塑料的表面。统计信息可以在整个感兴趣的表面或单个晶粒上获得,无论它们是峰值还是凹坑。在这个例子中,所有大于用户定义尺寸的晶粒被用来显示面积、周长、直径和高度。这里显示的特征对天然和预制表面的研究和质量控制至关重要,范围包括生物医学和微加工应用以及许多其他应用。 

现在,让我们来谈谈你的申请

使用NANOVEA的轮廓仪进行轮廓测量

橡胶胎面轮廓测量

橡胶胎面轮廓测量

了解更多

 

 

 

 

 

 

 

 

 

 

 

 

 

橡胶胎面轮廓测量

使用三维光学剖面仪

橡胶胎面轮廓测量 - NANOVEA轮廓仪

编写者

安德里亚-赫尔曼

简介

和所有的材料一样,橡胶的摩擦系数也是相关的 部分原因在于它的表面粗糙度。在车辆轮胎应用中,与路面的牵引力是非常重要的。表面粗糙度和轮胎的胎面都有影响。对橡胶表面及胎面粗糙度和尺寸进行了分析。

*样本

重要性

三维非接触式轮廓测量法

用于橡胶研究

与接触式探针或干涉测量等其他技术不同,NANOVEA 的 3D 非接触式光学轮廓仪 使用轴向色差来测量几乎任何表面。 

三位轮廓仪开放式平台适用于多种类和不同大小的样品。通过宏观范围的特征可以在单次扫描中检测到纳米级的台阶,不受样品反射率或吸收的影响。此外,这些剖面仪有先进的能力来测量高的表面角度,而不需要软件操作的结果。

轻松地测量任何材料:透明的、不透明的、镜面的、扩散的、抛光的、粗糙的等等。NANOVEA 3D非接触式轮廓仪的测量技术提供了一种理想的、广泛的和用户友好的能力,以最大限度地进行表面研究,同时还具有2D和3D相结合的能力。

测量目标

在这个应用中,我们展示了NANOVEA ST400。 一个三维非接触式光学轮廓仪测量 橡胶轮胎的表面和胎面。

足够大的样品表面积可以代表 整个轮胎表面都是随机选择的 为这项研究。 

为了量化橡胶的特性,我们使用 NANOVEA Ultra三维分析软件,以 测量轮廓尺寸,深度。 表面的粗糙度和面积。

NANOVEA

ST400

分析。 轮胎胎面

胎面的三维视图和假彩色视图显示了三维表面设计的制图价值。它为用户提供了一个直接的工具,从不同角度直接观察胎面的尺寸和形状。高级轮廓分析和阶梯高度分析都是非常强大的工具,用于测量样品形状和设计的精确尺寸

高级轮廓分析

台阶高度分析

分析。 橡胶表面

橡胶表面可以用多种方法量化,使用内置软件工具,如下图所示为例。可以观察到表面粗糙度为2.688 μm,显影面积比投影面积为9.410 mm²比8.997 mm²。这些信息使我们能够检查不同橡胶配方的表面光洁度和牵引力之间的关系,甚至是表面磨损程度不同的橡胶。

结论

在这个应用中,我们已经展示了NANOVEA如何 三维非接触式光学轮廓仪可以精确地描述橡胶的表面粗糙度和胎面尺寸。

数据显示,表面粗糙度为2.69微米,开发面积为9.41平方毫米,投影面积为9平方毫米。 橡胶踏板的各种尺寸和半径被 衡量也是如此。

本研究提出的信息可用于比较具有不同胎面设计、配方或不同磨损程度的橡胶轮胎的性能。 这里显示的数据只代表了部分的 Ultra 3D分析软件中提供的计算方法。

现在,让我们来谈谈你的申请

使用三维光学轮廓仪进行鱼鳞表面分析

使用三维光学轮廓仪进行鱼鳞表面分析

了解更多

鱼鳞表面分析

使用三维光学轮廓仪

鱼鳞式剖面仪

编写者

安德烈-诺维茨基

简介

使用 NANOVEA 研究鱼鳞的形态、图案和其他特征 3D 非接触式光学轮廓仪。这种生物样本的精致性质及其非常小和高角度的凹槽也凸显了轮廓仪非接触技术的重要性。鳞片上的凹槽被称为环状物,可以通过研究来估计鱼的年龄,甚至可以区分不同生长速度的时期,类似于树的年轮。这对于管理野生鱼类种群以防止过度捕捞非常重要。

三维非接触式轮廓仪在生物研究中的重要性

与其他技术如触摸探针或干涉测量术不同,3D非接触式光学剖面仪使用轴向色差,几乎可以测量任何表面。由于开放分期,样品的大小可能变化很大,不需要样品准备。在表面轮廓测量过程中获得纳米通过宏观范围的特征,不受样品反射率或吸收的影响。该仪器具有先进的测量高表面角度的能力,无需软件对结果进行操作。任何材料都很容易测量,无论它是透明的、不透明的、镜面的、扩散的、抛光的还是粗糙的。该技术提供了一种理想的、广泛的和用户友好的功能,可以最大限度地提高表面研究,以及结合2D和3D功能的好处。

测量目标

在这个应用中,我们展示了NANOVEA ST400,一个带有高速传感器的3D非接触式轮廓仪,提供了对尺度表面的全面分析。

该仪器已经被用来扫描整个样品,同时对中心区域进行了更高的分辨率扫描。还测量了刻度的外侧和内侧的表面粗糙度以进行比较。

NANOVEA

ST400

外尺度的三维和二维表面特征

外尺度的三维视图和假彩色视图显示了类似于指纹或树环的复杂结构。这为用户提供了一个直接的工具,从不同的角度直接观察刻度的表面特征。外尺度的各种其他测量结果与尺度的外侧和内侧的比较一起显示。

鱼鳞扫描三维视图轮廓仪
鱼鳞扫描体积三维轮廓仪
鱼鳞扫描阶梯高度三维光学剖面仪

表面粗糙度比较

鱼鳞轮廓仪三维扫描

结论

在这个应用中,我们展示了NANOVEA 3D非接触式光学轮廓仪是如何以各种方式描述鱼鳞的。 

使用NANOVEA 3D非接触光学轮廓仪对鱼鳞的形态、图案和其他特征进行了研究。这种生物样品的精致性质,以及它非常小和高角度的凹槽,也突出了剖面仪非接触技术的重要性。鳞片上的凹槽被称为“环”,可以通过研究来估计鱼的年龄,甚至可以区分不同生长速率的时期,就像树木的年轮一样。这对于管理野生鱼类种群以防止过度捕捞是非常重要的信息。 

这里显示的数据仅代表分析软件中可用的一部分计算结果。

现在,让我们来谈谈你的申请

菲涅尔透镜拓扑图

新鲜透镜

使用三维轮廓仪测量尺寸

编写者

李端杰和Benjamin Mell

简介

透镜是一种轴对称的光学装置,用来传输和折射光线。一个简单的透镜由单一的光学元件组成,用于收敛或发散光线。尽管球形表面并不是制作透镜的理想形状,但它们通常被用作玻璃研磨和抛光后最简单的形状。

菲涅尔透镜由一系列同心环组成,这些环是简单透镜的薄部分,宽度只有千分之几英寸。与具有相同光学性能的传统透镜相比,菲涅尔透镜孔径大,焦距短,设计紧凑,减少了所需材料的重量和体积。由于菲涅尔透镜的薄几何结构,很少的光由于吸收而丢失。

3D非接触式轮廓测量法在菲涅尔透镜检查中的重要性

菲涅尔透镜广泛应用于汽车工业、灯塔、太阳能和航空母舰的光学着陆系统。用透明塑料模制或冲压透镜可以提高其生产成本效益。菲涅尔透镜的使用质量主要取决于其同心环的精度和表面质量。与接触式探针技术不同,NANOVEA 光学轮廓仪 在不接触表面的情况下执行 3D 表面测量,避免产生新划痕的风险。色光技术非常适合精确扫描复杂形状,例如不同几何形状的镜片。

菲涅尔透镜原理图

透明塑料菲涅尔透镜可以通过成型或冲压制造。准确和有效的质量控制对于揭示有缺陷的生产模具或冲压件至关重要。通过测量同心环的高度和间距,将测量值与透镜制造商给出的规格值进行比较,可以发现生产的变化。

对镜片轮廓的精确测量可确保模具或印章被正确加工以符合制造商的规格。此外,印章可能随着时间的推移而逐渐磨损,导致其失去最初的形状。持续偏离镜片制造商的规格是一个积极的迹象,表明需要更换模具。

测量目标

在这个应用中,我们展示了NANOVEA ST400,一个带有高速传感器的3D非接触式轮廓仪,为复杂形状的光学元件提供全面的3D轮廓分析。为了证明我们的色光技术的卓越能力,轮廓分析是在菲涅尔透镜上进行。

NANOVEA

ST400

本研究使用的2.3" x 2.3" 亚克力菲涅尔透镜包括 

一系列的同心环和复杂的锯齿状横截面轮廓。 

它有一个1.5英寸的焦距,2.0英寸的有效尺寸直径。 

每英寸有125条沟,折射率为1.49。

菲涅尔透镜的NANOVEA ST400扫描显示,同心环的高度明显增加,从中心向外移动。

2D FALSE COLOR

高度代表

3D视图

剖析

巅峰与谷底

剖面图的尺寸分析

结论

在这个应用中,我们展示了NANOVEA ST400非接触式光学轮廓仪精确测量菲涅尔透镜的表面形貌。 

使用NANOVEA分析软件,可以从复杂的锯齿状轮廓准确地确定高度和间距的尺寸。用户可以通过比较制造的镜片的环高和节距尺寸与理想的环规格,有效地检查生产模具或印章的质量。

这里显示的数据仅代表分析软件中可用的一部分计算结果。 

NANOVEA光学轮廓仪几乎可以测量任何领域的表面,包括半导体、微电子、太阳能、光纤、汽车、航空航天、冶金、加工、涂层、制药、生物医学、环境和许多其他领域。

 

现在,让我们来谈谈你的申请

机加工零件质量控制

机加工零件检查

机械零件

使用三维轮廓测量法根据CAD模型进行检测

作者。

李端杰,博士

订正

Jocelyn Esparza

用轮廓仪检测机械加工件

简介

各个行业对能够创造复杂几何形状的精密加工的需求一直在上升。从航空航天、医疗和汽车,到科技齿轮、机械和乐器,不断的创新和演变将期望和精度标准推向新的高度。因此,我们看到对严格的检测技术和仪器的需求上升,以确保产品的最高质量。

三维非接触式轮廓仪在零件检测中的重要性

将加工好的零件的属性与它们的CAD模型进行比较,对于验证公差和对生产标准的遵守是至关重要的。在服务期间的检查也是至关重要的,因为零件的磨损可能需要更换。及时发现任何偏离所需规格的情况将有助于避免昂贵的维修、生产停顿和声誉受损。

与接触式探针技术不同,NANOVEA 光学轮廓仪 以零接触方式执行 3D 表面扫描,从而以最高精度快速、精确、无损地测量复杂形状。

测量目标

在这个应用中,我们展示了NANOVEA HS2000,一个带有高速传感器的三维非接触式轮廓仪,进行尺寸、半径和粗糙度的全面表面检测。 

所有这些都在40秒内完成。

NANOVEA

HS2000

CAD模型

对加工件的尺寸和表面粗糙度的精确测量对于确保其符合所需的规格、公差和表面光洁度至关重要。下面是要检测的零件的三维模型和工程图。 

错误的颜色视图

CAD模型的假彩色视图和扫描的加工零件表面在图3中进行了比较。 样品表面的高度变化可以通过颜色的变化来观察。

如图2所示,从三维表面扫描中提取三个二维轮廓,以进一步验证加工件的尺寸公差。

概况比较和结果

图3至图5中显示了轮廓1至3。通过将测量的轮廓与CAD模型进行比较来进行定量公差检查,以维护严格的制造标准。轮廓1和轮廓2测量弯曲加工件上不同区域的半径。轮廓2的高度变化在156毫米的长度上为30微米,符合所需的±125微米的公差要求。 

通过设置公差限值,分析软件可以自动确定加工件的合格或不合格。

用轮廓仪检测机器零件

被加工零件表面的粗糙度和均匀性对保证其质量和功能起着重要作用。图6是从被加工零件的母扫描中提取的表面积,用于量化表面光洁度。平均表面粗糙度(Sa)为2.31 μ m。

结论

在这项研究中,我们展示了配备了高速传感器的NANOVEA HS2000非接触式轮廓仪是如何进行尺寸和粗糙度的全面表面检测的。 

高分辨率扫描使用户能够测量加工零件的详细形态和表面特征,并将其与CAD模型进行定量比较。该仪器还能够检测到任何缺陷,包括划痕和裂纹。 

先进的轮廓分析作为一个无与伦比的工具,不仅可以确定加工的零件是否满足设定的规格,还可以评估磨损部件的故障机制。

这里显示的数据只代表了每个NANOVEA光学剖面仪所配备的高级分析软件所能进行的部分计算。

 

现在,让我们来谈谈你的申请